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Abstract—In this paper a novel method for computing parallax
maps from monocular and uncalibrated video sequences is
described. Acquired frames are processed pairwise, starting from
a first reference and progressively integrating information coming
from subsequent frames in temporal order using a Kalman filter.
In this way, temporal stabilization of the generated maps is
obtained as well as more consistency with the real video content.
Results and evidences coming from the benchmark of the system
on both synthetic and natural images have also been reported,
showing significant improvements with respect to the parallax
maps obtained without temporal integration.

I. INTRODUCTION

In this paper we address the problem of disparity estimation
in a monocular sequence of images acquired by a moving cam-
era, a.k.a. motion stereo [21]; in particular we confront – for
the first time – the uncalibrated variant, where camera internal
parameters as well as camera motion are both unknown.

Whereas in classical binocular stereo two cameras separated
by a fixed baseline are employed, in motion-stereo a single
camera moves through a static scene. As a result, over a
period of time, the camera traverses a “baseline” of arbitrary
length. The rationale for investigating such problem is the
attempt to solve the well-known accuracy-precision trade-off
in stereo matching, which can be summarized as follows: due
to quantization errors, the estimated disparity is more precise
with a longer baseline, but the matching is less accurate (i.e.,
more false matches). There is clearly a compromise between
precision and accuracy which motion stereo and multiple-
baseline stereo approaches address (see for example [10],
[12]).

From the geometrical standpoint, the problem is how to
integrate disparity measures in a common reference frame.
The easiest one is the 3D space: ultimately, every disparity
measure must translate into a depth. The computation of depth,
however, can be avoided if one considers depth-proxies such
as binocular disparity or planar parallax.

If camera motion is constrained such as image planes
are coplanar (lateral shift with no rotation), then binocular
disparities are related by a scale factor proportional to the
baseline [10], hence the integration can take place at the
disparity level. If camera motion is constrained on a line
(camera centers are collinear), then a multiview rectification
can be applied, thus falling back to the previous case. In the
general motion case, however, disparity cannot be used, as it
depends on the displacement between the reference and the
current view (see Fig.1); in this case planar parallax can
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Fig. 1. Binocular disparity D depends on both reference and current views,
so it is not possible to univocally merge together several disparity maps for a
general, unknown motion; planar parallax γ, instead, depends only on the
reference view and a reference plane, hence parallax maps coming from
different current views can be integrated.

be profitably employed. Parallax is the apparent change in
the position of an object caused by a change in the point
of view; Planar parallax represents the displacement in the
apparent position of objects imaged from different points of
view with respect to a reference plane, and can be computed
from binocular disparity.

We use a dynamic approach, as we apply a Kalman filter
based formulation for recursive estimation of parallax maps
by combining several measurements along the time line. The
idea of integrating disparity measures using Kalman filter is
far from new; early work [19], [10], [5], [13], [17] require
motion and camera parameters to be known, because the depth
(or its inverse) is the quantity that supports the aggregation
from different frames. Most of them restricts to lateral motion.
A weakness common to these methods is that they warp the
disparity map from previous to current frame: this process
introduces errors and approximations that make the integration
pointless (i.e. the current disparity map is likely more accurate
than the prediction). In our work we avoid this problem by
keeping the reference view fixed, thanks to the properties
of planar parallax (instead of disparity). Indeed, whereas
binocular disparity depends on both reference and current
views, parallax depends only on the reference view and a
reference plane, hence parallax maps coming from different
current views can be integrated. The contribution of this paper
can be seen as an unconstrained, uncalibrated extension of
these classical works.

A related stream of work is the one denoted as “multiple-
baseline” stereo, where the camera centres are collinear (equiv-



alent to lateral motion) and an aggregated matching cost
is computed which considers all the images simultaneously
[9], [12], [8]. More recent motion-stereo approaches require
calibrated cameras and aggregate measures in a discretized 3D
volume [20], [11], [23].

