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Abstract

We deal with the problem of obtaining rigorous bounds to
the position of 3-D points computed by stereo triangulation
when both the camera matrix and the image points are af-
fected by uncertainty. By “rigorous bounds” we mean that
the true unknown 3-D points are guaranteed to lie within the
given intervals. To this end we first model the calibration
process by assuming a bounded error in the localization of
the reference points in the image, then we narrow the en-
tries of the camera matrix. Finally, we apply triangulation
and obtain cuboids that bound points coordinates. We con-
centrated two state-of-the art methods for the solution of
linear system of equations, namely INTLAB’s and Shary’s
methods. Empirical comparison shows that the latter al-
ways provides sharper error bounds, in this application.

1 Introduction

Being an empirical science, Computer Vision has to deal
with errors affecting measurements. The problem of propa-
gating errors from input data to results in Computer Vision
has been addressed in two well-known books [2, 6], and in
a landmark workshop [1].
Established techniques are based on statistical analysis of
error propagation: given an input error distribution, a char-
acterization of the output error distribution is produced. In
principle this should be done by propagating the input dis-
tribution through the various stages of the algorithm, but
this approach is not practical except for simple algorithms.
An approximation of this method is usually employed, as-
suming that the distribution is characterized by its first and
second moments only. In [2, 15] the authors address the
problem of propagating the covariance of x through f(x)
when f is known explicitly (by linearisation) and when f is
specified implicitly as the minimiser of a scalar cost func-
tion. Statistical analysis of geometric algorithms is also de-
veloped in [6].
In this work we take a different approach, based on Interval
Arithmetic. Data are represented by intervals containing the
real value, and the width of the interval represent a bound
to the error. Arithmetic operations are then performed on

these intervals, with the guarantee that the resulting interval
contains the exact result.
Marik et al. [9] first suggested to use Interval Arithmetic for
the study of error propagation in Computer Vision. These
authors propose two error models, one based on covariance
propagation, and one (called min/max value propagation)
based on Interval Arithmetic. As the bounds obtained with
direct application of interval arithmetic rules are usually too
pessimistic, they conclude that “the min/max model is very
appropriate for studying the effect of the machine precision
on some computation.” [9] As we shall see, however, a care-
ful selection of suitable techniques allowed us to use Inter-
val Arithmetic as a tool for obtaining realistic bounds on
the output error even in presence of a significant error on
the input data.
In this paper we deal with error propagation in three-
dimensional (3-D) reconstruction from stereo, i.e we seek
a bound on the accuracy of the position of 3-D points ob-
tained by triangulation. In this process we assume that both
the camera matrices and the corresponding points in the im-
age are affected by a bounded error.

2 Problem formulation

This section briefly recalls the mathematical developments
of stereo reconstruction that are relevant to our work. For
more details see [2].
Let w = (x, y, z)T be the coordinates of a 3-D point in
the world reference frame. A pinhole camera projects the
point onto the image plane. The coordinates m = (u, v)T
of the projected image point are given by the perspective
projection equation:

u =
pT

1w + p1,4

pT
3w + p3,4

, v =
pT

2w + p2,4

pT
3w + p3,4

. (1)

where

P =

⎛

⎝
pT

1 p1,4

pT
2 p2,4

pT
3 p3,4

⎞

⎠ (2)

is a full-rank 3 × 4 matrix that models the pinhole camera,
and it is called camera matrix.
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2.1 Calibration

Calibration consists in computing the elements of the cam-
era matrix P. The unknown camera matrix has 12 elements,
however, being defined up to a scale factor it depends on 11
parameters only. We can choose p34 = 1, thus reducing
the number of unknowns to 11. Given N reference points,
not coplanar, each correspondence between an image point
mi = (ui, vi)T, and a reference point wi gives a pair of
equations, derived from (1):

(
wT

i 1 0 0 −uiwT
i

0 0 wT
i 1 −viwT

i

)

⎛

⎜⎜⎜⎜⎝

p1

p1,4

p2

p2,4

p3

⎞

⎟⎟⎟⎟⎠
=

(
ui

vi

)
. (3)

Therefore for N points we obtain a linear system of 2N
equations in 11 unknowns: 6 non coplanar points are suffi-
cient. In practice more points are available, and one has to
solve a linear least-squares problem.
If we assume that the measurement of pixel coordinates mi

are affected by a bounded error (e.g., ±0.5 pixel) this trans-
lates in bounding some of the entries of the coefficients ma-
trix and the right hand side vector of the linear system (3).

