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ABSTRACT

In this paper we describe an application which takes a video shot as
input and produces a compact representation composed by a back-
ground layer and segmented moving objects. We deal with the
problems of global registration, super-resolution mosaicing, ob-
jects segmentation and tracking. Global registration is achieved
with a graph-based technique that exploits situations when the cam-
era returns to a previously seen area. Objects segmentation is based
on motion analysis using a robust statistical model of the back-
ground. Tracking is based on blob matching using Singular Value
Decomposition.

1. INTRODUCTION

Since the introduction of MPEG-4, extracting moving objects (MOs)
from video sequences has attracted a growing attention. By ex-
ploiting the object-based representation offered by MPEG-4, video
shots can be encoded as a stationary background mosaic – obtained
after compensating for camera motion – plus MOs represented in-
dividually. The challenge is to create a system that is able to do
this segmentation automatically and with great accuracy, both in
terms of resolution and sharpness of the background mosaic and in
the trimming of the MOs silhouettes.

In this paper we describe a complete application which pro-
duces an object-based representation of a video shot, and in par-
ticular, we address the problems of the global registration, super-
resolution mosaicing, and multiple MOs segmentation and track-
ing.

This paper builds on a previous work [1], where only one MO
was allowed, no global optimization was performed and super-
resolution was not considered. In this paper we improve radically
the MOs tracking algorithm as well as the quality of the back-
ground mosaic. A simple statistical model of the background is
also introduced.

Global registration refers to the alignment of video frames tak-
ing into account (ideally) all the overlapping frames, and not just
the consecutive ones. Many approaches have been proposed in the
last years. In [2] the global consistency of the inter-frame align-
ment matrices is enforced by solving a linear system of equations.
The system is linear only if an affine model is used. In [3] global
registration is achieved by minimizing differences between ray di-
rections going through corresponding points. As far as the global
registration is concerned, the most closely related work are [4, 5].
Both uses a graph representation and [5] cast the problem as a
shortest path.

The MOs tracking approach is inspired by [6], where a graph
is used to represent objects and both shape and color features are
used to match them.

2. BACKGROUND AND NOTATION

Two pictures of the same scene are related by a (non-singular) lin-
ear transformation of the projective plane in two cases: i) the scene
is planar or ii) the point of view does not change (pure rotation). In
these cases, which can be summarized by saying the there must be
noparallax, images can be composed together to form amosaic.

Points are expressed in homogeneous coordinates, that is, 2-
D points in the image plane are denoted asx̃ = (x, y, 1) with
x = (x, y) being the corresponding Cartesian coordinates.

A linear transformation of the projective plane, called aho-
mography, is represented by a3×3 matrixH:

x̃i = Hij x̃j (1)

wherex̃i andx̃j are corresponding points in framei andj respec-
tively.

3. MOSAICING

Inter-frame homography computation is based on the Kanade-Lucas-
Tomasi (KLT) tracker [7, 8], initialized with phase-correlation to
reduce search range. Features are tracked through the video se-
quence and correspondences are used to compute homographies
Hi+1,i between each consecutive pair of frames. As in [1], Least
Median of Squares is used in order to be robust against tracking
errors and features attached to moving objects. These homogra-
phies are then combined to produce a mosaic of the background
(assuming that the majority of the tracked features belong to the
background). Any frame can be chosen as the reference one onto
which register all the others. Thepairwise alignmentconsists in
computing, for each framei the homographyHk,i , Ht

i that maps
framei onto the reference framek, using recursively the homogra-
phies that links consecutive frame pairs:8<:Hk = I

Ht
i = Ht

i−1Hi−1,i if i > k
Ht

i = Ht
i+1Hi+1,i if i < k

When the video sequence is long enough, this straightforward
way to compose homographies yields an appreciable misalignment
for the frames more distant from the reference one. This is espe-
cially evident when the camera goes back onto a scene part previ-
ously seen. In this case, registration can take advantage from ho-
mographies linking non-consecutive frames and reduce the global
misalignment error.

3.1. Global registration

The first step is to establish which frame overlaps which. The pair-
wise alignment gives a good approximation of the registration ma-
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Fig. 1. Graph of the sequence. The red (bold) edges links con-
secutive frames in the sequence. Vertices position is given by the
centroid of the corresponding frame in the mosaic reference sys-
tem (y-axis is stretched). Blue (thin) edges are those added by our
algorithm.

trices{Ht
i }, which allow to estimate the degree of overlap between

each frame pair.
A graph is then constructed, whose vertices are the frames and

edges links frame pairs for which an homography can be computed
directly. Edges are weighted with the mean squares residual of the
homography computation. Initially, only consecutive frames in the
sequence are connected.

