
Vehicle Classification from Profile Measures
Marco Patanè and Andrea Fusiello

DPIA - University of Udine
Viale delle Scienze 208, 33100 Udine, IT

Abstract—This paper proposes two novel convolutional neural
networks for 3D object classification, tailored to process point
clouds that are composed of planar slices (profiles). In particular,
the application that we are targeting is the classification of
vehicles by scanning them along planes perpendicular to the
driving direction, within the context of Electronic Toll Collection.
Depending on sensors configurations, the distance between slices
can be measured or not, thus resulting in two types of point
clouds, namely metric and non-metric. In the latter case, two
coordinates are indeed metric but the third one is merely a
temporal index. Our networks, named SliceNets, extract metric
information from the spatial coordinates and neighborhood
information from the third one (either metric or temporal), thus
being able to handle both types of point clouds. Experiments on
two datasets collected in the field show the effectiveness of our
networks in comparison with state-of-the-art ones.

I. INTRODUCTION

In this paper we address a specific application of 3D object
recognition, namely the classification of vehicles that drive
under a portal equipped with laser scanner(s), with the goal
of implementing an Electronic Toll Collection (ETC) system.

If the portal is equipped with a single laser, a sequence of
profiles (or slices) is returned, but the distance between them
is unknown, because it depends on the vehicle speed. If the
driving direction is identified with the y-axis, the y coordi-
nate is only an index representing the temporal relationship
between slices, with no metric meaning, as opposed to x and
z. Only if the vehicle speed can be measured, e.g. by placing
an additional laser on the ground in the proximity of the portal,
the y coordinate is metric.

In summary, the input data is a point cloud composed by
slices that lie on planes parallel to the x-z planes. The situation
is similar to aerial laser scanning (slices are called swaths in
this context), where the swaths provide 2D coordinates, and
the relationship between them is given by IMU and GNSS
mounted on the aircraft.

Until recent years, state-of-the-art for 3D classification
problems have followed a traditional pipeline, based on the
extraction and aggregation of hand-engineered features. Usu-
ally, these features are sophisticated shape descriptors, such as
Fisher Vectors [1] or Hough Transforms and 3D SURF [2],
which are then consumed by standard SVMs for solving the
classification task.

Nowadays feature-based approaches have been largely su-
perseded by Deep Learning [3], where both features and
classifier are learned from the data end-to-end. In particular, in
image classification, Convolutional Neural Networks (CNNs)
are the state-of-the-art [4], [5], [6]. While a lot of effort have

been done in applying deep learning techniques to 2D data,
deep learning on 3D data is less explored.

Depending on the type of input which is considered, three
different strategies are adopted for solving 3D object classi-
fication. The first input [7], [8], [9] consist of multiple 2D
views of the 3D object, which are exploited using classical
two-dimensional CNNs. The second [10], [11], [12] entails
the voxelization of the object, which is then fed to volumetric
CNNs, that generalize the classical CNNs to three dimensions.
The third input [13], [14], [15] is point clouds, which due
to its structure cannot be analyzed by standard convolu-
tions. Indeed, Qi et al. proposed two NNs: PointNet [13], a
CNN where each point is independently processed by point-
wise convolutions and then all the features are summarized
through a max pooling, and PointNet++ [14], an extension
on PointNet, where PointNet is applied recursively in an
hierarchical fashion to nested partitioning of the input set.
Another application of point-wise convolutions is Depthwise
Separable Convolutions[16], [17], which are mainly employed
for compression purposes. Klokov et al. [15] proposed instead
a network based on kd-tree in order to process point clouds.

Fig. 1: Sample point clouds obtained in the two configurations
analyzed. On the left, the single (lateral) laser configuration.
On the right, the three lasers configuration.

In this paper we describe a network architectures tailored
to the specific application we are targeting. We analyze two
possible laser configurations, as shown in Fig. 1. The first is
set up by one lateral laser, while the second is set up by two
lateral lasers and a frontal one. We call these configurations
non-metric and metric respectively. Let us remark again that
only in the metric scenario the distances between slices are
measured, while in the non-metric there is no way to recover
them since both the vehicle length and velocity are unknown.

