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Abstract

We present a new, efficient stereo algorithm addressing robust dis-
parity estimation in the presence of occlusions. The algorithm is an
adaptive, multi-window scheme using left-right consistency to com-
pute disparity and its associated uncertainty. We demonstrate and
discuss performances with both synthetic and real stereo pairs, and
show how our results improve on those of closely related techniques

for both accuracy and efficiency.
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1 Introduction

The aim of computational stereopsis [4, 2] is to reconstruct the 3-D geometry
of a scene from two (or more) views, which we call left and right, taken by
pinhole cameras. A well-known problem is correspondence, i.e., finding which
points in the left and right images are projections of the same scene point
(a conjugate pair). This is approached as search: finding the element in the
right image which is most similar, according to a similarity metric, to a given

element in the left image (a point, region, or generic feature).



Several factors make the correspondence problem difficult: (i) its inherent
ambiguity, which requires the introduction of physical and geometric con-
straints [5, 7, 6], the most important being the epipolar constraint (see for
example [5]); (ii) occlusions, i.e., points in one image with no corresponding
point in the other; (iii) photometric distortions [3] arising when the pixels,
projection of the same world point on the two images, have different inten-
sities; and (iv) figural distortion [12], i.e., perspective images of the same
objects taken from different views are in general different.

Correspondence algorithms can be grouped into two broad classes, area-
based and feature-based. Area-based algorithms [12, 1, 7, 6, 11, 9] match
small image windows centered at a given pixel, assuming that the grey levels
are similar. They yield dense depth maps, but fail within occluded areas
and/or poorly textured regions. Several correlation-related measures have
been proposed, the Sum of Squared Differences (SSD) measure being a choice
adopted most widely. Feature-based [10, 16, 15, 14] algorithms match local
cues (e.g., edges, segments, corners) and can provide robust, but sparse,
disparity maps requiring interpolation. These algorithms depend on feature
extraction to locate reliable features in the two images.

This paper presents a new symmetric, multi-window algorithm (hence-
forth SMW) which addresses problems (i)-(iv) listed above, and outperforms
closely related methods. SMW'’s assumptions are clearly stated in Section
2. SMW is based on the SSD measure (Section 3); it employs an adap-
tive, multi-window scheme to cure distortions and yield accurate disparities
(Section 4), associated to uncertainty estimates. Robustness in the pres-
ence of occlusions is achieved thanks to the left-right consistency constraint
(Section 5). A consistent uncertainty estimation mechanism (Section 6) guar-
antees that the depth maps produced can be used by data fusion schemes

like [17]. To facilitate the reproduction of our results, we give a pseudocode



summary of the SMW algorithm (Section 7) as well as the Internet address
of our public-domain implementation. A detailed experimental evaluation,
including a comparison with similar methods reported in the literature, is
reported in Sections 8 and 9. The paper is closed by a brief discussion of our

work (Section 10).

2 Assumptions

With no loss of generality, we assume that conjugate pairs lie along raster
lines, that is, the stereo pair has been rectified [5, 8], after appropriate cali-
bration, to achieve parallel and horizontal epipolar lines in each image.

We also assume that the image intensities I(x,y) of corresponding points
in the two images are the same. If this is not true, the images can be
normalised by a simple algorithm [3] which computes the parameters «, 5 of

the gray-level global transformation

Ii(z,y) = al.(z,y) + 6  V(z,y)

by fitting a straight line to the plot of the left cumulative histogram versus
the right cumulative histogram. This normalisation fails if images are taken

from too far viewpoints.

3 The SSD Algorithm

The basic structure of SSD can be outlined as follows. For each pixel in
the image chosen as reference (e.g., the left one, I;), similarity scores are
computed by comparing a fixed, small window centered on the pixel to a
window in the other image (here, I,.), shifting along the raster line. Windows
are compared through the normalised SSD measure, which quantifies the

difference between intensity patterns:
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where £ € [—n,n]|, n € [-m,m]. The disparity estimate for pixel (z,y)

is the one that minimises the SSD error:
do(, y) = argmin C(z, y, d). (2)

Subpizel accuracy can be achieved by fitting a parabola to the SSD error
function C'(d) in the neighbourhood of the minimum d, [1]:

1 C(z,y,d,—1) — C(z,y,d,+1)
20 (z,y,d,—1)=2C(x,y,d,)+C(x,y,d,+1)

(3)

s(r,y) =

A basic SSD correlation algorithm has an asymptotic complexity of O(N%nm),
with /V the image size. However we can observe that squared differences need
to be computed only once for each disparity, and the sum over the window
needs not be recomputed from scratch when the window moves by one pixel.
The optimised implementation that follows from this observation[6] has a
computational complexity of O(4N?), which is independent of the window

size.