Not all overlapping frames will be linked in the graph, but only
those that i) have a significant overlap, sufficient to yield a correct
alignment and ii) reduce significantly the shortest path between
two vertices. The latter condition contributes to increase efficiency.
Finally, for each new edge(i, j) the corresponding homography
Hij is computed directly from feature correspondences and the
weight is assigned to the edge. As the two framesi and j are
not consecutive, features can undergo severe perspective distortion.
To overcome this problem and obtain a more accurate matching
(KLT tracker is based on a translational model) the two frames are
first transformed onto the reference frame (with{Ht

i } and{Ht
j}

respectively), thereby compensating the distortion.
In the final graph we can compute, for each framei, the trans-

formationHs
i that aligns it with the reference frame by chaining

homographies along the shortest (weighted) path fromi to k. Hs
i

is less affected by errors accumulation thanHt
i because it is the

product of (possibly) fewer low-residual factors.
The subsequent global optimization finds the{Hi} that simul-

taneously minimizes the misalignment of a pre-defined setG of
grid-points on the mosaic. Letxk be a grid-point and letLk be the
set of edges(i, j) such thatxk belongs to overlap region between
framei and framej. The error at the grid-pointxk is defined as:

E(xk) =
1

|Lk|
X

(i,j)∈Lk

||xk −Π (HiHijH
−1
j x̃k)||2 (2)

whereΠ transforms homogeneous coordinates into Cartesian (pixel)
coordinates. Since we want to simultaneously minimize the error
at all the grid points, we end up with a system on non-linear equa-
tions that can be cast as a least-squares problem:

min
{Hi}

=
X

xk∈G

E2(xk) (3)

The Levemberg-Marquardt algorithm1 is used to solve Eq. 3, using
{Hs

i } as the starting solution. Usually this is already a good solu-
tion and few iterations are needed to get to the global minimum.

1Available through thelsqnonlin MATLAB function
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Fig. 2. Alignment residuals on mosaic grid-points before (left) and
after (right) global optimization.

3.2. Blending and background modeling

Starting from a single mosaic pixel P, if we imagine to pierce all the
aligned frames with a temporal line, we will intersect pixels that
correspond to the background and pixels belonging to MOs. We
model the color histogram of these pixels as a Gaussian distribution
corrupted by outliers corresponding to the MOs. Therefore, the
median of the distribution – being a robust estimate of the mean –
is taken as the background color and assigned to P:

c̄ = med
i
{ci}. (4)

Moreover, we attach to each mosaic pixel P an estimate of the
background color variability at that point. A robust estimator of
the spread of the distribution is given by the median absolute dif-
ference (MAD):

MAD = med
i
{|ci − c̄|}. (5)

It can be seen [9] that, for symmetric distributions, the MAD coin-
cides with theinterquartile range:

MAD =
ξ3/4 − ξ1/4

2
, (6)

whereξq is theqth quantile of the distribution (for example, the
median isξ1/2). Hence, a pixel with color c, is deemed to belong
to the background with 99.9% confidence if

|c− c̄| < 5.2MAD (7)

This is the X-84 outlier rejection rule [9].

3.3. Super-resolution

Our approach is inspired by [10], where sub-pixel motion infor-
mation of a global motion model is used to create mosaics with a
resolution that is higher than the resolution of each single video
frame that composes the mosaic. In [10]Source-scanis performed
and only if a pixel is mapped close enough to an integer position
(±0.2) in the mosaic, its color is assigned. This procedure can
leave holes in the mosaic, which are then filled by interpolation.

Our super-resolution mosaic is built usingdestination-scanwarp-
ing: for each pixel in the mosaic (which has a resolution greater
than the single frames), find the corresponding position in each
frame by backward mapping (with properly scaled transformations)
and pick the color of the nearest pixel, over all the frames.

This “nearest pixel” strategy works well only if the registration
isveryaccurate. In practice a weighted strategy gives usually better
results: backward-map the mosaic pixel in each frame, find the
closest pixel and weigh its color with the inverse of the distance.
Assign to the mosaic pixel the weighted average of the colors.
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Fig. 3. Tracks represented in the features space. Red circles are
the good tracks.

4. SEGMENTING MOVING OBJECTS

MOs are obtained from the original video shot by differencing with
the background. For each frame, the mosaic of the background is
back-warped onto the frame and each pixel is labeled as belonging
to MO or not according to the rule given by Eq. 7.

Then, the resulting binary image is cleaned with morpholog-
ical filtering and connected components (blobs) are identified as
candidate MOs. In order to discriminate between true MOs and
noise, the next step is to exploit temporal coherence.

4.1. Tracking Moving Objects

A layered graph is built, where each layer correspond to a frame
and each vertex is a blob. An edge links two blobs from consecu-
tive layers if they represent the same MO (or part of it) at different
time. A trajectory of an object is a multi-path in the graph, i.e., a
path that can split and merge. Initially there are no edges, and the
goal of the tracking is to find multi-paths in the graph.2

A similarity measure between blobs is defined taking into ac-
count the appearance (shape and color) of the blob and its posi-
tion. In particular, each blob is described by a feature vector com-
posed by: centroid, area, solidity, eccentricity, orientation3, aver-
age color, contrast (standard deviation of the color). Following [6],
the similarity of blobsIi andJj is computed as

sim(Ii, Jj) =
asim(Ii, Jj)

1 + d(Ii, Jj)
2 (8)

whered(Ii, Jj) is the distance of the centroids in the mosaic refer-
ence frame andasim(Ii, Jj) is theappearance similaritybetween
the two blobs. The latter is computed as a weighted sum of the
similarity value for each component of the feature vector (without
centroid). If s is a scalar component of the feature vector (e.g.
solidity), asim(Ii, Jj)s = e−ks(si−sj)2 .