While for the metric case there are solutions in the literature,
notably PointNet and VoxNet, the non-metric case calls for a
new CNN.



In order to handle both type of point clouds we develop
a novel family of CNNs, dubbed SliceNets, based on Point-
Net and VoxNet. These networks are able to extract metric
information from x and z coordinates through a PointNet-
like module and neighborhood information from y indices
employing standard convolutions (as VoxNet).

We did not consider PointNet++ [14] because its complexity
compared to PointNet is too high (7× slower in a forward pass,
as Qi et al. [14] showed.)

The paper is organized as follows. In Section II VoxNet
and PointNet are reviewed. Section III describes our CNNs,
namely SliceNet and SliceNet-GAP. In Section IV we show
the results on both non-metric and metric point clouds of our
networks compared against VoxNet and PointNet. Finally, the
conclusions are drawn in Section V.

II. BACKGROUND

Before presenting SliceNet, we review the two CNNs from
which it inherits some features, namely VoxNet and PointNet.
Furthermore in Section IV, we use VoxNet and PointNet as
references to test the performance of SliceNet.

A. VoxNet

The natural way to exploit CNNs with 3-dimensional
(voxel) data is to process them with 3-dimensional con-
volutional layers. The network which exploits this strategy
is VoxNet, originally described by [11]. This approach is
also suitable for classifying point clouds, provided they are
voxelized.

Indeed each point cloud is converted to a discretized vol-
ume, which in our application has size 16×48×16. We choose
such a low resolution in order to maintain a computation
cost similar to CNNs based on 2D images. Furthermore, we
privilege the y-axis in terms of resolution simply because the
main dimension of vehicles and in particular of semi-trucks
and buses is their length.

The voxelization proceeds as follows: first of all (if needed)
the point cloud is symmetrized, then each xz slice is trans-
formed to a 16 × 16 binary image. Finally, 48 slices are
generated by interpolation from the original ones. The above
procedure is depicted in Fig. 2.

Symmetrization is performed only in the case of single
lateral laser. Since in this case the width of the vehicle cannot
be established from the point cloud, we fixed it a-priori as a
value in the middle between cars and trucks.

The slice binarization is performed defining a 16× 16 grid
from the xz limits extracted by the point cloud itself, and
then associating 1 if the pixel is inside the polygon defined
by the points in that slice, 0 otherwise. Note that during the
binarization we lose the ratio between x and z dimensions,
thus wasting some metric information. However CNNs can
still learn rich features from the shape of vehicles, in much
the same way it does with images, that are always non-metric
due to perspective projection.

The last step, the interpolation along y-axis, is needed since
each point cloud has a different number of slices depending on

0.5

1

1.5

2

2.5

40

30

20

10

1
0 0

(a) Point cloud.

0.5

1

1.5

2

2.5

40

30

20

10 2
1

0 0

(b) Symmetrized point cloud

0.5

1

1.5

2

40

2.5

30

20

210
1

0

(c) 16× 16 slices. (d) Voxelization.

Fig. 2: Voxelization. The point cloud (2a) is symmetrized (2b),
and then each xz slice is binarized obtaining a 16× 16 image
(2c). Finally, the voxelization is computed via interpolation
(2d).

its length and its velocity during the acquisition. Once point
clouds are transformed to voxels, we can feed them to VoxNet
to obtain the vehicle classification.

Our implementation of VoxNet is depicted in Fig. 3a. The
input of size 16 × 48 × 16 is fed into the network, which
processes it with a sequence of convolutional and pooling lay-
ers in order to perform feature extraction. Then, the extracted
features are fed to a set of final fully-connected layers, which
solve the classification task by computing the final output of
the network. Batch normalization [18] and dropout [19] are
employed for controlling over-fitting.