4 The Need for Multiple Windows

As observed by Kanade and Okutomi [12], when the correlation window
covers a region with non-constant disparity, area-based matching is likely
to fail, and the error in the depth estimates grows with the window size.
Reducing the latter, on the other hand, makes the estimated disparities more

sensitive to noise.



To overcome such difficulties, Kanade and Okutomi proposed a statistically
sound, adaptive technique which selects at each pixel the window size that
minimises the uncertainty in the disparity estimates.

In the present work we take the multiple-window approach, in the sim-
plified version proposed by [11, 9]. For each pixel we perform the correlation
with nine different windows (showed in Figure 1), and retain the disparity
with the smallest SSD error value. The idea is that a window yielding a
smaller SSD error is more likely to cover a constant depth region; in this
way, the disparity profile itself drives the selection of an appropriate window.

Consider the case of a piecewise-constant surface: points within a window
close to surface discontinuities come from two different planes, therefore a
single “average” disparity cannot be assigned to the whole window without
making a gross error. The multiple windows approach can be regarded as
a robust technique able to fit a constant disparity model to data consisting
of piecewise-constant surface, that is, capable of “drawing the line” between

two different populations (see Figure 3).

5 Occlusions and Left-Right Consistency

Occlusions create points that do not belong to any conjugate pairs. In many
cases, occlusions involve depth discontinuities: indeed, occlusions in one im-
age correspond to disparity jumps in the other [9].

A key observation to address the occlusion problem is that matching is
not a symmetric process: taking different images (right or left) as reference,
one obtains, in general, different sets of conjugate pairs, in which some points
are involved in more than one conjugate pairs. Such pairs are not invariant
to the choice of the reference image. As each point in one image can match

at most one point in the other (the uniqueness constraint), such pairs can be



discarded (left-right consistency) [7, 6].

Consider for instance point B of Figure 2 and take the left image, I;, as
reference. Although B has no corresponding point in the right image, I; (its
conjugate point is occluded), the SSD minimisation returns a match anyhow
(C). If I, is taken as reference, instead, C’ is correctly matched to its con-
jugate point (C) in the left image. Therefore the conjugate pairs (B,C’) and
(C,C?) violate left-right consistency; in other words, C’ does not satisfy the
uniqueness constraint. Notice that point B is recognised as occluded (strictly
speaking, its conjugate point is occluded); our approach takes advantage of
left-right consistency to detect occlusions and suppress the resulting unfea-
sible matches.

For each point (z,y) in the left image, the disparity d;(z,y) is computed
as described in Section 3. The process is repeated with the right image as ref-
erence. If d;(z,y) = —d,.(x + d;(z,y),y) the point is assigned the computed
disparity; otherwise it is marked as occluded and a disparity is assigned
heuristically. Following [13], we assume that occluded areas, occurring be-

tween two planes at different depth, take the disparity of the deeper plane.

6 Uncertainty Estimates

Area-based algorithms are likely to fail not only in occluded regions, but also
in poorly-textured regions, which make disparity estimates more uncertain; it
is therefore essential to assign it confidence estimates to disparities. Several
uncertainty estimation schemes have been proposed for SSD, mostly based
on the shape of the SSD error function [1, 17].

Our approach takes advantage of the multiple windows. Disparity esti-
mation is sensitive to window shape in two cases: first, near a disparity jump

(as discussed in Section 4) and, second, where the texture is poor, or the



signal-to-noise ratio (SNR) is low. Consequently, we define uncertainty as
the estimated variance of the disparity measures obtained with the various
windows (see algorithm summary in next section); occluded points are as-
signed infinite variance. Experimental results show that such our uncertainty

measure is consistent, i.e., it grows as the SNR decreases (Section 8).

7 The SMW Algorithm

To facilitate the reproduction of our work, we summarise the SMW algorithm
in pseudocode. An on-line demonstration is available from
http://www.dimi.uniud.it/"fusiello/demo-smw/smw.html, where our C
implementation can be downloaded as well.

Let C(x,y,d; I}, I,,w) be the SSD error computed from [ to I, according
to Eq. (1) at point (z,y), with disparity d and window w. Let s; be the
subpixel correction defined by Eq. (3). The y coordinate is omitted for the

sake of simplicity, since we assume horizontal epipolar lines.

for all (z,y) in I, do
for alw=1...K do
diw(z) = argming C'(z, y,d; I, I, w)
dyw(z) = argming C(x,y,d; I, I;, w)
end for
73(r) = 7 T () — i)
di(z) = argmin, C(x,y, djw; I, I, w)
d,(z) = argmin,, C(z,y, dyw; I, I}, w)
d(z) = di(x) + si(x)
end for
for all (z,y) in I, do
if (d;(x) # —d,(z + d;(z)) then



o3(x) = 00
end if

end for

8 Experimental Evaluation

This section reports the main results of experimental evaluation of SMW.