In the approach described in this paper, frames are processed
pairwise, starting from a first reference then progressively
integrating information coming from subsequent frames in
temporal order, thus obtaining more stable, reliable and con-
sistent parallax values along the video sequence. Obtained
parallax maps might act as enabler for many applications
in several different areas: for example novel kind of men-
machine touchless interfaces, augmented or virtual reality
world generation where real and synthetic objects can interact
together or also high-quality view synthesis for smart frame
rate up-conversion and free viewpoint 3D TV.

II. BACKGROUND

In this section we review some background notions needed
to understand the proposed method. A complete discussion
and formulation of the planar parallax theory can be found
in [16], [7]. A more general reference on the geometry of
multiple views is [4].

Between two image planes, there exists a non-singular linear
transformation, or homography, H that maps the projected
points of the space plane in the first view onto the correspond-
ing points in the second view. More in detail, if (m1,m2) are
projections of a 3-D point M belonging to some space plane
Π on two reference views I1, I2, we have:

m2 ' HΠm1 (1)

where HΠ is the homography induced by plane Π and '
means equality up to a scale factor.

For points M not on the space plane Π, the more general
relation holds:

m2 ' HΠm1 + e2γ1 (2)

where e2 is the epipole in the second image and γ1 is a
quantity proportional to the distance of the point M from the
plane. Observe that in this case the homography HΠ does not
map the points in the first view to their corresponding points in
the second view. The displacement between the homography
mapped point HΠm1 and the corresponding point m2 is called
planar parallax (or, simply, parallax if the context is clear)
of the point m1. With a little abuse of notation, the same
term will be used also to denote the magnitude γ1 of this
displacement (the direction is toward the epipole).

It is possible to show that the parallax γ1 depends only on
the first view and the plane Π, and not on the second view,
although a second view is needed to compute it. Moreover γ1

is proportional to the inverse of the depth of points. By setting
a reference view together with a fixed reference plane Π, one
can thus obtain a projective proxy for the depth of a point that
is consistent across several views.

Parallax values can be obtained from point correspondences
and a plane homography by solving for γ1 in Eq. 2:

γ1 =
(m2 × e2)T (HΠm1 ×m2)

‖m2 × e2‖2
. (3)

Finally observe that, when two image planes are coplanar
(i.e. up to coordinate change, motion is along X axis) and the
reference plane is the one at infinity, then HΠ is the identity,
the epipole is e2 =

[
1 0 0

]>
, and thus planar parallax in

Eq. 2 results to be proportional to binocular disparity.

III. PROPOSED METHOD

The outline of the proposed method is shown in Fig. 2.
The input is a monocular uncalibrated video sequence of N
frames Ii with i = 1, . . . , N , where uncalibrated means that
both intrinsic parameters and camera trajectory are unknown.
The only assumption made is that a portion of the first view
is kept visible at all the subsequent frames of the sequence.

After sparse correspondences are matched across the video,
and a projective reconstruction of the camera matrices is ob-
tained, the core of the pipeline, i.e. parallax maps computation,
is performed through an iterative procedure repeated N − 1
times. At each iteration only two frames are considered: the
reference frame I1 and a second frame obtained by considering
subsequent frames in temporal order. Since parallax depends
only on the reference frame and the reference plane, each
iteration provides a new parallax map referred to I1. Finally,
all the generated maps can be combined together in order to
achieve more stable and accurate parallax values.

In the following we shall analyze each step of the proposed
pipeline more in detail.

A. Sparse Multi-Matching

The goal of this stage is to match sparse visual features
across the video sequence. The procedure is fairly standard
and mainly follows the approach of [1]. This step also includes
a robust MSAC procedure [18] for the estimation of two-views
geometry between pairs of matching images in order to discard
bad matches. The output of this stage is a set of tracks, i.e.
keypoints matching in more than three images, and a set of
fundamental matrices linking pairs of views.

