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ABSTRACT
In this paper a method for the extraction of shading and reflectance
intrinsic images from a single uncalibrated image is presented. It is
based on the classification of the image derivatives as either caused
by shading or reflectance effects, using an illumination-invariant im-
age to guide this classification. Our approach avoids the learning
process – which requires ground truth intrinsic images – and obtain
results comparable with the state of the art.

Index Terms— Reflectance Recovery, Intrinsic Images

1. INTRODUCTION

The image of a scene depends on many physical characteristics of
the surfaces, such as illumination, orientation, depth, reflectance, ve-
locity. All these information are confounded by the imaging process
into an array of integer values, the sensed image, which reveals the
physical parameters only indirectly. AnIntrinsic image[1] is an im-
age that represents one of these physical properties, which areintrin-
sic to the surfaces in the scene. These intrinsic images are extremely
useful, for they can be related to the scene far more easily than the
sensed image.

The ability to decompose an image into its intrinsic components
is a major step toward scene understanding, because algorithms of-
ten rely exclusively on one of the intrinsic characteristics of the
scene. For example, shape-from-shading techniques require image
data with no changes in colour (or albedo). In the context of 3D
modelling, the reflectance image is used as a texture maps: being
devoid of illumination effects the model can be re-illuminated with-
out artifacts.

In this paper a new method for decomposing a single image into
two intrinsic images – ashading image (the illumination at each
point) and areflectanceimage (the colour at each point) – is pro-
posed.

In literature we can find relatively little work on this problem.
Somediscriminativeapproaches attempt to distinguish the effects of
shading and reflectance. Among these, the Retinex algorithm [2]
was one of the first approaches developed. It originally described
lightness perception for Mondrian images and it worked on lines in
the image. Afterwards, Horn proposed a method that extends this
on 2D images [3]. Retinex rely on the assumption that the changes
in the reflectance of a surface lead to large derivatives, while illumi-
nation, which varies slowly, causes small derivatives. Thus, the re-
covery of reflectance and shading images is obtained by derivatives
classification. However, the assumption may not hold in real im-
ages. Freeman and Viola [4] add a smoothness prior on the inferred
shape in an image to classify such image as either entirely created
by shading or all due to reflectance changes. Alternatively, Bell and
Freeman [5] trained a classifier to use a set of linear features, instead
of derivatives only, based on a steerable pyramid.

A second heuristic adopted to extract intrinsic images is that the
shading and reflectance images can be found by filtering the log of

the input image [6]. This approach assumes that the shading com-
ponent is concentrated in the low spatial frequency bands of the log
input, while the reflectance image can be found from the high spa-
tial frequencies. However, this assumption, like the one underlying
Retinex, also tends not to be true in real images, especially if cast
shadows or highlights are present.

Differently from discriminative approaches,generativemethods
create possible surfaces and reflectance patterns that explain the im-
age, then use a model to choose the most likely surface. An ap-
proach developed by Sinha and Adelson in [7] works in a domain
of painted polyhedral/origami objects, with presegmented junctions
and regions. In [8] the authors generate a synthetic world of scenes
and their corresponding rendered images, modeling their relation-
ships with a Markov network.

In a different direction, Weiss [9] proposed to use multiple im-
ages where the reflectance is constant, but the illumination changes.
Using many images ensures that the problem is well-posed, but im-
plies that the application of the method is quite restrictive.

A recent work by Tappens et al. [10] takes a discriminative ap-
proach by classifying the derivatives of the image using both classi-
fiers based on the image colour information and classifiers trained to
recognize local image patterns to distinguish derivatives caused by
reflectance changes from derivatives caused by shading. The method
is based on learning estimators that predict filtered versions of the
desired image. However, in this problem finding a training set of
real data is not trivial. In [11] a set of ground truth intrinsic images is
created using colour to measure shading separately from reflectance:
test images are pieces of paper coloured with a marker, not visible
in the green channel. Even though the resulting images are ground
truth decompositions this test set remain quite artificial and it is not
clear how it can generalize the behaviour of real cases.

In this paper we build on [12], where an invariant gray-scale
image, independent from illumination condition, is derived from one
uncalibrated image, without any learning operations. The invariant
image is then used to produce ashadow-freeimage.

In this paper, instead, we uses the same invariant image to pro-
duce the reflectance intrinsic image, i.e., ashading-freeimage (and
the illumination image as well). The results are comparable to those
reported in [10], but with no need of a training set.

