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Abstract

This paper proposes a technique for the three-
dimensional reconstruction of an underwater environment
from multiple range views. The final target of the work
lies in improving the understanding of a human operator
guiding an underwater remotely operated vehicle (ROV)
equipped with an acoustic camera, which provides a se-
quence of 3D images in real time. Since the field of view
is narrow, we devise a technique for the reconstruction of
relevant information of the image sequence up to build a
mosaic of the surrounding scene. Due to the very noisy na-
ture of the data and the low range resolution, smoothing,
segmentation, registration, and fusion problems have been
tackled. Examples on real images have been presented to
show the promising performances of the algorithm.

1. Introduction

Underwater scene understanding is an expanding field
due to the increasing interest in monitoring the evolution of
the subsea flora and fauna and the effects of the human in-
teraction with such environment. Moreover, there is also
a growing attention in designing new smart sensors able
to provide data with a quality impossible to imagine only
few years ago. For these reasons, more and more scientists
have started to exploit computer vision techniques for un-
derwater image understanding. Our work is a step forward
in this direction. We are presenting a technique for three-
dimensional (3D) scene reconstruction from a sequence of
range data acquired by an acoustic camera. The final goal
is to provide a 3D scene model to the human operator(s)
of an underwater remotely operated vehicle (ROV), in or-
der to facilitate the navigation and the understanding of the
surrounding environment.

Our data come from a high frequency acoustic camera
[9]. Speckle noise is typically present due to the coherent
nature of the acoustic signals. The noise corrupts sensibly
the acoustic signals and decreases the reliability of the esti-
mated 3D measures. Moreover, there is a trade off between
range resolution and field of view. Resolution depends on
the frequency of the acoustic signal (it is about 3 cm at 500
KHz): the higher the frequency, the higher the resolution,

the narrower field of view. Consequently we are forced to
operate with a limited field of view and a technique to re-
construct progressively the scene while the sensor is moving
is necessary.

In summary, our work aims at reconstructing a 3D envi-
ronment from a sequence of clutter, noisy, and low resolu-
tion data, in order to produce a 3D panoramic mosaic of the
scene. This case is quite different from the registration of
a couple or more range images, proposed in many previous
papers [3, 4, 19]. In fact, we would like to stress that: i)
the resolution is never better than some centimeters, unlike
classic range data (e.g., from laser range finders); ii) sen-
sor position is not taken into account for view registration;
iii) the motion of the sensor is quite unstable, and cannot be
controlled with precision in any real case, so acquired im-
ages from a fixed position may be different due to speckle
and sensor floating. As a consequence, some previous so-
lutions based on estimation of surface parameters cannot be
taken into account due to the high uncertainty of the data.
A lot of works on the registration of image pairs or the inte-
gration of a set of range images are present in literature, but
none dealing with the particular kind of 3D data we are us-
ing. So, although the problems we encountered may seem
the same discussed in other papers, significant differences
are actually found.

Among the works related to registration, the Iterative
Closest Point (ICP) procedure [3] and its earlier variants
[4, 19] are seminal papers worth to be mentioned.

The work in [4] also deals with the possibility to regis-
ter more range images by incrementing pairwise registra-
tion, resulting in an non optimal global registration. Other
works address this problem [2, 1, 15, 13]. As an example, in
[2], couples of images are incrementally registered together
with a final registration between the first and last view, by
using the inverse calibration procedure of the range-finder
to relate a point in the 3D space corresponding to a point in
the range image. Another work [1] considers all the views
simultaneously and tries to minimize the global registration
error, assuming that the error over the several views is lit-
tle (i.e., a preliminary rough registration has been applied).
The work in [16] aims at estimating surface approximations
from several range images, and subsequently integrating
them in a global surface model. No constraints about the
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number of views, viewpoints’ positions, and object topol-
ogy are to be respected. In [15] and [6], a force-based op-
timization approach is proposed. Assuming the points’ cor-
respondences among the data sets known, interconnections
using springs between corresponding points is simulated.
More recently, a multiview registration technique has been
presented in [13]. The method starts using a pairwise reg-
istrations (ICP-based) between closest views, and use these
results as constraints for the multiview alignment. In such
a way, computational time is reduced as well as memory
storage, and pairwise registration error is spread among the
views rather than accumulating.

All these works assume range images from a laser range
finder looking at a single, even complex, object. Unlike
these ones, our algorithm deals with uncertain low resolu-
tion data, in which problems of filtering, segmentation and
reconstruction should be all considered in order to get a re-
liable reconstruction of the scene.

In our approach, we first pre-process rough data in or-
der to reduce noise, eliminate clutters, and group together
points belonging to different surface patches (Sec. 2). Then,
resulting data patches are smoothed using a robust fitting
technique (Sec. 3). Finally, individual range images are
pairwise registered, using a variation of ICP, and then fused
together in order to generate a mosaic containing all the
available data (Sec. 4). Examples on real images of an un-
derwater oil rig are presented (Sec. 5) showing the promis-
ing performances of the algorithm.

