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Abstract. In this paper we show how Interval Analysis and Constraint
(logic) Programming on intervals can be used to obtain an accurate geo-
metric model of a scene that rigorously takes into account the propaga-
tion of data errors and roundoff. Image points, captured by a camera, are
represented as small rectangles. As a consequence, the output of an n-
views triangulation is not a single point in space, but a polyhedron that
contains all the possible solutions. Interval Analysis is used to bound this
polyhedron with a box. Geometrical constraints such as orthogonality,
parallelism, and collinearity are subsequently enforced in order to reduce
the size of those boxes, using constraint programming. Experiments with
real calibrated images illustrate the effectiveness of the approach.

1 Introduction

Triangulation consists in recovering the coordinates of a point in three-dimensional
(3D) space given its images in two or more known cameras. In the absence of er-
rors, this problem is trivial, involving only finding the intersection of rays in the
space. If data are perturbed, however, the rays corresponding to back-projections
of the image points do not intersect in a common point, and obtaining the best
estimate of the 3D point is not a trivial task. In [7] the problem is solved for the
case of two views, taking advantage of the epipolar constraint and involving the
solution of a sixth-degree polynomial. However, the method is not generalisable
to more than two views. For the n views case, a simple algebraic method ex-
ists [4], but the value being minimised has no geometric meaning, so the method
is not reliable: a minimisation of a suitable (non-linear) cost function, like the
re-projection error in the image plane, should be performed to achieve better
accuracy [4, 14]. An alternative approach is to find the closest point in 3D space
to the rays back-projected from the image points. In the case of two views,
this is the mid-point of the common perpendicular to the two rays. However,
it is known that this method fails badly in the case where the rays are almost
parallel, corresponding to a point near infinity, since in this case the computed
point will be close to the point half-way between the two camera centres. In [6]
a infinite-norm (L∞) minimisation of the re-projection error is explored. Using



the L∞ cost function is significantly simpler, and computationally faster, than
the two-norm (L2) cost, but the method is extremely not robust.

In this paper, instead of selecting one “best” solution, as customary, we
aim at describing the set of all the possible solutions, given a bounded error
affecting the image points. In practice, points are modelled as 2D intervals, and
the solution set is defined as the set of all the 3D points that can be obtained as
the intersection of two conjugate points contained in the 2D intervals. Interval
Analysis is used to obtain a box that encloses the solution set.

Interval Analysis (IA) [12] is an approach to the solution of numerical prob-
lems by performing computations on sets of reals rather than on floating point
approximations to reals. It was firstly introduced for bounding the measurement
errors of physical quantities for which no statistical distribution was known.

There are two principal advantages of IA over classical numerical analysis.
The first is that the input errors and the roundoff errors are automatically in-
corporated into the result interval. Thus, interval evaluation can be viewed as
automatically performing both a calculation and an error analysis. The second
is that IA allows one to compute provably correct upper and lower bounds on
the range of a function over an interval, and this proves useful in the construc-
tion of verifiable constraint solvers, which return intervals that are guaranteed
to contain all the real solutions.

Adhering to the IA paradigm, we do not model a probability distribution
inside the intervals, therefore there is not a preferred solution in the solution
set. Nevertheless, a pointwise solution is needed to make the 3D model usable
for other applications. One could choose at random a point inside the intervals.
Yet, in many cases, geometric constraints such as orthogonality, parallelism,
co-planarity and others can be imposed on the reconstructed structure. The
idea is to formalise this as a constraint satisfaction problem, use Constraint
Programming on Intervals to narrow the intervals as much as possible, thus
approximating a reasonable pointwise solution.

Constraint Logic Programming (CLP) languages (c.f., e.g., [8, 1]) are declar-
ative programming languages developped to deal with various classes of con-
straints. Let us refer to the language of this family designed to handle constraints
over intervals of reals as CLP (Intervals). In this context, a Constraint Satisfac-
tion Problem (CSP) is modelled by assigning admissible intervals of values and
constraints to each variable. A built-in constraint solver then contracts these
intervals preserving the solution set. The output of the constraint solver is an
(hopefully little) interval associated to each variable of the problem, and we can
choose any value of the variables in their intervals as a reasonable approximation
of the solution to the initial problem. As CLP (Intervals) language, we have used
the library ic of the ECLiPSe 5.8 system [2]. As shown in Section 6, the results
are very encouraging.



