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oAbstra
tWe present a new, eÆ
ient stereo algorithm addressing robust dis-parity estimation in the presen
e of o

lusions. The algorithm is anadaptive, multi-window s
heme using left-right 
onsisten
y to 
om-pute disparity and its asso
iated un
ertainty. We demonstrate anddis
uss performan
es with both syntheti
 and real stereo pairs, andshow how our results improve on those of 
losely related te
hniquesfor both a

ura
y and eÆ
ien
y.Key-words: Computer Vision, Stereo; Depth and Shape Re
overy; Areabased; Multiple-Window.1 Introdu
tionThe aim of 
omputational stereopsis [4, 2℄ is to re
onstru
t the 3-D geometryof a s
ene from two (or more) views, whi
h we 
all left and right, taken bypinhole 
ameras. A well-known problem is 
orresponden
e, i.e., �nding whi
hpoints in the left and right images are proje
tions of the same s
ene point(a 
onjugate pair). This is approa
hed as sear
h: �nding the element in theright image whi
h is most similar, a

ording to a similarity metri
, to a givenelement in the left image (a point, region, or generi
 feature).1



Several fa
tors make the 
orresponden
e problem diÆ
ult: (i) its inherentambiguity, whi
h requires the introdu
tion of physi
al and geometri
 
on-straints [5, 7, 6℄, the most important being the epipolar 
onstraint (see forexample [5℄); (ii) o

lusions, i.e., points in one image with no 
orrespondingpoint in the other; (iii) photometri
 distortions [3℄ arising when the pixels,proje
tion of the same world point on the two images, have di�erent inten-sities; and (iv) �gural distortion [12℄, i.e., perspe
tive images of the sameobje
ts taken from di�erent views are in general di�erent.Corresponden
e algorithms 
an be grouped into two broad 
lasses, area-based and feature-based. Area-based algorithms [12, 1, 7, 6, 11, 9℄ mat
hsmall image windows 
entered at a given pixel, assuming that the grey levelsare similar. They yield dense depth maps, but fail within o

luded areasand/or poorly textured regions. Several 
orrelation-related measures havebeen proposed, the Sum of Squared Di�eren
es (SSD) measure being a 
hoi
eadopted most widely. Feature-based [10, 16, 15, 14℄ algorithms mat
h lo
al
ues (e.g., edges, segments, 
orners) and 
an provide robust, but sparse,disparity maps requiring interpolation. These algorithms depend on featureextra
tion to lo
ate reliable features in the two images.This paper presents a new symmetri
, multi-window algorithm (hen
e-forth SMW) whi
h addresses problems (i)-(iv) listed above, and outperforms
losely related methods. SMW's assumptions are 
learly stated in Se
tion2. SMW is based on the SSD measure (Se
tion 3); it employs an adap-tive, multi-window s
heme to 
ure distortions and yield a

urate disparities(Se
tion 4), asso
iated to un
ertainty estimates. Robustness in the pres-en
e of o

lusions is a
hieved thanks to the left-right 
onsisten
y 
onstraint(Se
tion 5). A 
onsistent un
ertainty estimation me
hanism (Se
tion 6) guar-antees that the depth maps produ
ed 
an be used by data fusion s
hemeslike [17℄. To fa
ilitate the reprodu
tion of our results, we give a pseudo
ode2



summary of the SMW algorithm (Se
tion 7) as well as the Internet addressof our publi
-domain implementation. A detailed experimental evaluation,in
luding a 
omparison with similar methods reported in the literature, isreported in Se
tions 8 and 9. The paper is 
losed by a brief dis
ussion of ourwork (Se
tion 10).2 AssumptionsWith no loss of generality, we assume that 
onjugate pairs lie along rasterlines, that is, the stereo pair has been re
ti�ed [5, 8℄, after appropriate 
ali-bration, to a
hieve parallel and horizontal epipolar lines in ea
h image.We also assume that the image intensities I(x; y) of 
orresponding pointsin the two images are the same. If this is not true, the images 
an benormalised by a simple algorithm [3℄ whi
h 
omputes the parameters �; � ofthe gray-level global transformationIl(x; y) = �Ir(x; y) + � 8(x; y)by �tting a straight line to the plot of the left 
umulative histogram versusthe right 
umulative histogram. This normalisation fails if images are takenfrom too far viewpoints.3 The SSD AlgorithmThe basi
 stru
ture of SSD 
an be outlined as follows. For ea
h pixel inthe image 
hosen as referen
e (e.g., the left one, Il), similarity s
ores are
omputed by 
omparing a �xed, small window 
entered on the pixel to awindow in the other image (here, Ir), shifting along the raster line. Windowsare 
ompared through the normalised SSD measure, whi
h quanti�es thedi�eren
e between intensity patterns:3