2.2 Triangulation

Given the matrices of the two cameras and the coordinates
of the projections on the image planes of a 3-D point M ,
coordinates of M can be recovered by a simple linear algo-
rithm, called the Linear-LS method [4].
Let P and P′ be the two camera matrices, let w be the un-
known coordinates of the 3-D point, and let m = (u, v)T
and m′ = (u′, v′)T be the image coordinates of a conjugate
pair. From (1) we obtain a linear system of four equations
in the unknown 3-vector w:

⎛

⎜⎜⎝

(p1 − up3)T
(p2 − vp3)T
(p′

1 − u′p′
3)T

(p′
2 − v′p′

3)T

⎞

⎟⎟⎠w =

⎛

⎜⎜⎝

−p1,4 + up3,4

−p2,4 + vp3,4

−p′1,4 + u′p′3,4

−p′2,4 + v′p′3,4

⎞

⎟⎟⎠ . (4)

Again, a bounded error affecting P, m and m′ translates
into bounds to the entries of the coefficient matrix and the
right hand side vector of (4).
In the next section we see how arithmetic operations can
be defined on bounded intervals, in order to find rigorous
bounds to the solution of numerical problems.

3 Interval Arithmetic

Interval Arithmetic [10] is an arithmetic defined on inter-
vals, rather than on real numbers. It was specifically in-
troduced for bounding the measurement errors of physical
quantities for which no statistical distribution was known.

In the sequel we shall follow the notation used in [14],
where intervals are denoted by boldface. Underscores
and overscores will represent respectively lower and upper
bounds of intervals. The midpoint of an interval x is de-
noted by m(x). IR and IRn stand respectively for the set of
real intervals and the set of interval vectors of dimension n.
If f(x) is a function defined over an interval x then fu(x)
denotes the range of f(x) over x. Finally, the topological
interior of a set S is denoted by int(S).
If x = [x, x] and y =

[
y, y

]
, a binary operation in the ideal

interval arithmetic between x and y is defined as:

x op y ! {x op y | x ∈ y ∧ y ∈ y} ,∀ op ∈ {+,−,×,÷} .

Thus, the ranges of the four elementary interval operations
are exactly the ranges of the corresponding real operations.

Definition 1 An interval extension, denoted by
f(x1,x2, . . . ,xn), of a real function f(x1, x2, . . . , xn) is
defined as any function of the n intervals x1,x2, . . . ,xn

that evaluates to the value of f when its arguments are the
degenerate intervals x1, x2, . . . , xn :

f(x1, x2, . . . , xn) = f(x1, x2, . . . , xn). (5)

The natural interval extension of a function is obtained by
replacing variables with intervals and executing all opera-
tions according to the rules above.
For instance, f1(x) = x2 − x, and f2(x) = x(x − 1) are
all interval extensions of f(x) = x2 − x = x(x − 1).
With these two definitions we can state the following theo-
rem, known as the fundamental theorem of Interval Arith-
metic [10]:

Theorem 1 Let f(x1, . . . ,xn) be the natural interval ex-
tension of a real function f(x1, . . . , xn). If xi ⊂ yi, (i =
1, . . . , n) then

f(x1,x2, . . . ,xn) ⊂ f(y1,y2, . . . ,yn). (6)

From this theorem it follows immediately that

f(x1, . . . ,xn) ⊃ fu(x1, . . . ,xn). (7)

In the previous example, by setting x = [0, 1] we
havef2(x) = [0, 1] ([0, 1] − 1) = [0, 1] [−1, 0] = [−1, 0] ,
which includes the exact range fu([0, 1]) = [−1/4, 0].

3.1 Interval linear systems

Interval linear systems are useful to calculate rigorous
bounds to the solutions of linear systems of equations. They
have the form Ax = b, where A ∈ IRn×n and b ∈ IRn.
The solution set is defined as

Σ(A, b) = {x : ∃A∈A and ∃b∈b s.t. Ax=b}. (8)
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In general Σ(A, b) is a star-shaped polygonal set, with up
to 2n spikes for a system of dimension n [13]. Thus, we
must content ourselves with computing the interval hull
"Σ(A, b) of the solution, i.e., the smallest hyperrectangle
containing the solution set. It has been shown [5] that the
calculation of the interval hull is an NP-complete problem.
However, practical methods give a reasonable inclusion of
the solution set with a cost of O(n3). Among these we have
considered the method implemented by the verifylss
function in the INTLAB toolbox for MATLAB [17, 3], and
the method introduced by S.P. Shary [18].

