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ABSTRACT

This paper proposes some Markov Random Field (MRF)
models for restoration of stereo disparity maps. The main
aspect is the use of confidence maps provided by the Sym-
metric Multiple Windows (SMW) stereo algorithm to guide
the restoration process. The SMW algorithm is an adap-
tive, multiple-window scheme using left-right consistency
to compute disparity and its associated confidence in pres-
ence of occlusions. The MRF approach allows to combine
in a single functional all the available information: observed
data with its confidence, noise, and a-priori hypotheses. Op-
timal estimates of the disparity are obtained by minimiz-
ing an energy functional using simulated annealing. Re-
sults with a real stereo pair show the improvement obtained
by the restoration using a MRF approach integrating confi-
dence data.

1. INTRODUCTION

Three-dimensional (3D) reconstruction is a fundamental is-
sue in Computer Vision, and in this context, structure from
stereo algorithms plays a major role. The process of stereo
reconstruction aims at recovering the 3D scene structure
from a pair of images by matchingconjugate points, thereby
finding thedisparity [1]. Matching errors generate outliers
and marked degradations of the disparity map, which makes
a restoration process necessary. In this paper, the Symmet-
ric Multiple Windows (SMW) stereo algorithm [2] is used,
which performs a correlation between windows in the two
images, and provides a confidence or reliability value of the
disparity. Our contribution is the proposal of MRF models
for the restoration of the disparity map integrating confi-
dence data as well.

Many work about the image restoration or reconstruc-
tion by using MRFs has been done on both intensity (op-
tical) [3] and range images [4]. Moreover, different ap-
proaches were proposed aimed at integrating additional in-
formation in the MRF model, like, for instance, edges to
guide the line processing [5], or confidence data to guide

the restoration and the segmentation of underwater acoustic
images [6].

Regarding stereo algorithms, a large literature addresses
the correspondence problem (see [1] for a survey). In gen-
eral this algorithms select the best match according to a sim-
ilarity measure that can be also used as a reliability (con-
fidence) indicator of the goodness of the disparity. Apart
from dynamic stereo frameworks [7], confidence informa-
tion is utilized only to evaluatea-posteriori the quality of
the disparity image, but they are not used to improve the
disparity estimate.

This work proposes different models for the integration
of the confidence data in a MRF framework, testing the real
possibilities to use such information actively.

The rest of the paper is organized as follow. In Section 2,
the stereo process is described. In Section 3, the MRF basic
concepts are reported. Actual MRF models are detailed in
Section 4, results are shown in Section 5 and conclusions
are drawn in Section 6.

2. THE STEREO PROCESS

The disparity image is generated using theSymmetric Multi-
Window(SMW) stereo algorithm [2], whose main features
are summarized below.

Multiple windows. For each pixel the correlation is per-
formed with nine different windows and the disparity with
the smallest SSD(Sum of Squared Differences)error value
is retrived. The idea is that points within a window close
to a surface discontinuity come from two different planes,
therefore a single “average” disparity cannot be assigned to
the whole window without making a gross error. The multi-
ple windows approach can be regarded as a robust technique
able to fit a constant disparity model to a piecewise-constant
surface.

Left-right consistency. Occlusions create points that
do not belong to any conjugate pairs. Different conjugate
pairs are obtained, in general, by swapping the reference
images. This means that some points are involved in more
than one conjugate pairs. As each point in one image can



match at most one point in the other image, such pairs are
discarded and the points marked asoccluded.

Uncertainty map. Area-based algorithms are likely to
fail not only in occluded regions, but also in poorly-textured
regions, where signal-to-noise ratio (SNR) is low. It is there-
fore essential to assign to each disparity anuncertaintyvalue
inversely proportional to the SNR. The key observation is
that disparity estimation is more sensitive to the window’s
shape where the SNR is low. Consequently, we define the
uncertainty as the variance of the disparity measures ob-
tained with nine asymmetric windows; occluded points are
assigned infinite variance. Experimental results show [2]
that such uncertainty measure is consistent, i.e., it grows as
the SNR decreases.