C(x; y; d) = X(�;�)[Il(x+�; y+�)� Ir(x+� + d; y+�)℄2sX(�;�) Il(x+�; y+�)2X(�;�) Ir(x+�+d; y+�)2 (1)where � 2 [�n; n℄; � 2 [�m;m℄. The disparity estimate for pixel (x; y)is the one that minimises the SSD error:do(x; y) = argmind C(x; y; d): (2)Subpixel a

ura
y 
an be a
hieved by �tting a parabola to the SSD errorfun
tion C(d) in the neighbourhood of the minimum d0 [1℄:s(x; y) = 12 C(x; y; do�1)� C(x; y; do+1)C(x; y; do�1)�2C(x; y; do)+C(x; y; do+1) (3)A basi
 SSD 
orrelation algorithm has an asymptoti
 
omplexity ofO(N2nm),with N the image size. However we 
an observe that squared di�eren
es needto be 
omputed only on
e for ea
h disparity, and the sum over the windowneeds not be re
omputed from s
rat
h when the window moves by one pixel.The optimised implementation that follows from this observation[6℄ has a
omputational 
omplexity of O(4N2), whi
h is independent of the windowsize.4 The Need for Multiple WindowsAs observed by Kanade and Okutomi [12℄, when the 
orrelation window
overs a region with non-
onstant disparity, area-based mat
hing is likelyto fail, and the error in the depth estimates grows with the window size.Redu
ing the latter, on the other hand, makes the estimated disparities moresensitive to noise. 4



To over
ome su
h diÆ
ulties, Kanade and Okutomi proposed a statisti
allysound, adaptive te
hnique whi
h sele
ts at ea
h pixel the window size thatminimises the un
ertainty in the disparity estimates.In the present work we take the multiple-window approa
h, in the sim-pli�ed version proposed by [11, 9℄. For ea
h pixel we perform the 
orrelationwith nine di�erent windows (showed in Figure 1), and retain the disparitywith the smallest SSD error value. The idea is that a window yielding asmaller SSD error is more likely to 
over a 
onstant depth region; in thisway, the disparity pro�le itself drives the sele
tion of an appropriate window.Consider the 
ase of a pie
ewise-
onstant surfa
e: points within a window
lose to surfa
e dis
ontinuities 
ome from two di�erent planes, therefore asingle \average" disparity 
annot be assigned to the whole window withoutmaking a gross error. The multiple windows approa
h 
an be regarded asa robust te
hnique able to �t a 
onstant disparity model to data 
onsistingof pie
ewise-
onstant surfa
e, that is, 
apable of \drawing the line" betweentwo di�erent populations (see Figure 3).5 O

lusions and Left-Right Consisten
yO

lusions 
reate points that do not belong to any 
onjugate pairs. In many
ases, o

lusions involve depth dis
ontinuities: indeed, o

lusions in one im-age 
orrespond to disparity jumps in the other [9℄.A key observation to address the o

lusion problem is that mat
hing isnot a symmetri
 pro
ess: taking di�erent images (right or left) as referen
e,one obtains, in general, di�erent sets of 
onjugate pairs, in whi
h some pointsare involved in more than one 
onjugate pairs. Su
h pairs are not invariantto the 
hoi
e of the referen
e image. As ea
h point in one image 
an mat
hat most one point in the other (the uniqueness 
onstraint), su
h pairs 
an be5



dis
arded (left-right 
onsisten
y) [7, 6℄.Consider for instan
e point B of Figure 2 and take the left image, Il, asreferen
e. Although B has no 
orresponding point in the right image, Il (its
onjugate point is o

luded), the SSD minimisation returns a mat
h anyhow(C'). If Ir is taken as referen
e, instead, C' is 
orre
tly mat
hed to its 
on-jugate point (C) in the left image. Therefore the 
onjugate pairs (B,C') and(C,C') violate left-right 
onsisten
y; in other words, C' does not satisfy theuniqueness 
onstraint. Noti
e that point B is re
ognised as o