B. Projective Reconstruction

The projective reconstruction proceeds by chaining partial
reconstructions from 3 views that are obtained using a 6-points
procedure – described in [4] – inside a MSAC iteration.

Lying in a projective stratum, each of the triples of recon-
structed perspective projection matrices, PPM for simplicity,
is related to the correct (Euclidean) one by a collineation of
the 3D space. Once a reference projective frame is fixed, e.g.
the one associated to the first triple {P1, P2, P3}, subsequent
triples of PPMs with an overlap of two, as shown in Fig. 2,
can be brought to the same frame by computing the proper
collineation T as explained in the following.

Let Pi and P ′i be the same camera in two different projective
frames, i.e., Pi and P ′i represents the same camera in two
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Fig. 2. Overview of the method.

different triplets. They are related by an unknown collineation
T :

PiT ' P ′i . (4)

Introducing the vec operator that arranges the elements of
a matrix in a vector column-wise, we obtain:

vec(PiT ) ' vec(P ′i ). (5)

As shown in appendix A, the equality of two vectors a and
b of Rn up to a scale can be written as [a]×b = 0 where
[a]× is a suitable n(n− 1)/2× n matrix that generalizes the
external product matrix of R3. Hence, Eq. 5 can be rewritten
as:

[vec(P ′i )]× vec(PiT ) = 0. (6)

Using the properties of the Kronecker product, Eq. 6 is
equivalent to the following linear system of equations in the
unknown vec(T ):

[vec(P ′i )]×(I4×4 ⊗ Pi) vec(T ) = 0. (7)

Since the coefficient matrix has rank at most 11, at least
two camera matrices are needed to stack-up the 15 equations
required to compute the 4 × 4 matrix T up to scale. This is
the reason why our projective reconstruction processes triples
of cameras with an overlap of two.

Let Pi := [Qi|qi] be the PPM associated to the i-th frame
of the video sequence and let:

HΠ
1i := QiQ

−1
1 i = 2, · · · , N (8)

be the infinity plane homography between views I1 and Ii.
Observe that in a Euclidean frame HΠ

1i would be the homog-
raphy induced by the true infinity plane. However, since our
cameras are uncalibrated, the PPMs are defined in a projective
frame where the infinity plane corresponds to a generic plane
Π in the Euclidean frame.

Bringing all the PPMs into a common projective frame
ensures that the space plane associated to homographies HΠ

1i

is the same. In this way we obtain an estimate for a fixed
reference plane that does not depend on a particular choice
of the corresponding points which generate the projective
reconstruction. This has clear advantages over other strategies
such as tracking 3D points belonging to a plane along the
video sequence, or by considering the dominant collineation
[14], [3].

A projective bundle adjustment is run eventually over cam-
eras and sparse triangulated 3D points in order to improve the
reconstruction precision.

C. Parallax Map Computation

Each iteration of this stage is aimed to calculate several
estimates of the parallax map of I1 using each pair of views
I1, Ii for i = 2, . . . , N independently.

The input for this stage are the collineations HΠ
1i obtained

from Eq. 8, and the epipoles ei estimated from epipolar
geometry derived from the multi-matching step. Observe that
HΠ

1i and ei together constitute an uncalibrated description of
the motion between views I1 and Ii, where the collineation is
a proxy for the rotation and the epipole for the translation.

The computation of each parallax map is divided in the
following three subsequent steps.

1) Uncalibrated Epipolar Rectification: Since camera cali-
bration parameters are unknown, an uncalibrated rectification
procedure based on sparse correspondences is applied to the
pair of views I1, Ii, see [2] for details.