B. PointNet

Solving vehicle classification using VoxNet comes with two
drawbacks, both due to the process of voxelization. First of
all, the complexity of the network is particularly high, and this
forces to set a low resolution for the voxels at the cost of losing
fine details of point clouds. The second drawback is that, in
order to exploit the whole input volume for the representation
of each point cloud, the coordinates are stretched, thereby
losing all metric information, namely width, height and length,
when available.

PointNet [13] is a specialized architecture that handles both
problems. This is possible since the input of this network
is given by the point cloud itself without any intermediate
transformation. This network is designed for consuming sets of
unordered 3D points with variable cardinality. More precisely,



(a) VoxNet. (b) PointNet.

Fig. 3: On the left VoxNet (3a), which is fed with 16×48×16
voxels. The voxel is analyzed by convolution with filter size
3 and pooling with filter and stride sizes equal to 2. Then
the classification is performed by three fully connected layers
using the features extracted from the voxel. On the right
PointNet (3b), which is fed with n × 3 point clouds. Each
point is independently analyzed by the network via point-
wise convolutions. Then the features extracted from points
are summarized in a 1024-dimensional vector via max pooling.
The classification is performed by three fully connected layers
using this feature vector. In both networks batch normalization
and ReLu activation are used for all layers except the last
one. Furthermore, dropout is used for all fully connected
layers except the last one. “conv”, “pool” and “fc” stand for
convolutional, pooling and fully connected layers respectively.
Numbers in bracket are layer sizes and the other numbers
represent filter sizes.

given an n × 3 array, which represents a point cloud, each
point (1 × 3) is independently processed by the network and
then a symmetric function summarizes the information over
all the n points.

Each point is processed first by 1×3 convolutions and then
by 1 × 1 convolutions. The latter are also called point-wise
convolutions, due to the fact that the point are independently
analyzed by the network. Then, max pooling with mask n ×
1 is performed, and finally the resulting array of features is
processed by fully connected layers.

The structure of PointNet is simple, as shown in Fig. 3b,
but effective, as demonstrated by the experiments conducted
in [13]. Note that the complexity of PointNet is intrinsically
low, since the point cloud representation is more efficient than
the corresponding voxelization, since the latter wastes voxels
just to represent empty space. For instance, a 16 × 48 × 16
voxelized volume occupies twice the space of a 2048×3 point
cloud, nevertheless it is a fairly coarse representation.

PointNet solves our problem in the metric case, but it is
not able to directly solve the non-metric one, for the third
coordinate is not commensurate with the other two. Indeed,
PointNet processes all 3 coordinates together implicitly as-
suming that they have the same nature, but this assumption is
not valid in the non-metric scenario. Keeping this in mind, we
tried anyway to use PointNet with y coordinates normalized
in [0, 1], surprisingly obtaining acceptable classification results
(see Section IV).

III. PROPOSED SOLUTION

As we discussed in the previous section, PointNet is an
effective network for processing point clouds, for it achieves
a low complexity without loss of information from input
discretization. However this network was thought to consume
metric point clouds only. In order to process non-metric point
clouds without the necessity of voxelization and its resulting
disadvantages, we developed SliceNets, a family of networks
built on both PointNet and VoxNet.

The basic idea behind our novel architectures is to exploit
the mixed nature of our vehicle point clouds. Indeed they are
unordered set of points with respect to x and z coordinates,
which can be processed by a PointNet-like network, and a
sequence of slices with respect to y axis, that can be fruit-
fully processed by standard (i.e. not point-wise) convolutional
layers.

In the following we describe two types of SliceNets, namely
SliceNet and SliceNet-GAP. They share the same structure,
except for a layer (the GAP layer), which allow SliceNet-GAP
to be agnostic about the dimension of the input.

A. SliceNet

Following the intuition described above, the n × 3 point
cloud can be decomposed in s sets of two-dimensional points
of cardinality ni, where s is the number of slices and ni is
the number of points in slice i ∈ {1, . . . , s}. Thus, if we fix
the number of points per slice to m = maxi ni, we can define
a tensor of dimension s×m× 2 as input for our network.