3. MRF BASICS AND RESTORATION

A MRF is defined on a finite latticeI of elementsi called
sites. Let us define a family of random variablesF={Fi=
f i, i∈ I}, and let us suppose that each variable may assume
values taken from a discrete and finite set (e.g., grey level
set). Every sitei is associated to a random variableFi (being
f i its realization), and, owing to the Markov property, the
conditional probabilityP(f i |f I−{i}) depends only on the
value on the neighboring set ofi, Ni [8]. The Hammersley-
Clifford theorem establishes the Markov-Gibbs equivalence
between MRFs and Gibbs Random Fields [9], so the proba-
bility distribution takes the following form:

P (f) = Z−1 · e−β·U(f) (1)

whereZ is a normalization factor called partition function,
β is a parameter called temperature andU(f) is the energy
function, which can be written as a sum of local energy po-
tentials dependent only on the cliquesc∈C (local configu-
rations) relative to the neighboring system [8]:

U (f) =
∑

c∈C

Vc (f) (2)

Given the observationg, the problem is solved computing
the estimatef according to a Maximum A-Posteriori (MAP)
probability criterion. Since the posterior probability is still
of the Gibbs type, we have to minimizeU(f | g) = U(g |
f) + U(f),whereU(g | f) is theobservation modelandU(f)
is thea-priori model[8]. When the MRF model is applied
to image processing, the observation model describes the
noise that degrade the image, and the a-priori model de-
scribes the a-priori information like the smoothness of the
surfaces composing the scene objects.

To deal with the stereo problem the scene is modeled as
composed by a set of planes located at different distances to
the observer, so that each disparity value corresponds to a
plane in the scene. Therefore, the a-priori model is piece-
wise constant [9].

The observation model is harder to define because the
disparity map is not formed by a physical process. We as-
sume a simple noise model based on different local costs,
even if a more articulated noise model could be devised to
get more accurate reconstruction.

We use the confidence map on the basis of the principle
that reliable points are more likely to keep the observed val-
ues, while uncertain points are more likely to assume a value
forced by the a-priori hypothesis. The minimization of the
global energy function is performed by Simulated Anneal-
ing using the Metropolis sampler [10][9].

In order to define the MRF model, we introduce a ran-
dom fieldF to estimate the disparity map, a random field
G to model the observed disparity and a random fieldS to
model the confidence. It is worth noting that in the imageS,
dark gray levels are associated to reliable disparity estimates
and vice versa.

4. CONFIDENCE MRF MODEL

4.1. MRF with a binary confidance image (model A)

In order to obtain a more consistent information, the confi-
dence image is binarized applying a deterministic criterion
which assumes that a reliable point in an uncertain region
becomes uncertain too, and vice versa. A global threshold
is set up to build a simple binary image, and an hysteresis
thresholding method is subsequently applied.

Given the observed disparity imageg (the realization of
the fieldG) and the confidence images (the realization of
field S), we search for the estimated disparityf (the realiza-
tion of the fieldF) that maximizes the posteriori probability
P(f|g,s), minimizing the following energy functional:

U (f | g, s) =
∑

i∈I

[
V1 (si) · TO

i + TP
i

]
(3)

whereV1(si) ·TO is the observation model andTP is the a-
priori model, computed to estimate the energy cost of each
configuration. The observation model is defined as:

TO
i =





0 if fi = gi

k1 if fi 6= gi ∧ ∃gj : fi = gj , j ∈ Ni

k2 otherwise
(4)

wherek1 andk2 (k1< k2) are parameters that depend on the
noise that corrupt the disparity image. In this way, the ob-
servation constraint takes a local significance on the neigh-
boring set ofi. When noise is low, high values fork1 andk2

should be set in order to favour estimates close to local ob-
servations. The potentialV1(si) introduces the confidence
information and is defined as:

V1 (si) =
{

c1 if si = 0
c2 if si = 255 (5)



wherec1 and c2 (c1> c2) are constant parameter chosen
heuristically. In the a-priori term, we impose that all pixels
assume the same value in a region. The a-priori term is
defined as:

TP
i =

∑

j∈Ni

V2 (si) · V (fi, fj) · kp (6)

where

V (fi, fj) =
{

1 if fi 6= fj

0 if fi = fj
(7)

and kp is a parameter chosen heuristically. The potential
confidence dependentV2(si) is defined as:

V2 (si) =
{

c3 if si = 0
c4 if si = 255 (8)

wherec3 andc4 (c3<c4) are constant parameter chosen heuris-
tically.