2) Stereo Matching: Once the images pair I1, Ii is recti-
fied, dense correspondences can be obtained using any stereo
matching algorithm. In our experiments we used a simple
block-matching with Census transform [22] as a matching
score. As a confidence measure we integrated the left-right
consistency (LRC) check with an indicator of the curvature of



the matching score curve around the maximum. Namely, the
confidence associated to the disparity computed at pixel x is:

χ(m) :=

0 if pixel m fails the LRC check
2+2c(dm)−c(dm−1)−c(dm+1)

4
o/w

(9)

where dm is the disparity value assigned to pixel m and c(d)
denotes the matching score – normalized in [0, 1] – associated
to disparity d. According to this definition χ(m) varies in
[0, 1], where 0 means that pixel m is “totally unreliable” and
1 means “maximally confident” (in practice this value is hardly
attainable).

Dense correspondences are then transferred back to the
original reference images by applying the inverse of the
rectifying homographies (de-rectification).

3) Parallax calculation: each parallax map is computed
according to Eq. 3, where (mk

1 ,m
k
i ) with k = 1, . . . ,K is

the dense set of correspondences on the pair of views I1, Ii,
and HΠ

1i and ei are computed as explained before.

D. Multiple Maps Integration

Each of the N − 1 independent estimates of the parallax
map obtained with our iterative procedure contains errors and
valuable information: the goal of integration is to enhance the
latter while smoothing out the former. The rationale behind
maps integration is twofold: from one side, a small baseline
implies few occlusions, an easier stereo matching but raw
quantization of the disparity, i.e. matching is more accurate
but estimated parallax is less precise. On the other side, a large
baseline implies better quantization of the disparity but more
occlusions and harder matching, i.e. the estimated parallax is
more precise, but the matching is less accurate.

A first possibility for maps integration is averaging, simplic-
ity being its main attraction. However, by modeling temporal
variations through a simple Bayesian filter, one expects to
achieve better results. In particular, our temporal integration
of parallax data is performed through a simple 1-d Kalman
filter with constant state and direct measure model (which is
indeed a weighted average):

State model: x(t+ 1) = x(t) + w(t) var[w(t)] = q(t)

Measure model: z(t) = x(t) + v(t) var[v(t)] = r(t)

Prediction: x(t)− = x(t− 1)+ p(t)− = p(t− 1)+ + q

Update: x(t)+ =
x(t)−r + p(t)−z

p(t)− + r
p(t)+ =

p(t)−r

p(t)− + r
.

The process noise w(t) models the quantization error made
by extrapolating a given disparity to a larger baseline. As-
suming the baseline increase from one frame to the next,
the process noise variance q can be considered constant. The
measurements noise v(t) models the (inverse) reliability of the
disparity measure, hence its variance r(t) is inversely related
to the confidence χ defined in Eq. 9 according to the formula:
r(t) = − log(χ).

Finally, observe that before the integration, parallax maps
must be normalized, as independent estimates differ from each

TABLE I
ERROR RATES [%] OF DISPARITY MAPS OBTAINED WITH DIFFERENT

STRATEGIES (SEE TEXT FOR EXPLANATION).

Data Optimal Best map Max conf Average Kalman

Art 30.01 48.48 42.99 34.03 32.30
Cloth1 15.13 24.40 28.14 16.27 15.72

Dolls 23.10 40.80 40.17 27.88 26.74
Moebius 28.09 41.43 44.78 31.32 30.85
Reindeer 21.82 36.42 38.20 25.33 23.01

Books 25.90 46.77 45.92 33.53 31.73
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Fig. 3. Error rate vs time for the “Reindeer” sequence from the Middlebury
dataset [15].

other by a scale factor. If one computes this ratio pixel-wise,
however, results will differ due to noise and outliers. Therefore
a simple robust estimation procedure is employed to estimate
the correct scale scale factor for each map.

IV. EXPERIMENTS AND RESULTS

We run two sets of experiments. The first one is devoted
to validate the benefit of disparity integration with a simple
geometry and uses image sequences from the Middlebury
dataset [15]. The second one aims at testing the whole pipeline
at work, including the geometric part, and uses more general
sequences (from [23] and office-made) without ground truth.

A. Disparity integration in rectified context

In the experiments with the Middlebury dataset, since the
images are already rectified, we work under the assumption
that the camera motion is along the X axis. Thus we can
compare the ground truth disparity maps directly with our
parallax maps.