The first part of SliceNet operates on {1 × m × 2}si=1

sets of points, where each point is processed by point-wise
convolutions (1×1×2 first, and 1×1×1 convolutions after),
and then max pooling with mask 1 × m × 1 is applied to
each set. The second part of SliceNet operates on the resulting
s× 1× 1 slices, processing them via 3× 1× 1 convolutions
and 2 × 1 × 1 pooling with stride 2. Finally, as usual, the
feature array is processed by fully connected layers in order
to obtain the classification. The complete network architecture
is summarized in Fig. 4a.

In practice, to obtain the desired input tensor each set
of ni points is augmented to m = maxi ni simply adding
points from the i-th set, since the max pooling operation is
insensitive to repetition of features extracted from the same
points. Furthermore, all the point clouds must have the same
number of slices in order to be processed by the classification
block. Thus we generated s slices via interpolation over the
original ones.

B. SliceNet-GAP

The main limitation of SliceNet is given by the fact that s
(number of slices) must be the same for the point clouds of all
vehicles, which can be solved by interpolation at first instance.
If instead one wants to avoid this operation, a variation of
SliceNet, named SliceNet-GAP, can be employed, which is
able to process point clouds with variable number of slices s.

SliceNet-GAP employs global average pooling (GAP),
which was proposed by Lin et al. [20] as a regularization
technique. In our case GAP is used to remove the dependencies
by s summing out the spatial information of slices. More
precisely the GAP layer is applied before the classification
block since the fully connected layer need a fixed input dimen-
sion. Apart from this extra layer, SliceNet and SliceNet-GAP
architectures are identical. The complete network architecture
is summarized in Fig. 4b.

IV. EXPERIMENTS

In this Section we present our classification results on both
non-metric and metric datasets of vehicle point clouds. We
discuss the results of our networks, i.e. SliceNet and SliceNet-
GAP, along with comparisons with PointNet and VoxNet.
Furthermore, we also provide an analysis on time and space
complexity of the networks. For all the experiments we fixed
n = 2048 as number of points for PointNet, while s = 50 and
m = 60 as number of slices and per slice number of points
respectively for SliceNets.

A. Datasets

We evaluate the networks through two datasets of vehicle
point clouds. The main difference between the datasets is in
their structural configuration: one of them is a non-metric
dataset, the other is a metric one. Furthermore, they differs
in the number of samples and classes.

In particular, the non-metric dataset is made of about 6900
samples and 18 classes, namely pedestrian, motorbike, car,
van, van open, bus, coach, truck closed, truck open, truck

(a) SliceNet. (b) SliceNet-GAP.

Fig. 4: SliceNets. Both networks are fed with point clouds
arranged as s×m× 2 tensors. Each slice of two-dimensional
points is processed via a PointNet module, and then convolu-
tions are applied over slices. The output is obtained applying
three fully connected layers. The main difference between (4a)
and (4b) is given by the GAP layer, which allow SliceNet-
GAP to handle point clouds with different number of slices s.
In both networks batch normalization and ReLu activation are
used for all layers except the last one. Furthermore, dropout is
used for all fully connected layers except the last one. “conv”,
“pool” and “fc” stand for convolutional, pooling and fully
connected layers respectively. Numbers in bracket are layer
sizes and the other numbers represent filter sizes.



tanker, truck tip, truck cement, truck road tractor, semi-truck
closed, semi-truck open, semi-truck tanker, semi-truck tip, and
semi-truck car. While the metric dataset is composed by about
2500 samples and 8 classes, namely car, car-van, van, truck,
truck road tractor, semi-truck closed, semi-truck open, and
semi-truck tanker. Some samples of non-metric dataset and
metric dataset are shown in Fig. 9 and Fig. 8 respectively.

The non-metric dataset is more various since the samples
have been collected on an highway, while the metric samples
have been acquired on a harbor entrance, and for instance,
almost no buses come through it. Furthermore, in order to
augment the number of classes we divided the larger classes,
namely van, truck and semi-truck, in sub-classes which differ
in shape enough to distinguish them.