INTLAB method. The first stage of the algorithm im-
plemented by the verifylss function [3] is an iterative
method introduced by Rump [16], based on the well-known
Krawcyzk operator [8] (see also [13]).
Assuming that there is an interval vector xi such that
"Σ(A, b) ⊆ xi, then ∀Ã ∈ A, b̃ ∈ b:

Ã−1b̃ = Cb̃ + (I − CÃ)Ã−1b̃ ∈ Cb + (I − CA)xi, (9)

where C = m(A)−1 is a preconditioner. Hence,

"Σ(A, b) ⊆ xi ⇒
"Σ(A, b) ⊆ (Cb + (I − CA)xi) ∩ xi,

(10)

and this gives the Krawcyzk iteration:

xi+1 = (Cb + (I − CA)xi) ∩ xi. (11)

Rump’s method, instead, proceed by enclosing the error
with respect to an approximate solution x̃ = C m(b). Ap-
plying (10) to an enclosure di of "Σ(A, b−Ax̃), gives the
following iteration

di+1 = (C(b − Ax̃) + (I − CA)di) ∩ di. (12)

The solution to the original problem is x̃ + di.
If there is no success after seven iterations, the algorithm
described in [11] is applied.

Shary’s method Shary introduced the algebraic ap-
proach for enclosing the solution of a linear system of equa-
tions Ax = b. This methods finds an algebraic solution,
which is an interval vector x satisfying the system when-
ever all the operations are performed according to the rules
of the extended interval arithmetic [7] IRex, which is ob-
tained by adding improper intervals [x, x], x > x to the
set IR = {[x, x] | x, x ∈ R, x ≤ x} of proper intervals.
Shary’s method is based on the fixed point equation

x = Cx + b, (13)

which resolves into finding an algebraic solution to the in-
terval equation: Cx ⊖ x + b = 0 where C = I − A

and ‘⊖’ denotes the inner subtraction, defined by x ⊖ y !
[x − y, x − y]. Unfortunately, most of the existing compu-
tational approaches are not directly applicable to this prob-
lem, because IRex is not a linear space. Shary defines then
an immersion map that identifies an interval vector of IRex

with a real vector of R2n

σ(x1, . . . ,xn) ! (x1, . . . , xn, x1, . . . , xn)T. (14)

Thus, the original problem of finding the zeroes of the func-
tion ψ(x) = Cx ⊖ x + b, is transformed into the equation
Ψ(x) = 0 where Ψ = σ◦ψ◦σ−1 : R2n → R2n. The search
of the zeros of Ψ(x) = 0 is done using a variation of New-
ton’s method, known as sub-differential Newton’s method.
All the details are in [18]. The convergence of the method
and its properties are further studied in [12].

Solving overdetermined systems. The trick used to
transform an overdetermined interval system into a square
one is due to Rump [16]. It is well known that the least
squares solution of the overdetermined non-interval linear
system Ax = b is the solution of the square linear system
ATAx = ATb, when A has full rank. In the case of in-
terval matrices, however, ATA is in general ill-conditioned,
and Rump prescribes to use the following equivalent linear
systems instead:

(
A I
0 AT

)(
x
y

)
=

(
b
0

)
. (15)

4 Results

In this section we report experimental results obtained by
applying interval analysis techniques to the calibration and
triangulation problems. The performances of Shary’s and
INTLAB’s methods have been compared on both synthetic
and real data.

Err. 0.1 Err. 0.5 Err. 1.0 Err. 1.5
INTLAB 6.89 47.2 104 164
SHARY 1.16 4.69 9.83 14.6

Table 1. Synthetic calibration experiment: av-
erage box width of the back-projected 3-D
points vs. enclosure width of image points.

Calibration. Synthetic data consisted of the coordinates
of 128 reference points of calibration jig (depicted in
Fig. 1). On each of the two orthogonal faces there are 64
points organised in a regular grid with a spacing of 2 cm.
Views were generated by placing cameras at random posi-
tions, at a mean distance from the centre of 1 m with a stan-
dard deviation of 0.25 m. The orientations of the cameras
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were chosen randomly with the constraint that the optical
axis should point towards the origin. The intrinsic parame-
ters were given the values αu = αv = 1600, u0 = 320,
v0 = 240 e γ = 0. Image points were (roughly) con-
tained in a 640 × 480 pixels image. It was assumed that
the position of the points in the image were affected by er-
rors bounded in intervals of width 0.1, 0.5, 1 and 1.5 pixel.

