
Experiments with a newArea-Based Stereo AlgorithmA. Fusiello1, V. Roberto1, and E. Trucco21 Machine Vision Laboratory, Dept. of InformaticsUniversity of Udine, Italy2 Dept. of Computing and Electrical EngineeringHeriot-Watt University, UKAbstract. We present a new, e�cient stereo algorithm addressing ro-bust disparity estimation in the presence of occlusions. The algorithmuses multiple windows and left-right consistency to compute disparityand its associated uncertainty. We demonstrate and discuss performanceswith both synthetic and real stereo pairs, and show how our results im-prove on those of closely related techniques for both robustness and ef-�ciency.1 IntroductionThe aim of computational stereopsis is to reconstruct the 3-D geometry of a scenefrom two (or more) views, which we call left and right, taken by pinhole cameras(for a comprehensive review on computational stereo, see [8]). A well-knownproblem is correspondence, i.e., �nding which points in the left and right imagesare projections of the same scene point (a conjugate pair). This is approached assearch: �nding the element in the right image which is most similar, accordingto a similarity metric, to a given element in the left image (a point, region, orgeneric feature).Area-based (or correlation-based) algorithms [1,3] match small image windowscentered at a given pixel, assuming that the gray levels are similar. They yielddense depth maps, but fail within occluded areas and poorly textured regions.Feature-based algorithms [6,12] match local cues (e.g., edges, lines, corners) andprovide robust, but sparse, disparity maps requiring interpolation. These algo-rithms rely on feature extraction.Several factors make the correspondence problem di�cult: (i) its inherentambiguity requires the introduction of physical and geometrical constraints; (ii)occlusions, i.e., points in one image with no corresponding point in the other;(iii) photometric distortions [2] arising when conjugate pair pixels have signi�-cantly di�erent intensities; and (iv) �gural distortion [9] that makes the projectedshapes di�erent in the two images.This paper presents a new robust area-based algorithm, addressing all prob-lems (i)-(iv) listed above by exploiting symmetry in matching and multiple win-dows. For this reason it will be called Symmetric Multi-Window (SMW) algo-



670rithm in the following. Preliminaries needed to meet some assumptions on im-age pairs is �rst illustrated (Sect. 2). The SSD correlation method is presented(Sect. 3), followed by our adaptive, multi-window scheme (Sect. 4), which con-trasts distortions and yields accurate disparities. Robust disparity estimates inthe presence of occlusions are achieved thanks to the left-right consistency con-straint (Sect. 5); the associate uncertainty is estimated too (Sect. 6). SMW algo-rithm implementation is sketched in Sect. 7. Experimental results are presentedin Sect.s 8 and 9.2 AssumptionsOur algorithm for disparity computation assumes that conjugate pairs lie alongraster lines. In general this is not true, therefore stereo pairs need to be recti�ed{ after appropriate camera calibration { to achieve epipolar lines parallel andhorizontal in each image [5].The SMW algorithm also assumes that the image intensity of a 3D point isthe same on the two images. If this is not true, the images must be normalised.This is done by a simple algorithm [2] which computes the parameters of thegray-level transformationIl(x; y) = �Ir(x; y) + � 8(x; y)by �tting a straight line to the plot of the left cumulative histogram versus theright cumulative histogram.3 Solving CorrespondenceSimilarity scores are computed, for each pixel in the left image, by comparinga �xed small window centered on the pixel with a window in the right image,shifting along the raster line. As a similarity measure we adopt the Euclideandistance, which is also called SSD (Sum of Squared Di�erences) error:C(x; y; d) = X(�;�)[Il(x+�; y+�)� Ir(x+� + d; y+�)]2sX(�;�) Il(x+�; y+�)2X(�;�) Ir(x+�+d; y+�)2 (1)where � 2 [�n; n]; � 2 [�m;m]. The computed disparity is the one thatminimises the SSD error. Subpixel precision is achieved by �tting a curve to theerrors in the neighbourhood of the minimum [1].If one computes SSD by a straightforward implementation of (1), the asymp-totic complexity of the resulting algorithm is O(N2nm), with N the image size.However, one should observe that squared di�erences need to be computed onlyonce for each disparity and that the sum over the window should not be recom-puted from scratch when it is moved by one pixel. The optimised implementationthat follows from this observation [3] has a computational complexity of O(4N2),which is independent of the window size.