luded (stri
tlyspeaking, its 
onjugate point is o

luded); our approa
h takes advantage ofleft-right 
onsisten
y to dete
t o

lusions and suppress the resulting unfea-sible mat
hes.For ea
h point (x; y) in the left image, the disparity dl(x; y) is 
omputedas des
ribed in Se
tion 3. The pro
ess is repeated with the right image as ref-eren
e. If dl(x; y) = �dr(x + dl(x; y); y) the point is assigned the 
omputeddisparity; otherwise it is marked as o

luded and a disparity is assignedheuristi
ally. Following [13℄, we assume that o

luded areas, o

urring be-tween two planes at di�erent depth, take the disparity of the deeper plane.6 Un
ertainty EstimatesArea-based algorithms are likely to fail not only in o

luded regions, but alsoin poorly-textured regions, whi
h make disparity estimates more un
ertain; itis therefore essential to assign it 
on�den
e estimates to disparities. Severalun
ertainty estimation s
hemes have been proposed for SSD, mostly basedon the shape of the SSD error fun
tion [1, 17℄.Our approa
h takes advantage of the multiple windows. Disparity esti-mation is sensitive to window shape in two 
ases: �rst, near a disparity jump(as dis
ussed in Se
tion 4) and, se
ond, where the texture is poor, or the6



signal-to-noise ratio (SNR) is low. Consequently, we de�ne un
ertainty asthe estimated varian
e of the disparity measures obtained with the variouswindows (see algorithm summary in next se
tion); o

luded points are as-signed in�nite varian
e. Experimental results show that su
h our un
ertaintymeasure is 
onsistent, i.e., it grows as the SNR de
reases (Se
tion 8).7 The SMW AlgorithmTo fa
ilitate the reprodu
tion of our work, we summarise the SMW algorithmin pseudo
ode. An on-line demonstration is available fromhttp://www.dimi.uniud.it/~fusiello/demo-smw/smw.html, where our Cimplementation 
an be downloaded as well.Let C(x; y; d; Il; Ir; w) be the SSD error 
omputed from Il to Ir a

ordingto Eq. (1) at point (x; y), with disparity d and window w. Let sl be thesubpixel 
orre
tion de�ned by Eq. (3). The y 
oordinate is omitted for thesake of simpli
ity, sin
e we assume horizontal epipolar lines.for all (x; y) in Il dofor all w = 1 : : :K dodl;w(x) = argmind C(x; y; d; Il; Ir; w)dr;w(x) = argmindC(x; y; d; Ir; Il; w)end for�2d(x) = 1K�1PKw=1(dl;w(x)� �dl;w(x))2:dl(x) = argminw C(x; y; dl;w; Il; Ir; w)dr(x) = argminw C(x; y; dr;w; Ir; Il; w)d(x) = dl(x) + sl(x)end forfor all (x; y) in Il doif (dl(x) 6= �dr(x+ dl(x)) then7



�2d(x) = +1end ifend for8 Experimental EvaluationThis se
tion reports the main results of experimental evaluation of SMW.The evaluation was aimed at assessing� the a

ura
y of disparity 
omputation,� robustness against o

lusion,� the 
onsisten
y of un
ertainty estimation,� the performan
e of SMW when 
ompared to similar algorithms.We used syntheti
 data sets 
ommonly found in the stereo literature and
ontrolled amounts of noise. We also reprodu
ed patterns used for testingalgorithms used in our 
omparative evaluation. The next se
tion reportsfurther tests with real stereo pair sof size 128� 128.Random-dot stereogramsWe �rst performed experiments on noise-free random-dot stereograms (RDS),shown in Figure 4. In the disparity maps, the gray level en
odes the disparity,that is the depth (the brighter the 
loser). Images have been equalised to im-prove readability; subpixel-a

ura
y values have been 
omputed and roundedto integers. Following [12℄, the estimated Mean Absolute Error (MAE), thatis the mean of absolute di�eren
es between estimated and ground true dis-parities, has been 
omputed.Simple SSD 
orrelation applied to the RDS shows how most of the prob-lems outlined in Se
tions 4 and 5 a�e
t disparity 
omputation. Figure 58



shows the disparity maps 
omputed by SSD with �xed windows 3�3 and7�7. Both pi
tures show the e�e
t of disparity jumps (near the left and hor-izontal borders of the square pat
h) and of o

lusions (near the right borderof the square pat
h). The SMW algorithm with a 7�7 window was applied tothe square RDS of Figure 4 and to a 
ir
ular RDS (not shown here). Figure 6show the disparity maps 
omputed by SMW and the estimated un
ertaintymaps (the darker the lower) in both 
ases.The MAE is negligible, and may be as
ribed to subpixel estimation only.The o