2. Pre-processing

Three-dimensional data are obtained by a high resolution
acoustic camera, theEchoscope[9]. The scene is insonified
by a high-frequency acoustic pulse and a two-dimensional
array of transducer gathers the backscattered signals. The
whole set of raw signals is then processed in order to en-
hance those coming from fixed steering directions (called
beamsignals) and to attenuate those coming from other di-
rections. The distance of a 3-D point can be measured by
detecting the time instant at which the maximum peak oc-
curs in the beamsignal. A range image is formed by64�64
points ordered according to an angular relation, as adjacent
points correspond to adjacent beamsignals. Moreover, the
intensity of the maximum peak can be used to generate an-
other image, representing the reliability of the associated
3-D measures: the higher the intensity, the safer the associ-
ated measure.

The acoustic image is affected by false reflections,
caused by secondary lobes, and by acquisition noise, which
is modeled as speckle noise. The intensity image turns out
to provide very useful information to discriminate between
“good data” and noise. A dramatic improvement of the
range image quality is obtained by discarding points whose
associated intensity is lower than a threshold depending on
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Fig. 1. Pixel P belongs to five different windows; the first
two leftmost windows crosses a homogeneous population.

the secondary lobes. Then, a size filter is applied consider-
ing as connected range points closer than a given threshold.

The cleaned range image is then converted from polar
sensor coordinates(�; �; r) to Cartesian world coordinates(x; y; z). The benefit of converting to Cartesian coordinates
lies in the ability to fuse range data collected from different
viewpoints into a single representation.

Then a surface mesh is created based on a Delaunay tri-
angulation on the(x; y) plane. To group points into sur-
face patches, edges longer than a specified threshold are re-
moved, leaving the corresponding nodes unconnected. This
surface mesh is then resampled on a rectangular grid, by
fitting a plane on each triangle.

The resulting resampled image constitute a range image
in Cartesian space which is used in all subsequent process-
ing stages. However, the data must be further processed
to remove invalid data points (outliers) and sensor noise,
while preserving range discontinuities. To this end a spatial
smoothing filter is applied, as described in the next section.

3. Smoothing by line fitting

Smoothing of range data is usually performed by locally
fitting a parametric surface to range data. However, many
methods based on such technique produce inaccurate results
when surface or derivative discontinuities are present, and
even on smooth surfaces, whenever the image contains scat-
tered impulse values, calledoutliers. Thus,robustmethods
are needed, that are powerful enough to handle data com-
ing from discontinuous (piecewise-smooth) surfaces and af-
fected by different kinds of noise. When two-dimensional
windows are used, points within a window close to sur-
face discontinuities come from at least two different pop-
ulations: “drawing the line” between the two populations is
in general a difficult problem. When more than two popu-
lations are considered (e.g., close to object corners) or non-
straight edges cross the window, the problem is even harder.
In order to overcome this problem, following [14], we use
one-dimensional (linear) windows swept along several di-
rections on the image plane, and integrate the results ob-
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Fig. 2. Acoustical data before (left) and after (right) smoothing.

tained through this firstdirectional processingstep for ob-
taining a solution to the two-dimensional problem. This al-
gorithm solves the surface fitting problem on range data in
a fast, highly-parallel, efficient yet simple and robust way.
Although it is suited for the special case of piecewise-linear
surfaces, the method can be generalized to polynomial sur-
faces of higher degree.

The method consists of two distinct and independent
steps. First, an isotropic set of directions is taken, and
slicesare extracted from the original image, in such a way
that every pixel belongs to exactly one slice per direction.
Each slice is then viewed as the discrete, noisy version
of a piecewise-smooth function of one variable. A one-
dimensional fitting algorithm is applied to each slice; the
one-dimensional processing for every direction gives an es-
timate for thez value at each point. In the second step, all
estimates obtained through the one-dimensional algorithm
are considered. Different estimates of the position of one
pixel are averaged in order to obtain a final estimate.

As for the first step, the method locally solves the prob-
lem by allowing the neighborhood of each pixel to “float
around”, looking for a homogeneous set of data, i.e. a set
which does not contain any discontinuity. The method is
based on the assumption that at least one partial neighbor-
hood per pixel always exists whose data are homogeneous
(see Fig, 1). For every pointP , the algorithm fits one line
per window on all windows containingP , basing on Haral-
ick’s facet model [10]. Agoodness-of-fitmeasure is com-
puted for each window, then the “best” result is chosen to
give estimates for the value of the underlying function at
point P . We have experimented with various algorithms
and goodness-of-fit measures. Under mild assumptions on
the nature of the noise, a least-square algorithm and a�2
measure can be successfully applied, provided that data are
pre-processed. This solution achieves a good compromise
between accuracy and computational complexity. An ex-
ample of smoothing on a real underwater acoustic image is
shown in Fig. 2.

4. Registration and Fusion

Building of global model from a sequence of unregis-
tered range images, is achieved in two stages: (i) pairwise
registration of each subsequent frame to compute the rigid
displacement that transform measurements into a common
coordinate frame; (ii) fusion of all the sets of measurements
into a single 3D surface. Registration was addressed us-
ing the classical Iterative Closest Point (ICP) algorithm [3],
a general purpose method for the registration of rigid 3-D
shapes.