6714 Window ShapingAs observed by Kanade and Okutomi [9], when the correlation window coversa region with non-constant disparity, area-based matching is likely to fail, andthe error in the depth estimates grows with the window size. Reducing thelatter, on the other hand, makes the computed disparity more noise-sensitive. Toovercome such di�culties, Kanade and Okutomi proposed a statistically sound,adaptive technique which selects at each pixel the window size that minimisesthe uncertainty in the disparity estimates.In this work we take the multiple window approach in the simpli�ed versionproposed by [7]. For each pixel we perform the correlation with nine 7�7 di�erentwindows (shown in Fig. 1), and retain the disparity with the smallest SSD errorvalue. The idea is that a window yielding a smaller SSD error is more likely tocover a constant depth region; in this way, the disparity pro�le itself drives theselection of an appropriate window.5 Left-Right ConsistencyOcclusions create points that do not belong to any conjugate pairs. In manycases, occlusions occur at depth discontinuities: indeed, one may observe thatocclusions on one image correspond to disparity jumps on the other. Althoughocclusions help the human visual system in detecting object boundaries, in com-putational stereo they are a major source of errors.A key observation to address the occlusion problem is that matching is not asymmetric process: when searching for conjugate pairs, only the visible points inone image are matched. If the role of left and right images is reversed, new con-jugate pairs are found. The so-called left-right consistency constraint [4] statesthat feasible conjugate pairs are those found with both direct and reverse match-ings. Consider for instance an occluded point, e.g., B in the left image of Fig. 2:although it has no corresponding point in the right image, the SSD minimisa-tion matches it to some point (C 0) anyhow. One can see that the latter point,in turn, corresponds to a di�erent point in the left image, but this informationis available only by searching from right to left.In our approach, occlusions are detected by checking the left-right consis-tency, and suppressing unfeasible matches accordingly. For each point (x; y) onthe left image the disparity dl(x; y) is computed as described in Sect. 2. Theprocess is repeated after reversing the two images, in order to compute dr(:; :).If dl(x; y) = �dr(x + dl(x; y); y) the point keeps its computed left disparity,otherwise it is marked as occluded and a disparity is assigned heuristically:following [10], we assume that occluded areas, occurring between two planes atdi�erent depth, take the disparity of the deeper plane.6 Uncertainty EstimatesArea-based algorithms are likely to fail not only in occluded regions, but alsoin poorly textured regions, which make disparity estimates more uncertain. It is
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Fig. 1. The nine asymmetric correlationwindows. The pixel for which disparity iscomputed is highlighted. Fig. 2. Left-right consistency. Point B isgiven C0 as a match, but C0 matches C 6=B. The pair (B;C0) can be suppressed.therefore essential to compute con�dence measures for disparities, which enablesone to �ll in gaps of the depth maps by fusing multiple views. Several techniquesare available to estimate uncertainty, most of them based on the shape of theSSD error function [1,11,13].In our approach we take advantage of the fact that disparity values computedwith di�erent windows are sensitive to the signal-to-noise ratio (SNR): as thelatter decreases, the variance of the disparity values increases (see Fig. 8). Hence,we take it as an uncertainty measure for the computed disparity; occluded pointsare assigned in�nite uncertainty.7 The SMW AlgorithmThe SMW algorithm can be implemented in the following steps (disparity isassumed to be positive, that is the right view is right-shifted with respect to theleft view):1. Compute disparity values with SSD correlation from left toright, using the asymmetric windows, and retain the lowestSSD disparity.2. Compute uncertainty as the variance of disparity values.3. Do Step 1 by reversing left and right images.4. Check the left-right consistency and suppress matches ac-cordingly. Unmatched pixels are marked as occluded.5. Compute subpixel re�nement of disparity values.6. Set to in�nite the uncertainty of occluded pixels and �lloccluded regions with disparity values from right to left.To facilitate reimplementations and experiments with the SMW, the C codeof the algorithm is available via anonymous ftp attaras.dimi.uniud.it/pub/code/smw.tar.gz