luded points, shown in white in the un
ertainty maps, are re
overedwith 100% a

ura
y in both 
ases. The 
ir
le RDS shows that the algorithm isnot biased toward square disparity patterns, as the shape of the SSD windowsmight suggest. The reader may want to 
ompare the present results to thosereported in [3℄.Experiments with noisy RDSs show a gra
eful degradation when noisein
reases. Gaussian noise with zero mean and in
reasing varian
e was addedindependently to both images of the square RDS. Figure 7 plots the MAEagainst the standard deviation of the noise for SMW and SSD 
orrelation.Ea
h point depi
ts the average result of 20 independent trials.In order to assess the un
ertainty estimator in
orporated in SMW, weplotted the average un
ertainty 
omputed over a square pat
h of uniformdisparity against the SNR (Figure 8). The results show that the 
omputedun
ertainty 
onsistently in
reases as the SNR de
reases.Gray-level rampsWe performed a systemati
, quantitative 
omparison between SMW, our im-plementation of the Adaptive Window (AW) algorithm [12℄ (possibly the
losest method to SMW in the literature), and �xed-window SSD with dif-ferent window sizes. The evaluation was based on the main test pattern used9



by [12℄: an input stereo pair of an intensity ramp in the horizontal dire
-tion, warped a

ording to a given disparity pattern. The left disparity jump
reates a \diso

lusion" area whi
h is �lled with random dots (Figure 9).Gaussian noise with zero mean and unit varian
e (gray level) was added toboth images independently.Figure 10 illustrates a 
omparison of the three algorithms using the rampstereo pair.Qualitative 
omparisons are illustrated in Table 1, whi
h summarises theresults of our 
omparison of the MAE for SSD, AW, and SMW, using inputpairs with di�erent noise levels and di�erent window sizes.Results with �xed-window SSD (Figure 10) 
on�rm that too small a win-dow (e.g., 3�3) in
reases sensitivity to noise, whereas larger windows (e.g.,7�7) a
t as low-pass �lters and are likely to blur depth dis
ontinuities.More interestingly, Figure 10 shows that AW is the most a

urate (sin
eit redu
es simultaneously both random and systemati
 errors along the dis-parity edges), but performs poorly within o

luded areas, leading to largelo
al errors, as it does not exploit the uniqueness 
onstraint. Subpixel 
or-re
tions are smooth sin
e this algorithm is essentially a 
omplex, iterativesubpixel adjustment. SMW yields a depth map that is globally more reli-able, as it enfor
es left-right 
onsisten
y: o

luded points are dete
ted with100% a

ura
y.Further experiments with larger disparities (not reported here) show that theimprovement in a

ura
y a
hieved by SMW with respe
t to AW in
reaseswith disparity, owing to the in
reasingly large areas of o

lusion1.Another advantage of SMW with respe
t to AW is eÆ
ien
y. Running1Noti
e that our implementation of AW failed to 
onverge to a solution with RDSs,probably be
ause this algorithm relies on intensity derivatives, whi
h are ill-de�ned forrandom dot patterns. 10



on a SUN Spar
Station 4 (110MHz) under SunOS 5.5, our implementationof the SMW takes 8 se
onds, on average, to 
ompute the depth maps inFigure 10 (128�128 input images), while AW takes 32 minutes on average.9 Experiments with Real DataWe report the results of the appli
ation of the SMW algorithm on standardimage pairs from the JISCT (JPL-INRIA-SRI-CMU-TELEOS) stereo testset, and from the CMU-CIL (Carnegie-Mellon University|Calibrated Imag-ing Laboratory) in Figure 11. In the disparity maps, the gray level en
odesdisparity, that is depth (the brighter the 
loser). Images have been equalisedto improve readability. Subpixel-a

ura
y values have been rounded to in-teger values for display. We also report the estimated varian
e maps (thedarker the lower). Small values 
annot be appre
iated in spite of histogramequalisation, due to the large di�eren
e between high-un
ertainty o

lusionpoints and the rest of the image. Although a quantitative 
omparison withother methods was not possible with real images, the quality of SMW resultsseems perfe
tly 
omparable to that of the results reported, for example, in[18, 9, 3℄.In Figure 12, we report the result of SMW on the \Head" stereo pair(from the Multiview Image Database, University of Tsukuba), for whi
h thedisparity ground truth is given. In this 
ase we 
ould 
ompute the errorimage and the Mean Absolute Error, MAE=0.6194.Running on a Sun Spar
Station 4 (110MHz) under SunOS 5.5, our 
urrentimplementation takes 50 se
onds, on average, to 
ompute depth maps from256�256 pairs, with a disparity range of 10 pixels.
11



