
Symmetri Stereo with Multiple WindowingA. Fusiello, V. Roberto and E. TruoAbstratWe present a new, eÆient stereo algorithm addressing robust dis-parity estimation in the presene of olusions. The algorithm is anadaptive, multi-window sheme using left-right onsisteny to om-pute disparity and its assoiated unertainty. We demonstrate anddisuss performanes with both syntheti and real stereo pairs, andshow how our results improve on those of losely related tehniquesfor both auray and eÆieny.Key-words: Computer Vision, Stereo; Depth and Shape Reovery; Areabased; Multiple-Window.1 IntrodutionThe aim of omputational stereopsis [4, 2℄ is to reonstrut the 3-D geometryof a sene from two (or more) views, whih we all left and right, taken bypinhole ameras. A well-known problem is orrespondene, i.e., �nding whihpoints in the left and right images are projetions of the same sene point(a onjugate pair). This is approahed as searh: �nding the element in theright image whih is most similar, aording to a similarity metri, to a givenelement in the left image (a point, region, or generi feature).1



Several fators make the orrespondene problem diÆult: (i) its inherentambiguity, whih requires the introdution of physial and geometri on-straints [5, 7, 6℄, the most important being the epipolar onstraint (see forexample [5℄); (ii) olusions, i.e., points in one image with no orrespondingpoint in the other; (iii) photometri distortions [3℄ arising when the pixels,projetion of the same world point on the two images, have di�erent inten-sities; and (iv) �gural distortion [12℄, i.e., perspetive images of the sameobjets taken from di�erent views are in general di�erent.Correspondene algorithms an be grouped into two broad lasses, area-based and feature-based. Area-based algorithms [12, 1, 7, 6, 11, 9℄ mathsmall image windows entered at a given pixel, assuming that the grey levelsare similar. They yield dense depth maps, but fail within oluded areasand/or poorly textured regions. Several orrelation-related measures havebeen proposed, the Sum of Squared Di�erenes (SSD) measure being a hoieadopted most widely. Feature-based [10, 16, 15, 14℄ algorithms math loalues (e.g., edges, segments, orners) and an provide robust, but sparse,disparity maps requiring interpolation. These algorithms depend on featureextration to loate reliable features in the two images.This paper presents a new symmetri, multi-window algorithm (hene-forth SMW) whih addresses problems (i)-(iv) listed above, and outperformslosely related methods. SMW's assumptions are learly stated in Setion2. SMW is based on the SSD measure (Setion 3); it employs an adap-tive, multi-window sheme to ure distortions and yield aurate disparities(Setion 4), assoiated to unertainty estimates. Robustness in the pres-ene of olusions is ahieved thanks to the left-right onsisteny onstraint(Setion 5). A onsistent unertainty estimation mehanism (Setion 6) guar-antees that the depth maps produed an be used by data fusion shemeslike [17℄. To failitate the reprodution of our results, we give a pseudoode2



summary of the SMW algorithm (Setion 7) as well as the Internet addressof our publi-domain implementation. A detailed experimental evaluation,inluding a omparison with similar methods reported in the literature, isreported in Setions 8 and 9. The paper is losed by a brief disussion of ourwork (Setion 10).2 AssumptionsWith no loss of generality, we assume that onjugate pairs lie along rasterlines, that is, the stereo pair has been reti�ed [5, 8℄, after appropriate ali-bration, to ahieve parallel and horizontal epipolar lines in eah image.We also assume that the image intensities I(x; y) of orresponding pointsin the two images are the same. If this is not true, the images an benormalised by a simple algorithm [3℄ whih omputes the parameters �; � ofthe gray-level global transformationIl(x; y) = �Ir(x; y) + � 8(x; y)by �tting a straight line to the plot of the left umulative histogram versusthe right umulative histogram. This normalisation fails if images are takenfrom too far viewpoints.3 The SSD AlgorithmThe basi struture of SSD an be outlined as follows. For eah pixel inthe image hosen as referene (e.g., the left one, Il), similarity sores areomputed by omparing a �xed, small window entered on the pixel to awindow in the other image (here, Ir), shifting along the raster line. Windowsare ompared through the normalised SSD measure, whih quanti�es thedi�erene between intensity patterns:3