Figure 1. Images of the calibration jig used in
the real calibration experiment.

In each trial, camera matrices P were computed by solving
the linear system (3) with the two methods introduced in
Sec. 3.1. The projections of 3-D reference points onto the
image plane with these camera matrices are not points but
rectangles since P is an interval matrix. Fig. 1 reports
the square root of the average area of the rectangles over
the image and over 100 independent trials versus the width
of the intervals representing the position of the points in the
image plane. The value on the y-axis is a sort of average box
width of the intervals obtained by back-projecting the 3-D
points, and can be taken as a measure of the error affecting
the camera matrix P .
Experiments were also performed on the real calibration jig
shown in Fig. 1. Six 640 × 480 images have been taken
from a distance of approximately 1 m with a digital camera.
Image points have been bounded by square intervals 1 pixel
wide, and interval calibration was performed on each image
with both methods. Figure 2 compares a detail of the back-
projected 3-D points for Shary’s and INTLAB’s methods.
The average (over the image and over 6 trials) box width of
the back-projected 3-D points was 5.9 pixel for Shary and
27.6 pixel for INTLAB.

Triangulation. Interval triangulation was tested in the
same conditions used in calibration. In each trial, two ran-
dom views were selected and both were calibrated assum-
ing a 1 pixel wide enclosure for the position of the points in
the image. The resulting interval camera matrices and the
corresponding image points were used to perform interval
triangulation, solving Eq. (4) with both methods. As in the

Figure 2. Detail of the back-projected 3-D
points for INTLAB’s (left) and Shary’s (right)
methods. The red dots are the projection of 3-
D points with the non-interval camera matrix.

previous case, the position of the points in the image was
enclosed by intervals of width 0.5, 1.0, 1.5, and 2.0 pixel.
The output was a set of cuboids that contain the true 3-D
points and bounds the error.

Err. 0.5 Err. 1.0 Err. 1.5 Err. 2
INTLAB 1.56 2.32 2.71 3.00
SHARY 1.37 1.48 1.60 2.10

Table 2. Synthetic triangulation experiment:
average side length of the reconstructed
cuboids vs. enclosure width of image points.

Table 2 reports the cubic root of the average (over the im-
age and over 100 independent trials) volume of the recon-
structed cuboids versus the width of the intervals represent-
ing the position of the points in the image.

Interval reconstruction was tested on the same real images
used for calibration (Fig. 1). Starting from the interval cam-
era matrices previously obtained, triangulation was applied
to each pair of images, assuming an error of 1 pixel in the
localization of points. Figure 3 shows an instance of interval
reconstructions. The true points (whose position is known)
are contained in the cuboids. The average side length of the
cuboids enclosing the true solution was 0.3 cm for Shary’s
and 1 cm for INTLAB’s technique. The former is a reason-
able bound, given that the grid points have a 2 cm spacing.

Although in this case INTLAB’s accuracy is comparable
to Shary’s, the latter method produced significantly sharper
inclusions in all the other synthetic and real experiments,
confirming the outcome of the calibration experiments.
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Figure 3. Example of a reconstruction of the
calibration grid obtained with INTLAB’s (left)
and Shary’s technique (right). The true posi-
tion of the 3-D points is also shown.

5 Conclusion

In this paper we showed how to obtain realistic bounds on
the reconstruction error using numerical techniques based
on Interval Arithmetic. This branch of numerical analysis
has been criticized, in the past, for providing too pessimistic
bounds. Indeed, the straightforward application of interval
arithmetic rules leads to an excessive growth of intervals’
widths. However, as we show in this paper, a careful choice
of suitable numerical techniques allows to obtain meaning-
ful and realistic bounds on the output error even in presence
of a significant error on the input data.
The advantages of Interval Arithmetic over traditional tech-
niques are that i) no assumptions are made about the under-
lying error distribution, ii) the results and the error bounds
are obtained simultaneously as the output of the same pro-
cess and iii) error delimitation are guaranteed with mathe-
matical certainty.
We concentrated on linear calibration and triangulation
techniques and selected two state-of-the art methods for the
solution of linear system of equations, namely INTLAB’s
and Shary’s methods. Empirical comparison shown that the
latter provides sharper error bounds in this application.
Results encourage us to pursue further the application of
Interval Arithmetic to Computer Vision problems.
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acknowledged.
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