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ABSTRACT

In this paper we present a method for novel view synthesis from
two uncalibrated reference views. Snapshots of a scene are created
as if they were taken from a different “virtual” viewpoint. The rel-
ative affine structure is used to describe the geometry of the scene
and then to extrapolate and interpolate novel views. The contribu-
tion of this paper is an automatic method for specifying the virtual
viewpoint in an uncalibrated setting, based on the interpolation and
extrapolation of the epipolar geometry linking the reference views.
Experimental results using synthetic and real images are shown.

1. INTRODUCTION

Nowadays, we witness an increasing interest in the convergence of
Computer Vision and Computer Graphics [1], and, in this stream,
one of the most promising and fruitful area is Image-Based Ren-
dering (IBR) [2]. While the traditional geometry-based render-
ing starts from a 3-D model, in IBR views are generated by re-
sampling one or more example images, using appropriate warping
functions [3].

In the case of calibrated cameras, algorithms based on image
interpolation yield satisfactory results [4, 5]. Where no knowledge
on the imaging device can be assumed, uncalibrated point transfer
techniques utilize image-to-image constraints such as the Funda-
mental matrix [6], trilinear tensors [7], plane+parallax [8], to re-
project pixels from a small number of reference images to a given
view. Another way of linking corresponding points is the relative
affine structure [9], a close relative of the plane+parallax. This is
the framework in which our technique is embedded.

Although uncalibrated point transfer algorithms are well un-
derstood, what prevent them to be applied in real-world applica-
tions, is the lack of a “natural” way of specifying the position of
the virtual camera in the familiar Euclidean frame, because it is
not accessible. Everything is represented in a projective frame that
is linked to the Euclidean one by an unknown projective transfor-
mation. All the view-synthesis algorithms – with the exception of
[10], who assumes that the location of the virtual camera is visible
in the reference images – requires either to manually input the po-
sition of points in the synthetic view, or to specify some projective
elements.

In this work, we will consider the case of interpolation and
extrapolation from two uncalibrated reference views. We propose
a solution to the specification of the new viewpoints, based on
the exploitation of the epipolar geometry that links the reference
views, represented by the homography of the plane at infinity and
the epipole. Thanks to the group structure of these uncalibrated

rigid transformations, interpolation and extrapolation is possible
using matrix exponential and logarithm.

Our technique allows to synthesize physically-valid views, and
in this sense it can be seen as a generalization to the uncalibrated
case of [5]. The framework for interpolation of Euclidean trans-
formations was set forth in [11], whereas the idea of manipulating
rigid displacements at the uncalibrated level is outlined in [12],
where it is applied to rotations only.

This work is particularly significant in the context of stereo-
scopic visualization, like in 3-D television, where two separate
video streams are produced, one for each eye. In order to avoid
viewer’s discomfort, the amount of parallax encoded in the stereo
pair must be adapted to the viewing condition, or, equivalently, the
virtual viewpoint needs to be moved. The idea is that the viewer
might use a “3D-ness” knob [13] to continuously adjust the stereo-
scopic separation. Uncalibrated view-synthesis offers a solution
that does not require the reconstruction of the full scene structure,
but only the estimation of disparities.

The rest of the paper is structured as follows. In Section 2,
we show the theory necessary to make the paper self-consistent.
Section 3 represents the core of the paper. This section describes
our approach for specifying virtual viewpoints in an uncalibrated
setting. Experimental results concerning synthetic and real scenes
are shown and commented in Section 4, and conclusions are drawn
in Section 5.

2. BACKGROUND

We start by giving some background notions needed to understand
our method. A complete discussion on the relative affine structure
theory can be found in [9].

Given a plane Π, with equation nTw = d, two conjugate
points m1 and m2 are related by

m2 v H12m1 + e21γ (1)

where H12 is the collineation induced by a plane Π and e21 is
the the epipole in the second view. The symbol v means equality
up to a scale factor. If the 3D point w 6∈ Π, there is a residual
displacement, called parallax. This quantity is proportional to the

relative affine structure γ ,
a

d κ1
of w [9], where a is the or-

thogonal distance of the 3-D point w to the plane Π and κ1 is the
distance of w from the focal plane of the first camera. Points m2,
H12m1 and e21 are collinear. The parallax field is a radial field
centered on the epipole.