673
Fig. 3. Square random-dot stereogram.The left image of the stereogram is shown(left). The right one is computed by warp-ing the latter with a given disparity pat-tern (right). The square has disparity 10pixel, the background 3 pixel. Fig. 4. Computed disparity map by SSDcorrelation for the square random-dotstereogram in Fig. 5 with 3 � 3 window(left) and 7 � 7 window (right); MAE is0.240 and 0.144, respectively.8 Experiments with Synthetic DataWe �rst performed experiments on uncorrupted random-dot stereograms (Fig. 3),in order to assess the algorithm in a simple, albeit not trivial, case. Dispar-ity maps are gray-level encoded (the brighter the closer). Images have beenequalised to improve readability, subpixel-accuracy values have been computedand rounded to integers. The estimated Mean Absolute Error (MAE), that isthe mean of the absolute value of di�erences between computed disparity andground true disparity, was computed.Simple SSD correlation applied to random-dot stereograms shows how mostof the problems outlined in the previous sections a�ect the disparity compu-tation. Fig. 4 shows the disparity maps computed with the SSD correlationalgorithm, with �xed 3 � 3 and 7 � 7 windows. In both pictures it is visiblethe e�ect of disparity jumps (near the left and horizontal borders of the squarepatch) and occlusions (near the right border of the square patch).The SMW algorithm was applied to the square random-dot stereograms ofFig. 3 and to a circular random-dot stereogram, not shown here. Fig. 5 and Fig. 6show the disparity maps computed by SMW and the estimated uncertainty maps(the darker the lower) in both cases. The estimated MAE is negligible and maybe ascribed to the subpixel accuracy only. The occluded points, shown in whitein the uncertainty maps are recovered with 100% accuracy, in both cases. Thecircle random-dot stereogram shows that the algorithm is not biased towardsquare disparity patterns, as it may seem due to the shape of the windows. Thereader may compare the present results to those reported in [2].As for e�ciency, running on a SUN SparcStation 4 - 110MHz under SunOS5.5, the SMW algorithm takes 8 seconds, on the average, to compute the depthmaps on 128�128 input images. Although accuracy results are comparable tothose of closely related techniques, such as [9], the e�ciency of SMW is clearlysuperior.



674Further experiments with noisy random-dot stereograms show a gracefuldegradation when noise increases. Gaussian noise with zero mean and increas-ing variance was added independently to both images of the square random-dotstereogram. Fig. 7 shows the MAE vs noise standard deviation for SMW andSSD correlation. Each point depicts the average result of 20 independent trials.In order to assess the uncertainty map produced by SMW, the average un-certainty computed over a square patch of uniform disparity was plotted againstthe SNR (Fig. 8). The plot shows that the computed uncertainty consistentlyincreases as the SNR decreases.
Fig. 5. Computed disparity map (left) bySMW for the square random-dot stere-ogram and its uncertainty (right). MAEis 0.019. Fig. 6. Computed disparity map (left) bySMW for the circle random-dot stere-ogram and its uncertainty (right). MAEis 0.026.
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Fig. 7. MAE vs noise standard deviationfor the square random-dot stereogram.Window size is 7�7. Fig. 8. Mean uncertainty vs SNR for aconstant disparity region of the squarerandom-dot stereogram.



6759 Experiments with Real DataWe performed experiments on standard image pairs from the JISCT (JPL-INRIA-SRI-CMU-TELEOS) stereo test set. Only the \Parking meter"(Fig 9)is reported here for reason of space.Small values cannot be appreciated in spite of histogram equalisation, dueto the large di�erence between high-uncertainty occlusion points and the rest ofthe image. Although a quantitative comparison with published results was notpossible with real images, the quality of SMW results seems perfectly comparableto that of results reported, for example, in [14,2].Running on the same hw/sw platform, our current implementation takes 50seconds, on the average, to compute depth maps from 256�256 pairs, and adisparity range of 10 pixels.
Fig. 9. The \Parking meter" stereo pair; the disparity (left) and uncertainty maps(right).10 ConclusionsWe have introduced SMW, a new, e�cient algorithm for stereo reconstruction,based on a multi-window approach, and taking advantage of left-right consis-tency. Our tests have shown the advantages o�ered by SMW. The adaptive,multi-window scheme yields robust disparity estimates in the presence of occlu-sions, and clearly outperforms �xed-window schemes.The left-right consistency check proves very e�ective in eliminating falsematches and identifying occluded regions (notice that this can be regarded asa segmentation method in itself). In addition, disparity is assigned to occludedpoints heuristically, thereby achieving reasonable depth maps even in occludedareas. Uncertainty maps are also computed, allowing the use of SMW as a mod-ule within more complex data fusion frameworks [13]. Areas of lower SNR areconsistently marked with higher uncertainty.The main disadvantage is that the window size remains a free parameter;we are considering a multi-resolution extension to the SMW algorithm, wherecorrelation is performed with a 3� 3 window at di�erent resolution levels.Work is in progress also to embed the SMW module in a dynamic stereofusion system.
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