C(x; y; d) = X(�;�)[Il(x+�; y+�)� Ir(x+� + d; y+�)℄2sX(�;�) Il(x+�; y+�)2X(�;�) Ir(x+�+d; y+�)2 (1)where � 2 [�n; n℄; � 2 [�m;m℄. The disparity estimate for pixel (x; y)is the one that minimises the SSD error:do(x; y) = argmind C(x; y; d): (2)Subpixel auray an be ahieved by �tting a parabola to the SSD errorfuntion C(d) in the neighbourhood of the minimum d0 [1℄:s(x; y) = 12 C(x; y; do�1)� C(x; y; do+1)C(x; y; do�1)�2C(x; y; do)+C(x; y; do+1) (3)A basi SSD orrelation algorithm has an asymptoti omplexity ofO(N2nm),with N the image size. However we an observe that squared di�erenes needto be omputed only one for eah disparity, and the sum over the windowneeds not be reomputed from srath when the window moves by one pixel.The optimised implementation that follows from this observation[6℄ has aomputational omplexity of O(4N2), whih is independent of the windowsize.4 The Need for Multiple WindowsAs observed by Kanade and Okutomi [12℄, when the orrelation windowovers a region with non-onstant disparity, area-based mathing is likelyto fail, and the error in the depth estimates grows with the window size.Reduing the latter, on the other hand, makes the estimated disparities moresensitive to noise. 4



To overome suh diÆulties, Kanade and Okutomi proposed a statistiallysound, adaptive tehnique whih selets at eah pixel the window size thatminimises the unertainty in the disparity estimates.In the present work we take the multiple-window approah, in the sim-pli�ed version proposed by [11, 9℄. For eah pixel we perform the orrelationwith nine di�erent windows (showed in Figure 1), and retain the disparitywith the smallest SSD error value. The idea is that a window yielding asmaller SSD error is more likely to over a onstant depth region; in thisway, the disparity pro�le itself drives the seletion of an appropriate window.Consider the ase of a pieewise-onstant surfae: points within a windowlose to surfae disontinuities ome from two di�erent planes, therefore asingle \average" disparity annot be assigned to the whole window withoutmaking a gross error. The multiple windows approah an be regarded asa robust tehnique able to �t a onstant disparity model to data onsistingof pieewise-onstant surfae, that is, apable of \drawing the line" betweentwo di�erent populations (see Figure 3).5 Olusions and Left-Right ConsistenyOlusions reate points that do not belong to any onjugate pairs. In manyases, olusions involve depth disontinuities: indeed, olusions in one im-age orrespond to disparity jumps in the other [9℄.A key observation to address the olusion problem is that mathing isnot a symmetri proess: taking di�erent images (right or left) as referene,one obtains, in general, di�erent sets of onjugate pairs, in whih some pointsare involved in more than one onjugate pairs. Suh pairs are not invariantto the hoie of the referene image. As eah point in one image an mathat most one point in the other (the uniqueness onstraint), suh pairs an be5