The evaluation was aimed at assessing

e the accuracy of disparity computation,
e robustness against occlusion,
e the consistency of uncertainty estimation,

e the performance of SMW when compared to similar algorithms.

We used synthetic data sets commonly found in the stereo literature and
controlled amounts of noise. We also reproduced patterns used for testing
algorithms used in our comparative evaluation. The next section reports

further tests with real stereo pair sof size 128 x 128.

Random-dot stereograms

We first performed experiments on noise-free random-dot stereograms (RDS),
shown in Figure 4. In the disparity maps, the gray level encodes the disparity,
that is the depth (the brighter the closer). Images have been equalised to im-
prove readability; subpixel-accuracy values have been computed and rounded
to integers. Following [12], the estimated Mean Absolute Error (MAE), that
is the mean of absolute differences between estimated and ground true dis-
parities, has been computed.

Simple SSD correlation applied to the RDS shows how most of the prob-

lems outlined in Sections 4 and 5 affect disparity computation. Figure 5



shows the disparity maps computed by SSD with fixed windows 3x3 and
7x7. Both pictures show the effect of disparity jumps (near the left and hor-
izontal borders of the square patch) and of occlusions (near the right border
of the square patch). The SMW algorithm with a 7 x 7 window was applied to
the square RDS of Figure 4 and to a circular RDS (not shown here). Figure 6
show the disparity maps computed by SMW and the estimated uncertainty
maps (the darker the lower) in both cases.

The MAE is negligible, and may be ascribed to subpixel estimation only.
The occluded points, shown in white in the uncertainty maps, are recovered
with 100% accuracy in both cases. The circle RDS shows that the algorithm is
not biased toward square disparity patterns, as the shape of the SSD windows
might suggest. The reader may want to compare the present results to those
reported in [3].

Experiments with noisy RDSs show a graceful degradation when noise
increases. Gaussian noise with zero mean and increasing variance was added
independently to both images of the square RDS. Figure 7 plots the MAE
against the standard deviation of the noise for SMW and SSD correlation.
Each point depicts the average result of 20 independent trials.

In order to assess the uncertainty estimator incorporated in SMW, we
plotted the average uncertainty computed over a square patch of uniform
disparity against the SNR. (Figure 8). The results show that the computed

uncertainty consistently increases as the SNR decreases.

Gray-level ramps

We performed a systematic, quantitative comparison between SMW, our im-
plementation of the Adaptive Window (AW) algorithm [12] (possibly the
closest method to SMW in the literature), and fixed-window SSD with dif-

ferent window sizes. The evaluation was based on the main test pattern used



by [12]: an input stereo pair of an intensity ramp in the horizontal direc-
tion, warped according to a given disparity pattern. The left disparity jump
creates a “disocclusion” area which is filled with random dots (Figure 9).
Gaussian noise with zero mean and unit variance (gray level) was added to
both images independently.

Figure 10 illustrates a comparison of the three algorithms using the ramp
stereo pair.

Qualitative comparisons are illustrated in Table 1, which summarises the
results of our comparison of the MAE for SSD, AW, and SMW, using input
pairs with different noise levels and different window sizes.

Results with fixed-window SSD (Figure 10) confirm that too small a win-
dow (e.g., 3x3) increases sensitivity to noise, whereas larger windows (e.g.,
7xT) act as low-pass filters and are likely to blur depth discontinuities.

More interestingly, Figure 10 shows that AW is the most accurate (since
it reduces simultaneously both random and systematic errors along the dis-
parity edges), but performs poorly within occluded areas, leading to large
local errors, as it does not exploit the uniqueness constraint. Subpixel cor-
rections are smooth since this algorithm is essentially a complex, iterative
subpixel adjustment. SMW yields a depth map that is globally more reli-
able, as it enforces left-right consistency: occluded points are detected with
100% accuracy.

Further experiments with larger disparities (not reported here) show that the
improvement in accuracy achieved by SMW with respect to AW increases
with disparity, owing to the increasingly large areas of occlusion!.

Another advantage of SMW with respect to AW is efficiency. Running

!Notice that our implementation of AW failed to converge to a solution with RDSs,
probably because this algorithm relies on intensity derivatives, which are ill-defined for

random dot patterns.
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on a SUN SparcStation 4 (110MHz) under SunOS 5.5, our implementation
of the SMW takes 8 seconds, on average, to compute the depth maps in
Figure 10 (128 x128 input images), while AW takes 32 minutes on average.