Path in the graph are constructed by matching blobs from one
layer to the next. We used the matching technique introduced by
Longuet-Higgins [11], who proposed an algorithm (based on the
singular value decomposition (SVD)) for associating the features
of two images.

Let {Ii}1...n and{Jj}1...m the two sets of blobs which we
want to put in one-to-one correspondence. The first stage is to
build a proximity matrixG of the two sets of features:Gij =
sim(Ii, Jj). The next stage is to perform the SVD ofG

G = USV T (9)

2Strictly speaking, this is adata associationtask.
3Seeregionprops in the MATLAB Image Processing Toolbox

whereU andV are orthogonal andS is a non-negativem × n
diagonal matrix. Finally,S is converted into a newm × n matrix
D by replacing every diagonal elementSii with 1, thus obtaining
another matrixP = UDV T of the same shape as the original
proximity matrix and whose rows are mutually orthogonal. The
elementPij indicates the extent of pairing between the blobsIi

andJj . If Pij is both the largest element in its row and the largest
element in its column, then we regardIi andJj as corresponding
with each other.

By iterating matching over each layer of the graphs, chains of
nodes (tracks) are obtained. Tracks are classified by unsupervised
clustering in the feature space composed by: average blob size,
trajectory temporal length and trajectory variability, defined as

var =

 P
i (x∗(i)− x(i))2P

i x(i)2

!1/2

+

 P
i (y∗(i)− y(i))2P

i y(i)2

!1/2

where(x(i), y(i)) is the trajectory of the centroid of the blob and
(x∗(i), y∗(i)) is the mobile-averaged trajectory (window size is 3).

This feature space proved to be adequate to discriminate good
tracks in many real sequences (see Fig. 3 for example). We exper-
imented several standard unsupervised clustering algorithm, and
theComplete Link[12] algorithm was selected. This is a hierarchi-
cal clustering algorithms where the distance between two clusters
is defined as the maximum of all pairwise distances between pat-
terns in the two clusters. The resulting dendrogram is cut in order
to get two classes. Bad tracks are marked but not discarded, yet.

Up to this point, only chains have been obtained. If paths are
to be allowed to split and merge (imagine an object partially oc-
cluded), a further processing is necessary.

Fig. 4. Two simple paths merges into a multi-path, corresponding
to a partially occluded object, like a person walking behind a pole.
The thin (green) edges are those added in the second phase.

At both ends of each path a local search is carried out to find
blobs that could prolong the path. The search area depends on the
blob area and it is centered in the predicted position of the centroid,
basing on the last 3 frames. All the blobs are candidate, also those
already belonging to a path. The search is repeated recursively,
until either it fails or it finds a blob belonging to a path. At this
point we consider the response of classification step and remove
all the noisy tracks that did not merged with any good one. In this
way, beside recovering blobs that were not in a good track, we can
merge paths representing fragments of the same MO.

This technique is quite general, and can take into account oc-
clusions between MOs, occlusions between a MO and a back-
ground object, MOs entering and leaving the scene at any point.

5. RESULTS

We report here some results on a video shot taken with a digital
hand-held camera (Fig. 6). The two persons enter the scene from
the opposite side and cross each other. The camera does a pan-
ning motion, following first the man from left to right and then the
woman from right to left.



In Fig. 5 the background mosaics are shown. The improvement
of the global registration is particularly evident in the framed area
at the bottom left of the mosaic.

Fig. 5. Mosaics of the background, obtained with pairwise align-
ment (top), and global optimization (bottom).

The quality evaluation of mosaics is usually subjective, and its
based on the perceived blurring. We propose to use anobjective
blurring measure, taken from the vast literature on focusing [13].
In particular, we chose the power of the image Laplacian∇2 as it
is smooth and has a sharp maximum:

LP(I) =
X
x,y

(∇2I(x, y))2.

The LP is 719.347 for the mosaic after pairwise alignment,
770.057 after graph-based alignment and 773.758 after global op-
timization.

Fig. 6. Frames number 1, 45 and 79 (last) of the “Lorena” se-
quence. Dimensions are338× 280.

Figure 7 shows some MOs extracted form the sequence. If we
paste the MOs onto the mosaic and warp it back with{H−1

i } we
obtain again the original sequence (decoding), with an PSNR that
is always above 28dB.

More examples are available on the web at
http://profs.sci.univr.it/˜fusiello/demo/motseg .

Fig. 7. Sample MOs estracted from the video sequence
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