disarded (left-right onsisteny) [7, 6℄.Consider for instane point B of Figure 2 and take the left image, Il, asreferene. Although B has no orresponding point in the right image, Il (itsonjugate point is oluded), the SSD minimisation returns a math anyhow(C'). If Ir is taken as referene, instead, C' is orretly mathed to its on-jugate point (C) in the left image. Therefore the onjugate pairs (B,C') and(C,C') violate left-right onsisteny; in other words, C' does not satisfy theuniqueness onstraint. Notie that point B is reognised as oluded (stritlyspeaking, its onjugate point is oluded); our approah takes advantage ofleft-right onsisteny to detet olusions and suppress the resulting unfea-sible mathes.For eah point (x; y) in the left image, the disparity dl(x; y) is omputedas desribed in Setion 3. The proess is repeated with the right image as ref-erene. If dl(x; y) = �dr(x + dl(x; y); y) the point is assigned the omputeddisparity; otherwise it is marked as oluded and a disparity is assignedheuristially. Following [13℄, we assume that oluded areas, ourring be-tween two planes at di�erent depth, take the disparity of the deeper plane.6 Unertainty EstimatesArea-based algorithms are likely to fail not only in oluded regions, but alsoin poorly-textured regions, whih make disparity estimates more unertain; itis therefore essential to assign it on�dene estimates to disparities. Severalunertainty estimation shemes have been proposed for SSD, mostly basedon the shape of the SSD error funtion [1, 17℄.Our approah takes advantage of the multiple windows. Disparity esti-mation is sensitive to window shape in two ases: �rst, near a disparity jump(as disussed in Setion 4) and, seond, where the texture is poor, or the6



signal-to-noise ratio (SNR) is low. Consequently, we de�ne unertainty asthe estimated variane of the disparity measures obtained with the variouswindows (see algorithm summary in next setion); oluded points are as-signed in�nite variane. Experimental results show that suh our unertaintymeasure is onsistent, i.e., it grows as the SNR dereases (Setion 8).7 The SMW AlgorithmTo failitate the reprodution of our work, we summarise the SMW algorithmin pseudoode. An on-line demonstration is available fromhttp://www.dimi.uniud.it/~fusiello/demo-smw/smw.html, where our Cimplementation an be downloaded as well.Let C(x; y; d; Il; Ir; w) be the SSD error omputed from Il to Ir aordingto Eq. (1) at point (x; y), with disparity d and window w. Let sl be thesubpixel orretion de�ned by Eq. (3). The y oordinate is omitted for thesake of simpliity, sine we assume horizontal epipolar lines.for all (x; y) in Il dofor all w = 1 : : :K dodl;w(x) = argmind C(x; y; d; Il; Ir; w)dr;w(x) = argmindC(x; y; d; Ir; Il; w)end for�2d(x) = 1K�1PKw=1(dl;w(x)� �dl;w(x))2:dl(x) = argminw C(x; y; dl;w; Il; Ir; w)dr(x) = argminw C(x; y; dr;w; Ir; Il; w)d(x) = dl(x) + sl(x)end forfor all (x; y) in Il doif (dl(x) 6= �dr(x+ dl(x)) then7



�2d(x) = +1end ifend for8 Experimental EvaluationThis setion reports the main results of experimental evaluation of SMW.The evaluation was aimed at assessing� the auray of disparity omputation,� robustness against olusion,� the onsisteny of unertainty estimation,� the performane of SMW when ompared to similar algorithms.We used syntheti data sets ommonly found in the stereo literature andontrolled amounts of noise. We also reprodued patterns used for testingalgorithms used in our omparative evaluation. The next setion reportsfurther tests with real stereo pair sof size 128� 128.Random-dot stereogramsWe �rst performed experiments on noise-free random-dot stereograms (RDS),shown in Figure 4. In the disparity maps, the gray level enodes the disparity,that is the depth (the brighter the loser). Images have been equalised to im-prove readability; subpixel-auray values have been omputed and roundedto integers. Following [12℄, the estimated Mean Absolute Error (MAE), thatis the mean of absolute di�erenes between estimated and ground true dis-parities, has been omputed.Simple SSD orrelation applied to the RDS shows how most of the prob-lems outlined in Setions 4 and 5 a�et disparity omputation. Figure 58



