I mage Stabilization by Features Tracking

Alberto Censi, Andrea Fusiello, Vito Roberto

Machine Vision Laboratory, Dept. of Mathematics and Infatios
University of Udine, Italy
{censi,fusiello,robertp@dimi.uniud.it

Abstract a straightforward merging of its frames. Some authors
[5, 11, 13, 19] use feature matching to build mosaics. A
This paper describes a technique for image stabiliza- similar technique is described in this paper, but in the fram

tion in video sequences. The warping that compensatesvork of image stabilization. Others [1, 10, 14] use a top-
for camera’s motion is computed from tracked features in down approach at different resolutions to estimate the im-
the images. In order to cope with moving objects, a robust age alignment by direct pixel's brightness comparison.
technique is used to compute homographies. Moreover, the The rest of the paper is organized as follows. In Section
tracking is made more reliable by using the computed warp- 2 we describe how images are stabilized by computing the
ing to help predicting the features’ positions. The effeeti  appropriate warping function. Then, in Section 3 the track-
ness of the motion compensation is demonstrated by coning method is described. Mosaic construction is briefly ad-
structing mosaic images from the stabilized sequence anddressed in Section 4. Section 5 reports some experimental
by computing the RMS error. An effort has been made toresults and conclusions are drawn in Section 6.
keep the computational cost low and to reduce the frame
rate needed for tracking, with the aim to make a real-time . ]
implementation viable. 2. Motion compensation

If the camera is looking at an approximately planar scene
1. Introduction (like an aerial view, for example), corresponding image
points are linked by a linear projective transformatign
called homography(see [18] for example). In order to
compensate for the relative motion of the camera, we need
to compute the homographies that map each frame onto a
Sgiven reference imageln the warped images, static scene
points are (ideally) motionless. We assume that each frame
in the sequence overlaps with the reference one. There is no

Image stabilization consists in compensating for the
camera motion by applying a suitable transformation
(warping) to the image. In the stabilized image, scene
points are motionless in spite of camera motion. This make
it easier for an operator to select a point or a region, for ex-

ample. e o ; . .
P point in stabilizing an image which does not overlap with

Following [2, 9, 17] we track a set of features through the o
9l ] . . : 9 the reference one; in this case the latter should be changed.
sequence, and use their image motion to estimate the stabi-

lizing warping. Other authors [8] use directly image inten- L€t US suppose that point correspondences through the
sities in a coarse-to-fine approach for single region tragki Mage sequence are given. The homography maithat

We employ a modified version of the tracker described in links two Corres.pond.mg pointp; and p; in two generic
[12], using a Kalman filter to predict feature’s position. We (ramesfi andf; is defined by the following equation:
adopt a fast outlier rejection rule (X84), in order to estiena
the homography robustly. In this way, a moving object on a p; = Mp;. 1)
static background can be coped with.

The tracking also takes advantage of the global warping

c0mputed at each frame, which is used to predict the pOSi- 1This is true also if points do not lie on a plane, but the canigra
tion of lost features rotating around its optical center. In all other cases, tmages are not
o . . related by a linear projective transformation, since tligi@n appreciable

Image stabilization is a technique very close to mosaic- parallax.

ing; indeed, the stabilized sequence yields a mosaic by




or the features’ motion is almost linear within the sampling
time interval, and the experiments confirm this assumption.

Ti mir Mz Mg Tj Let's consider the frame sequengg fi, f2, .-, f, .- -
Yi | = | M21 M2z Mag Yi () acquired by a camera with frame rateA¢. The state vector
Wi mz1 mgz 1 wj of the linear Kalman is defined as follows (see for example

where points are expressed in homogeneous coordinateé,m])'
that is, we denote 2-D points in the image plané¢ag, w)
with (z/w,y/w) being the corresponding Cartesian coordi- where(zy, yi), and(uy, v) are respectively position and
nates. Each point correspondence generates two equationgelocity of each feature point in the fratke The state tran-

thenn > 4 points generatean linear equations which are  sition matrix and the measurement matrix are given by
sufficient to solve fo™M. The over-constrained system is

xp = op yr uwr v |°

easily solved by computing theseudo-inversef the sys- 1 01 0]
tem matrix via Singular Value Decomposition [4]. o — 01 01