2. PROBLEM FORMULATION AND OVERVIEW

Assuming a linear response of the camera, the input imageI(x, y)
is modelled as the product of the shading imageS(x, y) and the
reflectance imageR(x, y):

I(x, y) = S(x, y) ·R(x, y). (1)

The goal is to recoverS(x, y) andR(x, y) from I(x, y).
This formulation implies the implicit assumption that the sur-

faces are Lambertian. Although this might be considered a restrictive



Fig. 1. The overall technique for the extraction of intrinsic images.

hypothesis, it offers a tractable starting point from which techniques
for image decomposition can be developed.

Another assumption, that will be justified later on, is that there
are no sharp illumination changes in the image (i.e., cast shadows).
This is coherent with the fact that this paper is complementary with
respect to [13], which deals with shadows removal.

As in most of the other approaches in literature, instead of es-
timatingS(x, y) andR(x, y) directly, we attempt to estimate their
derivatives: we determine which variations in the original image are
due to shading effects and which are due to reflectance changes. We
assume that it is unlikely that significant shading boundaries and re-
flectance edges occur at the same point. This permits to treat every
image derivative as either caused by shading or reflectance, thus re-
ducing the problem to binary classification of the image’sx andy
derivatives.

This classification is realized with the help of theinvariant im-
age[12]. This image is obtained by projecting the log-chromaticity
image in a direction independent from lighting effects. Although it
is independent from illumination, it can not be taken as the target
reflectance image, for it is only gray-scale and lacks some fine re-
flectance details as well. However, by construction its derivative are
due to changes in reflectance only, so it provides useful information
to guide the classification of derivatives of the original image.

The idea is to compare the derivatives and to classify a small
difference between the two as a shading effect and a great difference
as a reflectance effect. In fact, areas of smooth illumination change
in the original image tends to become nearly flat areas in the invari-
ant one (small difference). On the contrary, sharp variations in the
original image, due to reflectance, yield great variations between the
two derivatives. This is the basis for classification in our approach,
and it permits us to avoid a learning process. The overall technique
is schematized in Fig. 1 and it will be detailed in the following Sec-

tions.

3. EXTRACTION OF THE INVARIANT IMAGE

Consider a fairly narrow-band camera, with a RBG sensor, which
is imaging a set of coloured Lambertian surface patches under the
daylight. In the log-chromaticity space, given by logarithm of the
channel ratios{R/G, B/G}, every pixel in each patch is approxima-
tively collapsed into the same dot. As the illuminant changes, the
log-chromaticity points move along an approximately straight line
which is independent of the magnitude and the direction of the light-
ning. Projecting colours perpendicular to this invariant direction due
to lighting change produces a 1D gray-scale image that is invari-
ant to illumination. In [12], an algorithm for the extraction of such
image, invariant to illuminant colour and intensity, from an uncali-
brated image is proposed. For the sake of space we refer to [12] for
description and details of this algorithm. An example of invariant
image extraction is depicted in Fig. 2.

(a) (b)

Fig. 2. Extraction of invariant image example: (a) original image;
(b) gray-scale invariant image.

If the original image does not match with the assumptions the
resulting invariant image turns out corrupted by noise. Then, before
proceeding any further, we try to restore such image by applying
a regularization process based on a Markov Random Field (MRF)
[14]. Our a-priori model for the invariant image is piecewise con-
stant. The minimization is performed by a simulated annealing al-
gorithm using Metropolis sampler [15, 14].

4. CLASSIFICATION

Let ρk(x, y) denote the logarithm of the grey-scale image corre-
sponding to a single channel of the sensed colour image. We first
calculate the gradients:

∇xρk(x, y) =
∂

∂x
ρk(x, y)

∇yρk(x, y) =
∂

∂y
ρk(x, y) (2)

Then, in order to take into account the variations derived from the
three channel contemporarily, we consider their mean∇̄x and∇̄y.

Similarly, we calculate the derivatives of the regularized invari-
ant imageI(x, y):

∇xI(x, y) =
∂

∂x
I(x, y)

∇yI(x, y) =
∂

∂y
I(x, y) (3)

The objective now is finding a binary classification of∇̄x and
∇̄y, by comparing them with∇xI and∇yI. The idea is that smooth



variations in illumination are flat regions in the invariant image. So,
if the difference between the two derivatives is small, the variation
must be classified as due to shading, and as due to reflectance other-
wise. This is realized with the following threshold operation:

qi(x, y)=

8
<
:

1 if ‖∇̄i(x, y) ‖ > ‖∇Ii(x, y)‖
and‖∇̄i(x, y)|| − ||∇Ii(x, y)‖ ≤ τ

0 otherwise
(4)

The functionqi is equal to 1 when∇̄i(x, y) is due to shading, 0 in
the other case.qi is a classification of the derivatives of the original
image, and from that we can obtainFsh,x andFsh,y, the derivatives
of the shading image, as well asFref,x andFref,y, the derivatives
of the reflectance image.