shows the disparity maps omputed by SSD with �xed windows 3�3 and7�7. Both pitures show the e�et of disparity jumps (near the left and hor-izontal borders of the square path) and of olusions (near the right borderof the square path). The SMW algorithm with a 7�7 window was applied tothe square RDS of Figure 4 and to a irular RDS (not shown here). Figure 6show the disparity maps omputed by SMW and the estimated unertaintymaps (the darker the lower) in both ases.The MAE is negligible, and may be asribed to subpixel estimation only.The oluded points, shown in white in the unertainty maps, are reoveredwith 100% auray in both ases. The irle RDS shows that the algorithm isnot biased toward square disparity patterns, as the shape of the SSD windowsmight suggest. The reader may want to ompare the present results to thosereported in [3℄.Experiments with noisy RDSs show a graeful degradation when noiseinreases. Gaussian noise with zero mean and inreasing variane was addedindependently to both images of the square RDS. Figure 7 plots the MAEagainst the standard deviation of the noise for SMW and SSD orrelation.Eah point depits the average result of 20 independent trials.In order to assess the unertainty estimator inorporated in SMW, weplotted the average unertainty omputed over a square path of uniformdisparity against the SNR (Figure 8). The results show that the omputedunertainty onsistently inreases as the SNR dereases.Gray-level rampsWe performed a systemati, quantitative omparison between SMW, our im-plementation of the Adaptive Window (AW) algorithm [12℄ (possibly thelosest method to SMW in the literature), and �xed-window SSD with dif-ferent window sizes. The evaluation was based on the main test pattern used9



by [12℄: an input stereo pair of an intensity ramp in the horizontal dire-tion, warped aording to a given disparity pattern. The left disparity jumpreates a \disolusion" area whih is �lled with random dots (Figure 9).Gaussian noise with zero mean and unit variane (gray level) was added toboth images independently.Figure 10 illustrates a omparison of the three algorithms using the rampstereo pair.Qualitative omparisons are illustrated in Table 1, whih summarises theresults of our omparison of the MAE for SSD, AW, and SMW, using inputpairs with di�erent noise levels and di�erent window sizes.Results with �xed-window SSD (Figure 10) on�rm that too small a win-dow (e.g., 3�3) inreases sensitivity to noise, whereas larger windows (e.g.,7�7) at as low-pass �lters and are likely to blur depth disontinuities.More interestingly, Figure 10 shows that AW is the most aurate (sineit redues simultaneously both random and systemati errors along the dis-parity edges), but performs poorly within oluded areas, leading to largeloal errors, as it does not exploit the uniqueness onstraint. Subpixel or-retions are smooth sine this algorithm is essentially a omplex, iterativesubpixel adjustment. SMW yields a depth map that is globally more reli-able, as it enfores left-right onsisteny: oluded points are deteted with100% auray.Further experiments with larger disparities (not reported here) show that theimprovement in auray ahieved by SMW with respet to AW inreaseswith disparity, owing to the inreasingly large areas of olusion1.Another advantage of SMW with respet to AW is eÆieny. Running1Notie that our implementation of AW failed to onverge to a solution with RDSs,probably beause this algorithm relies on intensity derivatives, whih are ill-de�ned forrandom dot patterns. 10



on a SUN SparStation 4 (110MHz) under SunOS 5.5, our implementationof the SMW takes 8 seonds, on average, to ompute the depth maps inFigure 10 (128�128 input images), while AW takes 32 minutes on average.9 Experiments with Real DataWe report the results of the appliation of the SMW algorithm on standardimage pairs from the JISCT (JPL-INRIA-SRI-CMU-TELEOS) stereo testset, and from the CMU-CIL (Carnegie-Mellon University|Calibrated Imag-ing Laboratory) in Figure 11. In the disparity maps, the gray level enodesdisparity, that is depth (the brighter the loser). Images have been equalisedto improve readability. Subpixel-auray values have been rounded to in-teger values for display. We also report the estimated variane maps (thedarker the lower). Small values annot be appreiated in spite of histogramequalisation, due to the large di�erene between high-unertainty olusionpoints and the rest of the image. Although a quantitative omparison withother methods was not possible with real images, the quality of SMW resultsseems perfetly omparable to that of the results reported, for example, in[18, 9, 3℄.In Figure 12, we report the result of SMW on the \Head" stereo pair(from the Multiview Image Database, University of Tsukuba), for whih thedisparity ground truth is given. In this ase we ould ompute the errorimage and the Mean Absolute Error, MAE=0.6194.Running on a Sun SparStation 4 (110MHz) under SunOS 5.5, our urrentimplementation takes 50 seonds, on average, to ompute depth maps from256�256 pairs, with a disparity range of 10 pixels.
11