10 Dis
ussionWe have introdu
ed a new, eÆ
ient algorithm for stereo re
onstru
tion,SMW, based on a multi-window approa
h, and taking advantage of left-right 
onsisten
y. Our tests have shown the advantages o�ered by SMW.The adaptive, multi-window s
heme yields robust disparity estimates in thepresen
e of o

lusions, and 
learly outperforms �xed-window s
hemes. Ifne
essary, the slight amount of noise 
aused by subpixel interpolation 
anbe kept small by in
reasing the baseline, whi
h does not worsen performan
esigni�
antly thanks to the robust treatment of o

lusions. This is an advan-tage over several stereo mat
hing s
hemes, often limited by the assumptionof small baselines.Left-right 
onsisten
y proves e�e
tive in eliminating false mat
hes andidentifying o

luded regions (noti
e that this 
an be regarded as a segmenta-tion method in itself). In addition, disparity is assigned to o

luded pointsheuristi
ally, thereby a
hieving reasonable depth maps even in o

luded ar-eas. Un
ertainty maps are also 
omputed, allowing the use of SMW as amodule within more 
omplex data fusion frameworks ([17℄). As for any area-based 
orresponden
e method, SMW's performan
e is a�e
ted adversely bypoorly-textured regions, but areas of low texture are asso
iated 
onsistentlywith high un
ertainty values.The eÆ
ien
y of SMW is 
learly superior to that of similar adaptive-window methods, and dire
t 
omparisons with [12℄ have been reported. Thereason is that SMW performs a one-step, single-s
ale mat
hing, with noneed for interpolation and optimisation. The main disadvantage is that thewindow size remains a free parameter; noti
e, however, that adaptive-windows
hemes are mu
h slower in a
hieving 
omparable a

ura
ies.
12
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Figure 1. The nine 
orrelation windows. The pixel for whi
h disparity is 
omputed ishighlighted.
IIl r

A
B C

A’
C’

Figure 2. Left-right 
onsisten
y. Point A is 
orre
tly mat
hed to A'. Point B is given C'as a mat
h, but C' mat
hes C6=B.

jump
Depth

Multiple Fixed 
WindowsWindow

Figure 3. Multiple windows approa
h. If one use windows of �xed size with di�erent
enters, it is likely that one of them will 
over a 
onstant depth area.16



Figure 4. Square RDS. The right imageof the stereogram is 
omputed by warp-ing the left one, whi
h is a random tex-ture (left), a

ording to a given disparitypattern (right): the square has disparity 10pixel, the ba
kground 3 pixel.
Figure 5. Computed disparity map bySSD 
orrelation for the square RDS with3�3 window (left) and 7�7 window (right);MAE is 0.240 and 0.144, respe
tively.

Figure 6. Computed disparity map (left) and un
ertainty (right) by SMW for the squareRDS (top) and for the 
ir
le RDS (bottom). MAE is 0.019 and 0.026 respe
tively.
17
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Figure 7. MAE of SMW and SSD vs noisestandard deviation for the square RDS.Window is 7�7. Figure 8. Mean un
ertainty vs SNR fora 
onstant disparity region of the squareRDS.
Figure 9. Stereo pair. The 
entral square has disparity 5 pixel, the ba
kground 2 pixel.
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Figure 10. Isometri
 plots of the disparity maps 
omputed with: SSD 
orrelation 3�3window (top left) and 7�7 window (top right), AW (bottom left) and SMW 7�7 algorithms(bottom right), with �2 = 1:0. The orientation is 
hosen to show o

luded points.18



Figure 11. Disparity (left) and un
ertainty maps (right) fo the \Castle", \Parking meter",\S
hrub" and \Trees" stereo pairs
19



Figure 12. \Head" image and disparity ground truth (top row); disparity 
omputed bySMW and error image(bottom row).
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Algorithm MAE�2 = 1:0 �2 = 3:0 �2 = 10:0SSD 7x7 0.182 0.468 1.235SSD 15x15 0.284 0.392 0.988AW 0.101 0.244 1.045SMW 7x7 0.082 0.318 0.979SMW 15x15 0.059 0.235 0.819Table 1. Comparison of estimated errors: mean absolute (MAE) for di�erent noise vari-an
es. Noti
e that 15�15 is the maximum window size allowed for AW.
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