2 Problem formulation

Let Pi, i = 1, . . . , n be a sequence of n known cameras and mi be the image of
some unknown point M in 3D space, both expressed in homogeneous coordinates.
Thus, we write κmi = PiM , where κ is the depth of M wrt the camera. The
problem of computing the point M given the camera matrices Pi and the image
points mi is known as the triangulation problem. In the absence of errors, this
problem is trivial, involving only finding the intersection point of rays in the
space. When data are perturbed by errors, however, the rays corresponding
to back-projections of the image points do not intersect in a common point,
therefore only an approximate solution can be defined. This approximation can
be circumvented if one refrains from searching for one solution and compute
instead a set of solutions that contains the error-free solution and can be defined
precisely in terms of the error affecting the image points.
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Fig. 1. Interval-based triangulation.

In the case of two views, assuming that errors are bounded by rectangles
B1 and B2 in the images, the solution set of triangulation is a diamond-shaped
polyhedron D2 as in Fig. 1. Geometrically, D2 is obtained by intersecting the
two semi-infinite pyramids defined by the two rectangles B1 and B2 and the
respective camera centres.

In the general case of n views, the solution set is defined as the polyhedron
formed by the intersection of the n semi-infinite pyramids generated by the
intervals B1, . . . Bn. Analytically, this region is defined as the set

Dn = {M : ∀i = 1, . . . , n ∃mi ∈ Bi s.t. mi ≃ PiM},

where ≃ denotes equality up to a scale factor. In the following section we will
show how the solution set can be enclosed with an axis-aligned box using Interval
Analysis.

These 3D polyhedra are the best piece of information about the localisation
of the error-free 3D point one can deduce from the bounded correspondences. In
order to narrow the solution set we must include additional information, possibly



automatically deducible from images. Thus, we seek for geometric constraints,
such as orthogonality and parallelism, between scene primitives that are able to
reduce the solution set. If we add a sufficient set of constraints we will be able
to isolate, ideally, a single solution.

The constraints considered in this paper are orthogonality, parallelism, collinear-
ity, and equality of distances or angles. They are extracted semiautomatically
from the 3D model obtained by the interval-based triangulation. A pointwise
solution is derived by constraint propagation, as we will discuss in Section 5.

3 Interval Analysis

Interval Analysis [12] is an arithmetic defined on intervals, rather than on real
numbers. In the sequel of this section we shall follow the notation used in [11],
where intervals are denoted by boldface. Underscores and overscores will rep-
resent respectively lower and upper bounds of intervals. The midpoint of an
interval x is denoted by mid(x). IR and IR

n stand respectively for the set of
real intervals and the set of real interval vectors of dimension n. If f(x) is a
function defined over an interval x then range(f, x) denotes the range of f over
x.

If x = [x, x] and y =
[

y, y
]

, a binary operation between x and y is defined
in interval arithmetic as:

x ◦ y = {x ◦ y | x ∈ x ∧ y ∈ y} , ∀ ◦ ∈ {+,−,×,÷} .

Operationally, interval operations are defined by the min-max formula:

x ◦ y =
[

min
{

x ◦ y, x ◦ y, x ◦ y, x ◦ y
}

, max
{

x ◦ y, x ◦ y, x ◦ y, x ◦ y
}]

(1)

Thus, the ranges of the four elementary interval operations are exactly the ranges
of the corresponding real operations.

The above definitions imply the ability to perform the four operations with
arbitrary precision. When implemented on a digital computer, however, trunca-
tion errors occur that may cause the resulting interval not to contain the true
result. In order to preserve the guarantee that the true value always lie within
the interval, end-points of the interval must be rounded outward, i.e., the lower
endpoint of the interval must be rounded down and the upper endpoint must be
rounded up.

In general, interval computation cannot produce the exact range of a function,
but only approximate it.

Definition 1 (Interval extension). [10] A function f : IR → IR is said to be
an interval extension of f : R → R provided range(f, x) ⊆ f (x) for all intervals
x ⊂ IR within the domain of f .

This property is particularly suited for error propagation: if x bounds the in-
put error on the variable x, f (x) bounds the output error. Therefore, if the
exact value is contained in interval data, the exact value will be contained in



the interval result. This approach is different from the established techniques for
error propagation [4, 5, 9], mainly based on statistical analysis: a statistical dis-
tribution of the error need not to be assumed, and the result is mathematically
guaranteed to contain the exact value.

Operationally, a straightforward interval extension is defined as follows:

Definition 2 (Natural interval extension). Let us consider a function f
computable as an arithmetic expression f, composed of a finite sequence of oper-
ations applied to constants, argument variables or intermediate results. A natural
interval extension of such a function, denoted by f(x), is obtained by replacing
variables with intervals and executing all arithmetic operations according to the
rules (1).