9 Experiments with Real Data

We report the results of the application of the SMW algorithm on standard
image pairs from the JISCT (JPL-INRIA-SRI-CMU-TELEOS) stereo test
set, and from the CMU-CIL (Carnegie-Mellon University—Calibrated Imag-
ing Laboratory) in Figure 11. In the disparity maps, the gray level encodes
disparity, that is depth (the brighter the closer). Images have been equalised
to improve readability. Subpixel-accuracy values have been rounded to in-
teger values for display. We also report the estimated variance maps (the
darker the lower). Small values cannot be appreciated in spite of histogram
equalisation, due to the large difference between high-uncertainty occlusion
points and the rest of the image. Although a quantitative comparison with
other methods was not possible with real images, the quality of SMW results
seems perfectly comparable to that of the results reported, for example, in
(18,9, 3].

In Figure 12, we report the result of SMW on the “Head” stereo pair
(from the Multiview Image Database, University of Tsukuba), for which the
disparity ground truth is given. In this case we could compute the error
image and the Mean Absolute Error, MAE=0.6194.

Running on a Sun SparcStation 4 (110MHz) under SunOS 5.5, our current
implementation takes 50 seconds, on average, to compute depth maps from

256x256 pairs, with a disparity range of 10 pixels.
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10 Discussion

We have introduced a new, efficient algorithm for stereo reconstruction,
SMW, based on a multi-window approach, and taking advantage of left-
right consistency. Our tests have shown the advantages offered by SMW.
The adaptive, multi-window scheme yields robust disparity estimates in the
presence of occlusions, and clearly outperforms fixed-window schemes. If
necessary, the slight amount of noise caused by subpixel interpolation can
be kept small by increasing the baseline, which does not worsen performance
significantly thanks to the robust treatment of occlusions. This is an advan-
tage over several stereo matching schemes, often limited by the assumption
of small baselines.

Left-right consistency proves effective in eliminating false matches and
identifying occluded regions (notice that this can be regarded as a segmenta-
tion method in itself). In addition, disparity is assigned to occluded points
heuristically, thereby achieving reasonable depth maps even in occluded ar-
eas. Uncertainty maps are also computed, allowing the use of SMW as a
module within more complex data fusion frameworks ([17]). As for any area-
based correspondence method, SMW’s performance is affected adversely by
poorly-textured regions, but areas of low texture are associated consistently
with high uncertainty values.

The efficiency of SMW is clearly superior to that of similar adaptive-
window methods, and direct comparisons with [12] have been reported. The
reason is that SMW performs a one-step, single-scale matching, with no
need for interpolation and optimisation. The main disadvantage is that the
window size remains a free parameter; notice, however, that adaptive-window

schemes are much slower in achieving comparable accuracies.
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I

Figure 1. The nine correlation windows. The pixel for which disparity is computed is

highlighted.

Figure 2. Left-right consistency. Point A is correctly matched to A’. Point B is given C’

as a match, but C’ matches C#B.

Fixed
Window

Figure 3. Multiple windows approach. If one use windows of fixed size with different

A

— . Depth

jump

Multiple
Windows

centers, it is likely that one of them will cover a constant depth area.
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Figure 4. Square RDS. The right image
of the stereogram is computed by warp-
ing the left one, which is a random tex-
ture (left), according to a given disparity
pattern (right): the square has disparity 10
pixel, the background 3 pixel.

Figure 5. Computed disparity map by
SSD correlation for the square RDS with
3x3 window (left) and 7x7 window (right);
MAE is 0.240 and 0.144, respectively.

Figure 6. Computed disparity map (left) and uncertainty (right) by SMW for the square
RDS (top) and for the circle RDS (bottom). MAE is 0.019 and 0.026 respectively.
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Figure 7. MAE of SMW and SSD vs noise  Figure 8. Mean uncertainty vs SNR for

standard deviation for the square RDS. a constant disparity region of the square

Window is 7x7. RDS.

Figure 9. Stereo pair. The central square has disparity 5 pixel, the background 2 pixel.

Figure 10. Isometric plots of the disparity maps computed with: SSD correlation 3x3
window (top left) and 7x7 window (top right), AW (bottom left) and SMW 7x7 algorithms

(bottom right), with o2 = 1.0. The orientation is chosen to show occluded points.
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Figure 11. Disparity (left) and uncertainty maps (right) fo the “Castle”, “Parking meter”,

“Schrub” and “Trees” stereo pairs
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Figure 12. “Head” image and disparity ground truth (top row); disparity computed by

SMW and error image(bottom row).
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Algorithm MAE
02=1.0|02=3.0 1 0%=10.0
SSD 7x7 0.182 0.468 1.235
SSD 15x15 | 0.284 0.392 0.988
AW 0.101 0.244 1.045
SMW 7x7 0.082 0.318 0.979
SMW 15x15 | 0.059 0.235 0.819

Table 1. Comparison of estimated errors: mean absolute (MAE) for different noise vari-

ances. Notice that 15x15 is the maximum window size allowed for AW.
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