10 DisussionWe have introdued a new, eÆient algorithm for stereo reonstrution,SMW, based on a multi-window approah, and taking advantage of left-right onsisteny. Our tests have shown the advantages o�ered by SMW.The adaptive, multi-window sheme yields robust disparity estimates in thepresene of olusions, and learly outperforms �xed-window shemes. Ifneessary, the slight amount of noise aused by subpixel interpolation anbe kept small by inreasing the baseline, whih does not worsen performanesigni�antly thanks to the robust treatment of olusions. This is an advan-tage over several stereo mathing shemes, often limited by the assumptionof small baselines.Left-right onsisteny proves e�etive in eliminating false mathes andidentifying oluded regions (notie that this an be regarded as a segmenta-tion method in itself). In addition, disparity is assigned to oluded pointsheuristially, thereby ahieving reasonable depth maps even in oluded ar-eas. Unertainty maps are also omputed, allowing the use of SMW as amodule within more omplex data fusion frameworks ([17℄). As for any area-based orrespondene method, SMW's performane is a�eted adversely bypoorly-textured regions, but areas of low texture are assoiated onsistentlywith high unertainty values.The eÆieny of SMW is learly superior to that of similar adaptive-window methods, and diret omparisons with [12℄ have been reported. Thereason is that SMW performs a one-step, single-sale mathing, with noneed for interpolation and optimisation. The main disadvantage is that thewindow size remains a free parameter; notie, however, that adaptive-windowshemes are muh slower in ahieving omparable auraies.
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Figure 1. The nine orrelation windows. The pixel for whih disparity is omputed ishighlighted.
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Figure 2. Left-right onsisteny. Point A is orretly mathed to A'. Point B is given C'as a math, but C' mathes C6=B.
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Figure 3. Multiple windows approah. If one use windows of �xed size with di�erententers, it is likely that one of them will over a onstant depth area.16



Figure 4. Square RDS. The right imageof the stereogram is omputed by warp-ing the left one, whih is a random tex-ture (left), aording to a given disparitypattern (right): the square has disparity 10pixel, the bakground 3 pixel.
Figure 5. Computed disparity map bySSD orrelation for the square RDS with3�3 window (left) and 7�7 window (right);MAE is 0.240 and 0.144, respetively.

Figure 6. Computed disparity map (left) and unertainty (right) by SMW for the squareRDS (top) and for the irle RDS (bottom). MAE is 0.019 and 0.026 respetively.
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Figure 7. MAE of SMW and SSD vs noisestandard deviation for the square RDS.Window is 7�7. Figure 8. Mean unertainty vs SNR fora onstant disparity region of the squareRDS.
Figure 9. Stereo pair. The entral square has disparity 5 pixel, the bakground 2 pixel.
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Figure 10. Isometri plots of the disparity maps omputed with: SSD orrelation 3�3window (top left) and 7�7 window (top right), AW (bottom left) and SMW 7�7 algorithms(bottom right), with �2 = 1:0. The orientation is hosen to show oluded points.18



Figure 11. Disparity (left) and unertainty maps (right) fo the \Castle", \Parking meter",\Shrub" and \Trees" stereo pairs
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Figure 12. \Head" image and disparity ground truth (top row); disparity omputed bySMW and error image(bottom row).
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Algorithm MAE�2 = 1:0 �2 = 3:0 �2 = 10:0SSD 7x7 0.182 0.468 1.235SSD 15x15 0.284 0.392 0.988AW 0.101 0.244 1.045SMW 7x7 0.082 0.318 0.979SMW 15x15 0.059 0.235 0.819Table 1. Comparison of estimated errors: mean absolute (MAE) for di�erent noise vari-anes. Notie that 15�15 is the maximum window size allowed for AW.
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