Similar definitions apply for interval vectors (or boxes) in IR
n. Some points

are worth noting:

– Different expressions for the same function yield different natural interval
extensions. For instance, f1(x) = x2 − x, and f2(x) = x(x − 1) are both
natural interval extensions of the same function.

– Variable dependency: Evaluating the expression f(x) = x−x with the interval
[1,2], the result is f([1, 2]) = [1, 2]−[1, 2] = [−1, 1], not 0, as expected, because
the piece of information that the two intervals represent the same variable
is lost.

– Overestimation: Although the ranges of interval arithmetic operations are
exact, this is not so if operations are composed. For example, if x = [0, 1]
we have f2(x) = [0, 1] ([0, 1] − 1) = [0, 1] [−1, 0] = [−1, 0] , which strictly
includes range(f2, [0, 1]) = [−1/4, 0]. This effect arises as a consequence of
the previous two.

– Wrapping effect: This is a phenomenon intrinsic to interval computation in
R

n, namely the fact that the image of a box x under a map F : R
n → R

n is
not a box, in general. Interval computation can yield, at best, the interval
hull of the range range(F, x), i.e. the smallest box containing range(F, x).

These drawbacks have nourished the idea that Interval Analysis gives results
too pessimistic to be useful, yet a careful use of the tools of IA can provide
realistic bounds.

4 Interval-based triangulation

Given the camera matrices P1 and P2, let m1 and m2 be two corresponding
points. It follows that m2 lies on the epipolar line of m1 and so the two rays
back-projected from image points m1 and m2 lie in a common epipolar plane.
As they lie in the same plane, they will intersect at some point. This point is
the reconstructed 3D scene point M .

The equation of the epipolar line can be derived from the equation describing
the optical ray of m1:

M =

(

−P−1

3×3,1P· 4,1

1

)

+ λ

(

P−1

3×3,1m1

0

)

, λ ∈ R, (2)



where P3×3,1 is the matrix composed by the first three rows and first three
columns of P1, and P

· 4,1 is the fourth column of P1. The epipolar line corre-
sponding to m1 represents the projection of the optical ray through m1 onto the
image plane 2:

κm2 = e2 + λm′

1 (3)

where

e2 = P2

(

−P−1
3×3,1P· 4,1

1

)

and m′

1 = P3×3,2P
−1

3×3,1m1.

Analytically, the reconstructed 3D point M can be found using Equation (3),
by solving for parameters κ and λ, using the following closed form expressions [3]:

1

κ
=

(m2 × m′

1) · (e2 × m′

1)

||e2 × m′

1||
2

,

λ

κ
=

(m2 × e2) · (m
′

1 × e2)

||m′

1 × e2||2
. (4)

The coordinates of M are then obtained by inserting the value λ into Equation
(3). After doing all the substitutions, an expression is obtained that relates the
reconstructed point to the two conjugate image points:

M = f(m1, m2) (5)

If we let m1 and m2 vary in B1 and B2 respectively, then range(f, B1 × B2)
describes the solution set D2 (Fig. 1). Interval Analysis gives us a way to compute
an axis-aligned bounding box containing D2 by simply evaluating f(m1, m2), the
natural interval extension of f, with B1 = m1 and B2 = m2. IA guarantees that
if the conjugate intervals m1 and m2 contain the exact point correspondences,
then the interval result contains the exact (i.e. error-free) 3D reconstructed point.

It may be worth noting that the result is not to be interpreted in a probabilis-
tic or fuzzy way: no assumption is made on error statistical distribution, hence
no point inside the resulting 3D interval is more probable or more important
than others.
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Fig. 2. n-views interval-based triangulation.



This approach is easily extendible to the general case. As defined in Section 2,
the solution set of triangulation is the 3D polyhedron formed by the intersection
of the semi-infinite pyramids generated by back-projecting in space the intervals
m1, . . . , mn (Fig. 2). Thanks to the associativity of intersection, Dn can be
obtained by first intersecting pairs of such pyramids and then intersecting the
results. Let Di,j

2 be the solution set of the triangulation between view i and view
j. Then:

Dn =
⋂

i=1,...,n
j=i+1,...,n

Di,j
2 . (6)

An enclosure of the solution set Dn is obtained by intersecting the n(n−1)/2
enclosures of Di,j

2 computed with the method described in Sec. 4. Since each

enclosure contains the respective solution set Di,j
2 , their intersection will contain

Dn. Similarly, as the error-free solution is contained in each Di,j
2 , then it must

be contained in Dn as well.

5 Constraints Propagation

The interval-based triangulation yields boxes in 3D space, each representing the
error-free 3D point bounded by its error. Given the connectivity information
between these points, geometric constraints can be deduced, such as orthogonal-
ity, parallelism, collinearity, equality of lengths and angles. They will be used to
narrow the boxes and to obtain a pointwise solution.