4.1 ICP based algorithm

Let us suppose that we have two sets of 3-D points which
correspond to a single shape but are expressed in different
reference frames. We will call one of these sets the model
set X, and the other the data set Y. Let us start by assuming
that for each point in the data set, the corresponding point in
the model set is known. The problem is to find a 3-D trans-
formation which, when applied to the data set Y, minimizes
a distance measure between the two point sets. The goal of
this problem can be stated more formally as follows:minR;t NXi=1 kxi � (Ryi + t)k2; (1)

whereR is a3� 3 rotation matrix,t is a3� 1 translation
vector, and the subscripti refers to corresponding elements
of the sets X and Y. Efficient, non-iterative solutions to this
problem were compared in [11], and the one based on Sin-
gular Value Decomposition (SVD) was found to be the best.
In general, however, point correspondences are unknown.
For each pointyi from the set Y, there exists at least one
point on the surface of X which is closer toyi than all other
points in X. This is theclosest point, xi. The basic idea be-
hind the ICP algorithm is that, under certain conditions, the
point correspondence provided by sets of closest points is a
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reasonable approximation to the true point correspondence.
Besl and McKay [3] proved that if the process of finding
closest point sets and then solving Eq. (1) is repeated, the
solution is guaranteed to converge to a local minimum. The
ICP algorithm can be summarized:

1. For each point in Y, compute the closest point in X;
2. With the correspondence from step 1, compute the in-

cremental transformation(R; t) with SVD;
3. Apply the incremental transformation from step 2 to

the data Y;
4. If the change in total mean square error is less than a

threshold, terminate. Else goto step 1.

Modifications to the original ICP are now widely used to
achieve accurate registration of pairs ofpartially overlap-
ping range images [19, 18, 17]. We implemented a vari-
ation similar to the one proposed by Zhang [19], using a
modified cost function based on robust statistics to limit
the maximum distance between closest points. As pointed
out by Zhang, the distribution of the residuals for two fully
overlapping sets approximates a Gaussian, when the regis-
tration is good. The non-overlapped points skew the distri-
bution of the residuals, hence the threshold on the distance
must be set using a robust statistics. Following the X84 rule
[8] we discard those points whose residual differ more than5:2 MAD (Median Absolute Deviations) from the median.
The value5:2 corresponds to about3:5 standard deviations,
which encloses more than 99.9% of a Gaussian distribution.

As it is well known, pairwise registration of pairs of over-
lapping point sets does not yield the optimal result. Many
method have been presented to optimally solve this problem
(see the literature review in Sec. 1). Yet, using a small num-
ber of views, accuracy was satisfactory for our purposes.
Severe time constraints did not allow us to take global re-
finement into consideration.

4.2 Fusion

Registered sets of points must be fused in order to get
a single 3D model. After registering framei with framei�1, the former is fused with the current model, built from
frames1 : : : i�1. Fusion occurs between 3D points: every
point of the current frame which is closer to a point of the
model less than a threshold is deleted. In this way, every
subsequent frame add a portion to the model. We avoided
both mesh integration [18, 16] and volumetric fusion [5, 12]
because of the high computational load.

5. Results

As an example of the results obtained, we report in Fig. 3
frames number 1,4,7, and 10 of a sequence of ten range
images, taken by the Echoscope mounted on a underwater

ROV. The subject is a joint where five pipes meet, which
is part of a off-shore platform. These frames are the out-
put of the pre-processing and smoothing stages described in
Sec. 2 and Sec. 3. Fig. 4(a) shows the final mosaic of the
sequence, computed as described in Sec. 4. Fig. 4(b) shows
the mosaiced data along with cylinders that have been auto-
matically fitted using a method that we developed [7].
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Fig. 3. Samples from a ten-frames sequence of range images.

6. Conclusions

In this paper, we presented an ICP-based approach to
the construction of 3D mosaics from acoustic range data.
After a coordinate transformation and noise/clutter filter-
ing phase, dense range images are generated and smoothed
to limit the problem of coarse accuracy and range reliabil-
ity. Then, images are pairwise registered and incrementally
fused together.

Although the application scenario is constituted by pipe-
like structures, the proposed method is completely general
and no constraints are given on the number of views, res-
olution, and viewpoints’ locations, provided that a certain
degree of overlapping is present.

Improvements in the registration of multiple views are
foreseen in order to achieve a finer accuracy, possibly better
than the sensor resolution. As for the fusion, our effort will
be aimed at investigating a method that smooth out the noise
while fusing, by taking into account all the data, not just the
latest.

Methods for the automatic setting of the thresholds will
be also considered.

The amount of overlapping necessary for a good regis-
tration is left unspecified, but, from an applicative point of
view, this is not a problem as, in underwater environments,
the vehicle is slowly moving and a sufficiently large over-
lapping is always present.
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Fig. 4. (a): mosaic of the sequence of Fig. 3. (b): mosaic withfitted cylinders superimposed.
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