5. INTEGRATION

Once the derivatives of the shading and reflectance images are esti-
mated, they can be used to recover the actual images. Each derivative
represents a set of linear constraints on the image, and using both
derivative images results in a overconstrained system. We recover
each intrinsic image from its derivatives with the same method used
by Weiss in [9] to find the pseudoinverse of the unconstrained sys-
tem of derivatives. Iffx andfy are the filters used to compute thex
andy derivatives andFsh,x andFsh,y are the estimated derivatives
of shading image, then the solution forS(x, y) is:

S(x, y) = g∗[(fx(−x,−y)∗Fsh,x)+(fy(−x,−y)∗Fsh,y)], (5)

where∗ is convolution,f(−x,−y) is a reversed copy off(x, y),
andg is the solution of

g ∗ [(fx(−x,−y)∗fx(x, y))+(fy(−x,−y)∗fx(x, y))] = δ. (6)

In this work,fx andfy are[−1, 1] filters. The reflectance image is
found in the same fashion.

6. EXPERIMENTAL RESULTS

We applied the approach to real data. We firstly calculated the invari-
ant image, and restored it using MRF; we classified derivatives of the
original images by comparison with the derivatives of such invariant
image; finally, we obtained the actual shading and reflectance image
by integration.

The first example, theReindeersimage, show the effectiveness
of the approach (Fig. 3). As you can notice, the shape and shading
effects, on the ears for example, are correctly in the shading image,
while the reflectance image contains only colour information.

The Baseballimage is taken from Tappens et al. [10]. Fig. 4
shows the result obtained with our method in comparison with the
one obtained by Tappens et al. The reflectance images are good ap-
proximations of a purely flat coloured image, while in both cases the
shading images have some defects: in our case, some parts are too
smooth, while in Tappens et al. some reflectance effects are present.

TheLegoimage is taken from [10] too, and in Fig. 4 the results
can be compared. Using our method, the reflectance image is clear
and sharp, while the one obtained by Tappens et al. is quite blurred,
meaning that some edge points due to reflectance are missed. On the
contrary, our shading image is less refined, with lack of some details.

Results from an outdoor image,Child, are also depicted in Fig-
ure 4. As you can notice, the invariant image correctly does not

(a) (b)

(c) (d)

Fig. 3. Example of extraction of intrinsic images: (a) original im-
age; (b) invariant image restored by MRF; (c) reflectance image; (d)
shading image.

contain illumination effects, and this leads to an almost correct sep-
aration into reflectance and shading images. Fig. 4 contains also the
results obtained in [10]. In this case, the shading image appear quite
artificial, with over-emphasized details; the one obtained with our
method, instead, correctly recover shape and shading information.

7. COMMENTS AND FUTURE WORK

Imaging is a many to one mapping which – ideally – confounds in-
trinsic images into the sensed image. It is no surprise, then, if the
problem of extracting intrinsic images is a tough one, and it has not
been solved satisfactorily, yet. We presented here a technique for re-
covering shading and reflectance intrinsic images. The results here
presented are comparable with the state of the art, but they are ob-
tained without any learning processes to classify derivatives. This
work is motivated by the fact that training set of reflectance and
shading real data is very difficult to obtain: the invariant image we
use proves to be a good instrument to guide classification. However,
such invariant image can be obtained only under quite restrictive as-
sumptions.

Moreover, the assumption that a variation in an image is due to
reflectanceor to shading is not always correct. In fact, the outline of
an object, for example, is usually both a change of reflectanceand
of shading. One could circumvent this problem if the geometry of
the scene is known. In the context of 3D reconstruction, where the
intrinsic reflectance image is used as a texture maps, this is true. The
3D model can be projected into the image and used as additional
information to extract intrinsic images.

The plan for future work is to add geometric information and to
further investigate other strategies to obtain images that are invariant
to illumination, working in less restrictive conditions and possibly
with no loss of reflectance information.
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Fig. 4. Examples of extraction of intrinsic images: (a) original image; (b) invariant image restored by MRF; (c) reflectance image; (d) shading
image; (e) reflectance image from [10]; (f) shading image from [10].
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