As previously said, this problem is suitable for being formalised as a con-
straint satisfaction problem: each reconstructed box is associated to an interval
variable, and these variables must satisfy the aforementioned geometric con-
straints. Finding the solution of this problem is committed to the ECLiPSe
constraint solver, with the built-in predicate locate [2]. This predicate requires
a precision parameter, that specifies the width of the interval solution. Since
computation time grows as this parameter gets smaller, the level of precision
attainable in a reasonable time strictly depends on the size of the problem’s
instance, namely the number of variables and the number of constraints.

We address this issue with an incremental approach: instead of solving the
original problem, we solve a sequence of increasingly bigger problems, where
constraints and points are added incrementally, from the outline of the structure
to the details. In our experiments, this allowed us to reach a good accuracy in
a fair amount of time. The drawback is that the results depend on the order in
which constraints are added, and this decision is left to the user, in the current
implementation.

The solution achieved by ECLiPSe is composed by intervals, though very
thin. We finally attain a point solution taking a random point within each of
these intervals. As can be noted in Fig. 3, the pointwise solution may differ from
the true one by a small rigid transformation.



Fig. 3. Ground truth structure (dashed line) and pointwise solution (solid line). Boxes
are the result of interval-based triangulation.

6 Experimental results

The triangulation algorithm has been implemented in MATLAB. Thanks to
the overloading of arithmetic operations provided by the INTLAB toolbox [13],
the implementation was straightforward and the resulting code is simple and
compact.

The interval-based triangulation was tested on synthetic data, which con-
sisted of 50 points randomly scattered in a sphere of unit radius, cantered at
the origin. Views were generated by placing cameras at random positions, at a
mean distance from the centre of 2.5 units with a standard deviation of 0.25.
The orientations of the cameras were chosen randomly with the constraint that
the optical axis should point toward the centre. The world reference frame was
fixed on the first camera. A 2D interval (a square) of a given width was centred
onto each image point. The number of views and the interval’s width had been
varied, and the corresponding average side length of the 3D boxes is reported in
Table 1.

Image interval width [pixel]
# views 1.0 2.0 3.0 4.0

2 0.056 0.13 0.21 0.30

3 0.014 0.028 0.043 0.056

4 0.010 0.021 0.032 0.041

5 0.0088 0.018 0.026 0.034
Table 1. Average side length of the reconstructed 3D box vs number of views and
image intervals width.

Two effects are noticeable in the results: i) the volume of the boxes increases
with the width of the image intervals; ii) the volume of the boxes decreases as
the number of views increases.

The overall technique (interval-based triangulation and constraint propaga-
tion) was tested on real calibrated sequences. We report here the results relative
to the Tribuna and Castle sequences (Fig. 4), consisting of five frames each. We
assume that feature points are contained in 2-pixel wide intervals, so the average
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Fig. 4. Interval-based triangulation of Tribuna (a) and Castle (b). To better visualise
the 3D structure, the segments joining the midpoints of the intervals have been drawn.
Top views of the 3D models after constraint propagation, (c) and (d).

side length of the 3D boxes obtained by interval-based triangulation is about 10
cm and 60 cm, respectively. With constraint propagation we are able to shrink
these boxes up to an average side length of about 3 mm and 6 cm, respectively
(about one order of magnitude). The whole process took a few seconds on a
Pentium III 500 MHz machine.

Fig. 5. A textured view of the final 3D model of Tribuna (left) and Castle (right).

Finally, a pointwise solution is obtained taking a point at random in each
box. The top views depicted in Fig. 4 highlight the faithfulness of the structure.
The same structure is shown in Fig. 5 as a textured model.

7 Conclusions

In this paper we presented a new approach to scene modelling from many cali-
brated views based on Interval Analysis and Constraint Logic Programming.

The idea is to take into account errors affecting data explicitly by computing
a solution that rigorously includes this error. As a result, the output of triangu-
lation is no more a single 3D point, but a 3D polyhedron that contains all the
possible solutions given a bounded perturbation of the conjugate points. Thanks
to Interval Analysis, this solution set can be rigorously enclosed with a box in a
very simple way.



The width of the solution boxes is then reduced by propagating geometrical
constraints using CLP. The final solution is composed by points that are good
approximations of the initial problems. Experiments show that in a reasonable
time we can achieve a (practically) pointwise solution.

Future work will aim at improving the constraint propagation phase, by
automating the sequential approach described in Sec. 5 and/or implementing an
ad-hoc outer constraint solver.
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