To make the stabilization process less sensitive to pos- 0 010
sible tracker’s failures or to features attached to indepen 00 0 1|
dently moving objects, we employ a robust rejection rule
(X84) [6] to identify outliers, that is, features whose nosti ~ @nd )
is in disagreement with the dominant one (the planar motion H= 1000
of the majority of the features). M is the least squares ho- 010 0]
mography, the residual of theth feature is defined as respectively (since they are time independent, we omitted

N the time subscript).
r; = ||pi — Mpj|. 3) The noise covariance matrice®,andR,, model the un-

certainty affecting the prediction and the uncertaintgetff
ing measurements, respectivel) depends on the local
image derivatives: the higher the derivative in one direc-
tion, the more reliably the feature’s motion along that dire
tion can be predictedR depends on the correlation value
between current and updated features’ window. The higher
the correlation, the more confident s the displacement mea-
sure. Coefficients i) andR, have been hand-crafted with
a trial and test process.

To the state vector it is associated the state covariance
3. Features Tracking matrix P, (updated dynamically) that encodes the uncer-
tainty of the current state; the region of the phase space cen

In the previous section we assumed that correspondencel€red around the estimated statevhich contains the true
through the image sequence had been recovefedture state with a given probability® is given by the ellipsoid:

tracking finds matching by selecting image features and
tracks the latter as they move from one frame to another.
It can be seen as an instance of the general problem of com- In order to find the position of a given feature in the

puting the optical flow at relatively sparse image positions current frame, we take a small window centered on it and

Methods based on two dimensional feature; (such as Cor__ . on for the minimum of the SSD (Sum of Square Differ-
ners) have the advantage that the measured image motion is

notaffcted by theperture poblentsee for example 16). B AACRECRTIN S O TG RO Lo
Following Tomasi and Kanade[15], the features that we P g P b

track are maximum points of the im tocorrelation sition and the state covariance matrix gives the ellipdoida
ack are maximum points of the Image aulocorrelation gq,qp, region. If this matching fails (i.e., its normalized
function, which roughly corresponds to corrfers

SSDis ab tain threshold hin a fixed neigh-
These features are extracted in the first frame (with sub- is above a certain threshold) a search in a fixed neig

borhood of the position in the previous frame is performed.
pixel precision) and then tracked in every subsequent frame P P b

of the sequence using a linear Kalman filter [3] to estimate
and predict their trajectory. We are implicitly assumingtth

Following the X84 rule we discard those points whose
residuals differ more thai.24 MAD (Median Absolute
Deviations) from the median. The valde2 corresponds
to about3.5 standard deviations. This rejection rule has a
breakdown point 060%, i.e., any majority of the data can
overrule any minority.

After rejecting outliers, the final homography is com-
puted using the remaining features.

(x—%)(Pp) t(x—x)T <.

If the matching still cannot be found, the feature goes
into a particular state calleghost (after [12]), and it will

2More precisely, these are points where the gradient is &rfflg high be held as it was virtually still present for a short number of
in two orthogonal directions.




subsequent frames, after that either it reappears, or i is fi quence).

nally discarded. The duration of tlgdgnost period must be

chosen reasonably short (three frames in our case): if a feag Reqylts and Discussion
ture disappears for a long time, it is not because of noise or
brief occlusion, therefore a more sophisticated managemen
would be needed.

Even if the tracker looses one feature, it keeps searchin
itin a region around the point where this feature would lie if
it moved according to the plane homography computed with
the other features. In this way we can ideally keep track of
all the features extracted in the first frame, without need

to run extraction during tracking which is computationally rue position of the feature with a probability 69.9%.

very expensive. This technique assumes that the first framerhese ellipses are drawn from the covariance matrix which