Since the relative affine structure is independent on the second
camera, arbitrary “second views” can be synthesized, by giving a



plane homography and an epipole, which specify the position and
orientation of the virtual camera in a projective framework. The
view synthesis algorithm that we employ, inspired by [9], is the
following:

A. given a set of conjugate pairs (m`
1 ; m`

2) ` = 1, . . . ,m;

B. recover the epipole e21 and the homography H12 up to a
scale factor;

C. choose a point m0
1 and scale H12 to satisfy

m
0
2 v H12m

0
1 + e21

D. compute the relative affine structure γ` from (1):

γ
` =

(m`
2 × e21)

T (H12m
`
1 ×m`

2)

||m`
2 × e21||2

. (2)

E. specify a new epipole e31 and a new homography H13

(properly scaled);

F. transfer points in the synthetic view with

m
`
3 v H13m

`
1 + e31γ

` (3)

The problem that makes this technique difficult to use in prac-
tice (and for this reason it has been overlooked for view synthesis)
is point E, namely that one has to specify a new epipole e31 and
a new (scaled) homography H13. In Section 3 we will present an
automatic solution to this problem.

3. SPECIFYING THE VIRTUAL CAMERA POSITION

Our idea is based on the replication of the unknown rigid displace-
ment G12 that links the reference views,I1 and I2. The synthetic
view I3 will be constructed in such a way that the pose of the cor-
responding virtual camera with respect to the reference camera is
given by G12G12 = (G12)

2. This will be then extended to any
scalar multiple of G12.

3.1. The group of uncalibrated rigid displacements

Let us consider Eq. (1), which express the epipolar geometry with
reference to a plane, in the case of view pair 1-2:

κ2

κ1
m2 = H12m1 + e21γ (4)

and view pair 2-3:

κ3

κ2
m3 = H23m2 + e32γ. (5)

In order to obtain an equation relating view 1 and 3, let us substi-
tute the first into the second, obtaining:

κ3

κ1
m3 = H23H12m1 + (H23e21 + e32

κ2

κ1
)γ (6)

This equation can be compared to Eq. (1) only if
κ2

κ1
= const,

otherwise the expression of what should be the epipole would vary
from point to point (κ depends on the point). This condition is

satisfied when Π is the plane at infinity, in which case
κ2

κ1
=

1. Therefore, taking the plane at infinity as Π and comparing to
Eq. (1) we obtain:

H∞13 = H∞23H∞12 and e31 = H∞23e21 + e32 (7)

Hence, we can use H∞13 and e31 as defined above, in the transfer
equation, Eq. (3). In matrix form Eq. (7) writes:

D13 = D23D12 (8)

where

Dij ,

[

H∞ij eji
0 1

]

(9)

represents a rigid displacement at the uncalibrated level1. Con-
sequently, the transfer equation that allows to generate the virtual
view I3, can be re-written:

m
`
3 v D13

[

m`
3

γ`

]

(10)

We will now prove that the virtual camera so obtained is displaced
from itself by the composition of the displacement that relates the
third to the second with the displacement that relates the second to
the first. Let

Gij ,

[

Rij tij
0 1

]

(11)

be a matrix that represent a rigid displacement, where R is a rota-
tion matrix and t is a vector representing a translation. We know
that composition of rigid displacement correspond to multiplica-
tion of such matrices, hence G13 = G23G12. In other words,
rigid displacements form a group, known as the special Euclidean
group of rigid displacements in 3D, denoted by SE(3). One might
conjecture that the uncalibrated rigid displacements Dij form a
group as well. Indeed, they inherit the group structure from SE(3),
because Dij is similar to Gij :

Dij =

[

ARijA
−1 Atij

0 1

]

=

[

A 0

0 1

] [

Rij tij
0 1

] [

A−1
0

0 1

]

= ÃGijÃ
−1

and the product is consistent:

D13 = D23D12 = ÃG23Ã
−1

ÃG12Ã
−1

= ÃG23G12Ã
−1
= ÃG13Ã

−1
(12)

3.2. Extrapolation and interpolation

Let us focus on the problem of specifying the virtual camera’s
viewpoint. Please note that if intrinsic parameters are constant,
the scale factor of H∞12 is fixed, since det(H∞12) = 1 (see
[14]). So, point C in the general view synthesis procedure must be
replaced with

C. scale H∞12 such that det(H∞12) = 1.

As far as point E please note that formulas defined in (7) hold with
the equality sign, hence there are no free scale factors to fix.

In the case of synthesis from two views, we know only D12

and want specify D13 to be used in the transfer equation to syn-
thesize the 3rd view. The replication trick is to set D23 = D12,

1Technically, since we assume to know the plane at infinity, this corre-
spond to the affine calibration stratum [14].



i.e., D13 = (D12)
2 thereby obtaining a novel view from a virtual

camera placed at (G12)
2 with respect to the first camera.

The same trick cannot be applied to a generic homography in-
duced by a plane Π , essentially because the equation of the plane
is view-dependent. More specifically, if view pair 1-2 and view
pair 2-3 are related by the same rigid displacement, if HΠ12 trans-
fer points of Π from view 1 to view 2, the same homography will
not transfer correctly points from view 2 to view 3.