B. Evaluation

Since the datasets are quite small, in particular the metric
one, we used k-fold cross-validation to evaluate the perfor-
mances of our networks.. They are randomly partitioned in
k equal sized subsets (we chose k = 6 in our experiments)
and k networks are trained independently choosing each time
a partition as test set and its complementary as training set.
Then the k results are averaged to produce a single figure.
Results are summarized in Tab. I and II.

TABLE I: Non-metric dataset results. Classification accuracy
of the four networks obtained by k-fold cross-validation.
“average” and “total” stand respectively for average per class
accuracy and overall accuracy.

network accuracy
average total

VoxNet 91.2(±2.5) 96.6(±0.5)
PointNet 91.4(±1.4) 96.7(±0.4)
SliceNet 93.2(±1.8) 97.2(±0.3)
SliceNet-GAP 92.8(±1.6) 97.1(±0.5)

TABLE II: Metric dataset results. Classification accuracy of
the four networks obtained by k-fold cross-validation. “av-
erage” and “total” stand respectively for average per class
accuracy and overall accuracy.

network accuracy
average total

VoxNet 97.9(±0.6) 99.3(±0.2)
PointNet 98.2(±0.8) 99.4(±0.2)
SliceNet 98.5(±1.1) 99.4(±0.3)
SliceNet-GAP 98.4(±0.9) 99.2(±0.4)

As expected SliceNets are the best performing networks
in the non-metric dataset (Tab. I), indeed they are designed
specifically for this type of data. In particular, per class
average accuracy of SliceNet is 1.8% higher than PointNet
and 2.0% higher than VoxNet. Also SliceNets total accuracies
are higher compared to the other CNNs. Furthermore, Slicenet
works better with classes with less samples, obtaining that this

network is able to learn richer features for all the classes, even
the small ones.

In the metric dataset (Tab. II) SliceNet achieves the best ac-
curacy together with PointNet, thus validating the effectiveness
of our networks also for metric point clouds. Our hypothesis
is that SliceNets compensate for the ignorance of the metric
value of the y coordinate with the information brought by
rich shape features obtained via convolution, which, on the
contrary, is not available to PointNet.

SliceNet-GAP and VoxNet obtained high (total) accuracies,
however their average accuracies per class are marginally
worse compared to SliceNet.

Both tables show that SliceNet-GAP achieves slightly worse
accuracies compared to SliceNet: the GAP layer trades some
accuracy for the capability of processing point clouds with
variable s (the number of slices).

In the following experiments we fixed a splitting of the
training-test with proportion 80%-20%. Fig. 5 and Fig. 7
show the confusion matrices obtained by SliceNet on non-
metric and metric datasets respectively. In particular, Fig. 5
shows that van/truck (closed) and bus/coach sometimes are
misclassified, presumably due to fact that they have similar
shapes and dimensions. Indeed, in Fig. 6, we can see how, even
for a human, it is difficult to distinguish van/truck (closed) and
bus/coach.

Fig. 5: Confusion matrix on non-metric dataset.

Fig. 7 shows instead almost perfect results, probably thanks
to classes that are more separable and conversely have less
inter-class variance.

C. Complexity

Here we compare SliceNets against PointNet and VoxNet in
terms of time and space complexity. The number of parameters
represents the space complexity of the neural networks, while
the FLOPs (i.e. floating-point operations) per sample the time



0

2

20

10
2

10 0

(a) Van, misclassified as truck.

1

2

3

10
2

1
0 0

(b) Truck, misclassified as van.

0

30

2

20

10

2
10 0

(c) Bus, misclassified as coach.

1

2

3

20

10

2
10 0

(d) Coach, misclassified as bus.

Fig. 6: Some non-metric samples misclassified by SliceNet.

Fig. 7: Confusion matrix on metric dataset.

complexity, where we consider multiply-adds operations only.
Results are summarized in Tab. III.