The error rate is defined as the percentage of retrieved
parallax values whose difference with the ground truth is
greater than one [15]. Pixels marked as occluded in the ground
truth have been left out from the count. Figure 3 shows an
example of how the error rate decreases as more parallax maps
are integrated. Observe also how the Kalman filter integration
performs better than averaging, as expected.

In Table I the error rate of parallax maps obtained by our
method is compared against two touchstones, the error rate



of the “optimal selection” map (Optimal in the table) and
minimum error rate among all the input parallax maps (Best
Map in the table). The former is the error rate obtained if
we could somehow choose the optimal parallax value among
all the input parallax estimates for each pixel [6]. If the
correct value is not achieved in (at least) one of the estimates,
an error occurs for that pixel. Instead, the minimum error
rate of the input parallax maps is an indicator of whether
the integration is beneficial with respect to a standard two-
views stereo. We compared our approach to two baseline
strategies: the maximum confidence selection (Max conf in the
table) and pure averaging (Average in the table). The former
consists in selecting, for each pixel, the disparity that achieved
the maximum confidence χ, whereas the latter consists in
computing the average of the parallax values. Our strategy
(Kalman in the table) achieves the best results with respect to
averaging and maximum confidence selection strategies. We
always outdistance the best input map and, in some cases, get
close to the optimal.

B. Parallax map integration with general camera motion

For the second set of experiments we provide qualitative
results only, since ground truth maps were not available. Tests
are performed on sequences from [23] (“Road” and “Flowers”)
and on a office-made video1 (“Milo”). In Fig.s 4, 5 and
especially in Fig. 6, we can appreciate the benefits of maps
integration, even when maps generated by single view-pairs
are characterized by very low quality. The map resulting from
the integration process shows progressive improvements in
several aspects: values corresponding to surfaces are smoother,
higher accuracy on object contours and disocclusion for many
pixels.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper describes an ongoing work, which we plan
to extend along several lines. Spatial consistency has to be
integrated since the parallax estimate is obtained without
considering any neighborhood information: more sophisticated
strategies are likely to be more effective, but the goal of this
paper was to investigate temporal integration in isolation. More
confidence measures have to be considered and compared,
and the stereo matching module can be substituted by a more
sophisticated one.

Regarding stereo matching, it should be noted that being
based on epipolar rectification, our current implementation
does not allow forward motion, when the epipole is within
the image. A more general stereo matcher that does not
assume rectified images should be employed in order to avoid
rectification altogether and compute planar parallax directly.

APPENDIX A
EQUALITY OF TWO VECTORS UP TO A SCALE

Let a and b two vectors of Rn. Their equality up to a scale
can be written as: rank[a,b] = 1. This is tantamount to say
that all minors of [a,b] are zero. There are n(n−1)/2 of such

1Downloadable from www.diegm.uniud.it/fusiello/demo/dsp/

order-two minors, and they can be obtained by multiplication
of b by a suitable n(n − 1)/2 × n matrix that contains the
entries of a. Let us call this matrix [a]× in analogy to the R3

case, where equality up to a scale reduces to a×b = 0. Since,
by construction, a belongs to the null-space of [a]×, its rank
is at most n− 1. Hence a ' b gives rise to the linear system
of n(n−1)/2 equations [a]×b = 0 where only n−1 of them
are independent. The matrix [a]× is composed by n−1 blocks
arranged by rows. The the ith block has (n − i) rows and n
columns (i = 1 . . . n− 1):

Bi =


01×(i−1) −ai+1 ai 0 0 . . . 0
01×(i−1) −ai+2 0 ai 0 . . . 0
01×(i−1) −ai+3 0 0 ai . . . 0

...
...

...
...

...
. . .

...
01×(i−1) −an 0 0 0 . . . ai

 (10)

and

[a]× =

 B1

...
Bn−1

 . (11)
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