The generalization to any integer power n ∈ Z is straightfor-
ward. From the group structure of SE(3) we already know that Gn

for any positive integer n correspond to the composition of G n

times, and that G−1 is the inverse transformation of G, hence Gn

for n ∈ Z has already a geometric meaning.
But SE(3) is also a differentiable manifold, on which we can

make sense of the interpolation between two elements as drawing
the geodesic path between them. Let us consider, without loss of
generality, the problem of interpolating between the element G

and the identity I . The geodesic path leaving the identity can be
obtained as the projection of a straight path in the tangent space,
and the logarithm map precisely projects a neighborhood of I into
the tangent space to SE(3) at I . A straight path in the tangent
space emanating from 0 is mapped onto a geodesic in SE(3) em-
anating from I by the exponential map. Hence, the geodesic path
in SE(3) joining I and G is given by

G
t , exp(t log(G)), t ∈ [0, 1]. (13)

More in general, we can define a scalar multiple of rigid trans-
formations [11]:

t¯G , G
t = exp(t log(G)), t ∈ R. (14)

Mimicking the definition that we have done for rigid transfor-
mations, let us define

t¯D , D
t = exp(t log(D)), t ∈ R. (15)

If we use D1i(t) = t ¯ D12 in the synthesis, as t varies
we obtain a continuous path that interpolates between the two real
views for t < 1, and extrapolates the seed displacement for t > 1.
In this way we are able to move the uncalibrated virtual camera
continuously on a curve. The parameter t is the ‘3D-ness” knob
that we mentioned in the Introduction.

At a calibrated level, this is equivalent to move the camera
along the trajectory t¯G. Indeed,

D
t = (ÃGÃ

−1
)t = e

t log(ÃGÃ
−1
) = e

Ã(t logG)Ã
−1

= Ãe
(t logG)

Ã
−1
= ÃG

t
Ã
−1

(16)

Finally, in order for our method to make sense, we must make
sure that the real logarithm of D exists. A sufficient condition
for a real invertible matrix A to have a real logarithm is that A

has no eigenvalues on the closed negative real axis of the complex
plane [15]. G satisfy the condition because its eigenvalues are
{1, 1, e±iθ} and so does D because it is similar to G.

4. RESULTS

We performed tests with both synthetic and real images. The for-
mer were used to check the extrapolated view produced by the
algorithm against a ground-truth image. The latter to see what is
to be expected from our technique in a real, general situation.

Assuming that the background area in the images is bigger
than the foreground area, the homography of the background plane
is the one that explains the dominant motion. We are here implic-
itly assuming that the background is approximately planar, or that
its depth variation is much smaller than its average distance from
the camera. We also assume that the background is sufficiently far
away so that its homography approximates well the homography
of the plane at infinity [16].

After aligning the input images with respect to the background
plane, the residual parallax allows to segment off-plane points (fore-
ground). From this segmentation we are able to compute the epipoles
and to recover the relative affine structure for a sparse set of fore-
ground points. All these steps are better explained in [17].

The dense relative affine structure for all the points of the
foreground is obtained by interpolation. Then the foreground is
warped using the transfer equation and pixel “splatting” [18]. Pix-
els are transferred in order of increasing parallax, so that points
closer to the camera overwrites farther points.

The planar background is warped using the background ho-
mography with destination scan and bilinear interpolation. By
warping the background of the second view onto the first one, a
mosaic representing all the available information about the back-
ground plane is built. Since the foreground could occlude a back-
ground area in both the input images, holes could remain in the
mosaic. These holes are filled by interpolating from the pixel val-
ues on the boundary2.

Figure 1 shows results with images generated with OpenGL.
The first two are used as reference images, and the third as ground-
truth. As the reader can notice from the difference image, the error
is limited to few pixels, imputable to approximations introduced in
the computation of the relative affine structures.

In figure 2 some novel snapshots synthesized from a stereo
couple of images taken in “Piazza delle Erbe,” Verona, are shown.
Our technique makes possible to create an entire sequence as taken
by a smoothly moving virtual camera, by continuously changing
parameter t in Eq. (15). Sample movies are available on the Inter-
net3.

5. CONCLUSION

We presented a technique for the specification of novel viewpoints
in the generation of synthetic views. Our idea consists in the ex-
trapolation and interpolation of the epipolar geometry linking the
reference views, at the uncalibrated level. With two views we can
generate an arbitrary number of synthetic views as the virtual cam-
era moves along a curve. A third view would allow the camera to
move on a 2-manifold.
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