TABLE III: Time and space complexity. Number of parameters
and floating-point operations (i.e. multiply-adds operations) of
one sample for each network. The ”M” stands for million.

network parameters FLOPs/sample

VoxNet 22.0M 3249M
PointNet 0.7M 287M
SliceNet 1.7M 34M
SliceNet-GAP 0.9M 33M

As expected, VoxNet is the most complex network in terms
of both time and space. In particular Voxnet is 11× less
efficient having 31× more parameters compared to PointNet.
While SliceNets have more or less the same number of param-
eters of PointNet, being more efficient than the competitors in
term of FLOPs/sample, namely 8× and 95× more efficient
than PointNet and VoxNet respectively.

These results confirm that SliceNets are very efficient,
as well as accurate, showing their suitability for real-time
applications.

D. Training Details

For all four networks, the weights are initialized as de-
scribed by Glorot et al. [21]. Regularization is provided
by dropout [19] and batch normalization [18]. In particular,
dropout is performed with rate 0.7 on all fully connected
layers except the last one. Conversely, batch normalization is
performed on all layers except the last one with initial decay
rate 0.5, then exponentially increased to 0.99 during training.
We choose Adam optimizer [22] with momentum 0.9 and
initial learning rate 0.0005, then exponentially decreased to
0.00001. Fixing the batch size to 128, training takes 1-2 hours
to converge with TensorFlow [23] on a Tesla K40c GPU.

V. CONCLUSION

This paper described SliceNets, a family of two convolu-
tional neural networks for 3D point-cloud classification. They
are specifically tailored to process point clouds obtained by
scanning vehicles along planes perpendicular to the driving
direction. The resulting point clouds can be metric or non-
metric, depending on sensors configurations; in the latter case
the slice coordinate is merely a temporal index.

SliceNets are able to extract metric information from the
spatial coordinates and neighborhood information from the
third one (either metric or temporal), thus being able to handle
both types of point clouds.

Experiments on metric and non-metric datasets showed that
SliceNets compares favourably with the competitors on both
accuracy and complexity. In particular, as expected, SliceNet
performs better than others on non-metric data, since it has
designed for that task, but it can also deal with metric
configuration with performances on par with the state-of-the-
art.

At last, SliceNet was ported on an embedded system for
real-time ETC.

ACKNOWLEDGEMENTS

This work has been carried out in 2017/18 within the SPATA
project, funded by Friuli-Venezia Giulia region, POR FESR
2014-2020 program. Data have been provided by Comark srl
as a partner of the project. Authors are grateful to A. Abramo
for kindly granting access to the Tesla GPU.

REFERENCES

[1] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classifica-
tion with the fisher vector: Theory and practice,” International journal
of computer vision, vol. 105, no. 3, pp. 222–245, 2013.

[2] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van Gool, “Hough
transform and 3d surf for robust three dimensional classification,”
Computer vision–ECCV 2010, pp. 589–602, 2010.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.



Fig. 8: Metric dataset. Each column represents seven samples of a class. Colors underline the slice structure of point clouds.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[7] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp. 945–
953.

[8] C. Wang, M. Pelillo, and K. Siddiqi, “Dominant set clustering and
pooling for multi-view 3d object recognition.” in Proceedings of British
Machine Vision Conference (BMVC), 2017.

[9] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view cnns for object classification on 3d data,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 5648–5656.

[10] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1912–1920.

[11] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network
for real-time object recognition,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015,
pp. 922–928.

[12] A. Brock, T. Lim, J. Ritchie, and N. Weston, “Generative and discrimi-
native voxel modeling with convolutional neural networks,” in 3D Deep
Learning Workshop, 2016, pp. 1–9.

[13] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[14] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical

feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems 30, 2017, pp. 5099–5108.

[15] R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-networks for
the recognition of 3d point cloud models,” in 2017 IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 863–872.

[16] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[19] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[20] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[21] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 2010,
pp. 249–256.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[23] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.



Fig. 9: Non-metric dataset. Each column represents seven samples of a class. Colors underline the slice structure of point
clouds.