overlaps with all the others, which is reasonable in a stabi- : .
lization scenario. It works well in the case of occlusion or the Kalman filter automatically comput.e.s for.any feature.
illumination changing phenomena that last for a long time Figures 2(a) and 2(b) show t_he stabl_llzed image at frame
" 60 and99 respectively. The white box in the center of the
] ) image is the frame of the reference image (frame 0). Note
4. Mosaic construction how image objects remain motionless with respect to the
reference frame. In order to better appreciate the stabiliz
The effectiveness of the motion compensation is demon-tion effect, a mosaic composed of the stabilized images is
strated by constructing mosaic images from the stabilizedshown in figure 2(c).
sequence. Anosaicis a single image obtained by aligning To have a numerical assessment of the stabilization, we
and merging many other images showing a different portion computed the RMS error between gray levels of each frame
of the same scene. and the reference frame, for the original and stabilized se-
For an image sequence withframes a mosaic image quences (Fig. 5). The error for the stabilized sequence is
can be constructed by placing the reference frame at thealmost constant, while, as expected, the error for the -origi
center of the mosaic and then adding every is¢abilized nal sequence grows linearly before reaching saturation.
frame. In the framework of mosaicing, this technique is  The sequence shown in Figure 3 is interesting because of
called “frame to mosaic” approach. The others are “frame the appearance of a distracting object, which could lead to
to frame” and “mosaic to frame” [7]. In the first case a failure, if the homography computation is not robust. Yet,
the warping parameters are computed between successivas shown in Fig. 4, the stabilization is effective. This also
frames of the sequence, and then, given a reference frameshows an example where lost features (the ones occluded
the homographies are composed to obtain the alignment beby the book) are recovered by guessing their position with
tween each frame and the reference frame. This could behe global homography. In the global mosaic (Fig.4(c)) the
dangerous because a registration error introduced early irdistracting object is blurred, owing both to motion and to
the sequence influences all the subsequent frames too. Ththe blending function.
“mosaic to frame” technique is used in dynamic applica-  Original and stabilized MPEG sequences are available
tions, when the images must maintain their own coordinateon the web: http://mvl.dimi.uniud.it/research.html.
system, which is the opposite of image stabilization.
In order to merge the current frame into the mosaic, gray 6. Conclusions
levels of overlapping pixels needs to beended Many
blending functions could be employed: use always the last
frame, use the first frame, compute the mean, me_dian Olgtabilization based on feature tracking.
other functions of the gray levels. In our case, using the An effort has been made to keep the computational load

last frame seems the most appropriate technique, but dueFow. The tracker, based on Kalman filtering, allows for a
to little misalignment, uncompensated radial distortiod a

Series of experiments have been conducted to check the
effectiveness of the algorithm; we report some of them.
9 Figure 1 shows the frames 0, 60 and 99 (the last) of
an aerial view sequence, with the tracked features super-
imposed. The feature points (corresponding to corners) are
marked with '+'s and the small circle depicted around each
of them indicates the region of the image that contains the

In this paper we have presented a technique for image

. L ) o lower frame rate (i.e.,larger disparity between consgeuti
illumination changes, there would be a dlscontlnu!ty in the frames). The robust technique for computing the homogra-
correspondence of frame _boundan.es in the.mosalc. There-phy based on the X84 rejection rule is very efficient, com-
fore, we used as a blending function a weighted average,pared to more complicated ones, like LMedS or RANSAC.

such that the weight of a pixel in the frame to be blended Moreover, we proposed a hew technique for recovering lost

decrea_ses W'th its distance f_rom th_e cen_ter. Because of theFeatures from intermediate frames without running the cor-
averaging, if there are moving objects in the scene, theyner extractor (which is computationally expensive).
appear blurred in the mosaic (but not in the stabilized se-



Due to a production error, the following three page
were omitted from the paper proceedings. The cor-
rect electonic version is available from IEEE at
http://www.computer.org/proceedings/iciap/0040/0a4tm

A causa di un errore della casa editrice, l'articolo ap-
parve negli atti privo delle seguenti tre pagine. La ver-
sione elettronica corretta pubblicata sul sito della IEEE:
http://www.computer.org/proceedings/iciap/0040/0@4htm



(a) Frame O (b) Frame 60 (c) Frame 99

Figure 1. Some frames from the aerial video sequence. Even if the scene is definitely not planar, the
parallax is negligible owing to the great distance from the ¢ amera.

(a) Stabilized frame 60 (b) Stabilized frame 99 (c) Global mosaic

Figure 2. Stabilized frames of the aerial sequence and globa | mosaic. The white box is the reference
frame, which corresponds to the position of Frame 0.



(a) Frame 4 (b) Frame 14 (c) Frame 33

Figure 3. ICIAP video sequence. In frame 14 the occluding obj  ect enters the scene, causing the loss
of some features (marked with circles). When the occluding o bject comes out of the scene, lost
features are recovered (marked with ' x').

(a) Frame 14 (b) Frame 33 (c) Global mosaic

Figure 4. Stabilized frames of the ICIAP sequence and global mosaic. The white box is the reference
frame, which corresponds to the position of Frame 0.
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Figure 5. Root Mean Square (RMS) error for
the stabilized aerial sequence (solid line) and
the original sequence (dotted line) wrt the ref-
erence frame.
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