4.2. MRF with coupled restoration of disparity and con-
fidence map (model B)

In this model the confidence map is actively included as a
coupled field associated to the disparity map. Therefore,
restoration of the confidence and disparity fields is simulta-
neously carried out in acooperativeway. We have to define
an observation model and a-priori model for the confidence
image to be included in the energy functional. The energy
function is defined as:

U (f, s | g, gs) =

∑
i∈I

[
V1 (si) · TO

i + TP
i

]
+

∑
i∈I

[
TSO

i (si, gsi) + TSP
i

]

(9)
wheresi andgsi are a generic estimate and observed con-
fidence image pixel, respectively. The first sum concerns
to the disparity restoration described by Eq. (3). The sec-
ond sum concerns the restoration of the confidence field as
a generic binary image [9] in witch the observation model
TSO

i is a sensor model for binary surface (actually, derived
by the binary symmetric channel theory) [9], and the a-
priori modelTSP

i is a piecewise constant model.

4.3. MRF with split confidence images (model C)

The SMWalgorithm establishes that when a point violates
the left-right consistency constraint (an occlusion), its un-
certainty is set to infinity. The other points in the confi-
dence image come from the variance of the disparity values
measured by the nine correlation windows. Confidence data
are split in two contributions, hence, they are distinguished
in the restoration model. Two kinds of random fields are

considered: the occlusionsso, and the confidencesc. The
energy functional is defined as:

U (f | g, so, sc) =
∑
i∈I

[
V1 (soi, sci) · TO

i

+
∑

j∈Ni

V2 (sci, scj) · V (fi, fj) · kp ] (10)

whereTO
i andV(f i, f j)·kp refer to Eqs. (4) and (6), respec-

tively. The potentialV1(soi,sci) is defined as:

V1 (soi, sci) =

{ [(
1− sci

255

) · (c1 − c2)
]
+ c2 if soi = 0

cOCL if soi = 255

(11)
wheresoi is thei-th occlusion point andsciis thei-th confi-
dence point,c1 andc2 (c1<c2) are the parameters defined in
section 4.1 andcOCL is a new coefficient defined to insert
a different contribution derived from the occlusions. The
value of the coefficientcOCL depends on the heuristic dis-
parity assignment criterion set in theSMWalgorithm for the
occlusion points (a reasonable relation iscOCL<c2<c1).
The potentialV2(sci,scj) is defined as

V2 (sci, scj) =
[ sci

255
·
(
1− scj

255

)
· (c4 − c3)

]
+ c3 (12)

wherec3, c4 (c4>c3) are the parameters defined in section
4.1.

It is worth pointing out the different contributions of the
two images in the restoration model: the occlusion mapso
gives a binary confidence information between reliable and
unreliable points, the confidence mapsc introduces a con-
tinuous reliability information defined by the [c2, c1] in-
terval in the observation model and the [c3, c4] interval in
the a-priori model. Moreover, in the observation model, the
constantcOCLintroduces a specific cost paid by the occlu-
sions points.

5. ANALYSIS OF RESULTS

The proposed restoration models are applied to the stereo
images1 in Fig.1 (a and b). From the SMW algorithm we
obtain the disparity and confidence images shown in Fig. 1
(c and d). Using our MRF models we get the results shown
in Fig. 1(e, f and g). In order to evaluate these results, we
compared them with the ground truth image using the mean
absolute error (MAE) and the percentage of wrong pixels
(Percentage Error, PE). As a zero-order restoration, we in-
cluded in the comparison the output of median and Gaussian
filters (Fig.2) showing the better MRF models performance.
Results are shown in Table 1.

1Stereo pair and ground truth are courtesy of Dr. Y. Otha, University of
Tsukuba, Japan.
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Fig. 1. Stereo images (a and b) , SMW confidence (c) and
disparity images (d).Restored disparity map with Model A
(e), with Model B (f), with Model C (g) and ground truth
(h).

6. CONCLUSIONS

This paper constitutes a preliminar work aimed at proposing
and testing the capabilities to directly take into account for
confidence information (estimates’ uncertainty) in several
MRF model. The results proves the utility of using confi-
dence data to improve disparity estimates, showing the ca-
pacity to remove spurious points, while preserving object
contours. Future work will be devoted to directly model the
SMW stereo process in an MRF framework.
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