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Abstract. This paper proposes an exact solution to histogram matching
under affine transformation, i.e., it shows how to retrieve an unknown
affine transformation between the colors of two images. The key is the
use of the third central moment (skewness) in addition to covariance and
mean. These three moments (a.k.a. cumulants) are sufficient to determine
all the d.o.f. of an affine mapping of the RGB space.
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1 Introduction

Histogram matching is the transformation of the colors of one image (source) so
that its histogram matches a specified target one (see Fig. 1). The well-known
histogram equalization method is a special case in which the target histogram is a
uniform distribution. It can be used to normalize two or more images, when they
were acquired with different sensors (or from a sensor whose response changes
over time), atmospheric conditions or global illumination. Affine transforma-
tions are particularly relevant for color histograms of images taken under varied
illuminant conditions are related by an affinity [9].

Fig. 1. Source (left) and target (right) images. The goal is to transform the source so
as to match the histogram of the target. Image from the UPenn dataset [19]

Histogram matching, a.k.a. color transfer, has been well studied in the litera-
ture, see [12] for a review. In their seminal paper, Reinhard et al. [13] match the
mean and standard deviation of each axis separately after converting the source
and target images into the decorrelated colour space lαβ [15]. They write:
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While it appears that the mean and standard deviation alone suffice to
produce practical results, the effect of including higher moments remains
an interesting question.

This paper shows empirically that an affine transformation is completely and
exactly determined by the first three multivariate moments.

In recent years, the problem of color transfer evolved into ”style transfer” (see
e.g., [6]) where algorithms based on spatial (local) color mappings can handle
applications such as time-of-day [18], weather and season change [4], painterly
stylization [1] and transfer of artistic edits [17].

Motivated by the reduction of seam artefacts in mosaicking from aerial images
[16], in this work we aim at recovering the exact affine mapping between the
colors of two images (assuming that such mapping exists). Previous work in
histogram matching fail to reach this goal: Pitié et al. [11] obtain an approximate
non parametric map; others [20, 10] arbitrarily fix some degrees of freedom of a
general affinity (this point will be clarified in Sec. 3), or restrict the solution to
a subset of affine mappings [9, 13].

2 Background

In single-channel (gray-scale) images, the brightness values can be considered
as the samples of a univariate random variable X, whose probability density
function (pdf) is the normalized histogram. For any function g, also Y = g(X)
is a random variable.

2.1 Q-Q plots

Let FX and FY be cumulative distribution function (CDF) of X and Y , respec-
tively. The functions F−1Y and F−1X are the quantile functions, i.e. F−1(α) is the
α − th quantile of F . If g is monotone increasing, then FY (y) = FX(g−1(y)),
and also F−1Y (u) = g(F−1X (u)). This means that the quantile functions transform
according to g, hence the graph of g is described by the pairs (F−1Y (α), F−1X (α))
for all α ∈ [0, 1]. This graph, where the quantiles of two variables are plotted
one against the other is called the Q-Q plot. So, for gray-scale images, histogram
matching can accomplished by means of the Q-Q plot, that allows to find the
exact transformation that makes the quantiles of X and Y to match. For exam-
ple, if g is an affine map, the Q–Q plot will be a line, with a given (positive)
slope and intercept.

In the case of color (RGB) images the underlying random variable is mul-
tivariate, the CDF is R3 → R and the quantile function is not defined. The
Q-Q plot trick can only be applied to each channel separately, but this would
yield a very special affinity, whose linear part is represented by a (positive) di-
agonal matrix. Note that, since any matrix A can be decomposed with SVD as
A = UDV >, if one transform X with V > and Y with U>, then the residual
transformation is the diagonal D and can be recovered with three Q-Q plots.
The problem is that these U and V are unknown. In fact, Pitié et al. [11] iter-
atively apply random rotations to the color space and solve using Q-Q plots on
each channel separately.
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2.2 Cumulants

Instead of exploiting the quantiles of the two probability distributions, let us
turn our attention to its moments, in particular to the first raw moment – the
mean, and the second and third central moments, a.k.a. variance and skewness.
These three moments coincide with the first three cumulants of the probability
distribution (see e.g. [8]), and so they will be collectively referred to in the
following. The cumulants of a probability distribution provide an alternative
description of the distribution to those given by its moments: any two probability
distributions whose moments are identical will have identical cumulants, and vice
versa. As a matter of fact, the first three cumulants are also moments, but fourth
and higher-order cumulants are not.

Using the Kronecker product, the first three cumulants of X write:

– Average κ1(X) = E[X] = µX

– Covariance κ2(X) = E[(X − µX)⊗ (X − µX)]
– Skewness κ3(X) = E[(X − µX)⊗ (X − µX)⊗ (X − µX)]

The third cumulant of a d-dimensional random vector X = (X1, ..., Xd)> is
an d2× d matrix, containing at most d(d+ 1)(d+ 2)/6 distinct elements. This is
analogous to κ2(X), that is d× d and has at most d(d+ 1)/2 distinct elements,
being symmetric. An elimination matrix Gd d(d+1)(d+2)/6×d3 can be defined
[7] that extracts only the unique elements from vecκ3(X).

Given a random sample from X of size N , the third sample cumulant is
computed as follows:

κ3(X) =
1

N

N∑
i=1

(xi −m)⊗ (xi −m)>(xi −m) (1)

where xi ∈ Rd is the i-th sample and m ∈ Rd is the sample mean.
It is particularly useful to our goals to be able to determine how the cumulants

change under a generic affine transformation Y = AX + t, where A is a d × d
non-singular matrix and t is a d× 1 vector:

κ1(Y ) = Aκ1(X) + t (2)

κ2(Y ) = Aκ2(X)A> (3)

κ3(Y ) = (A⊗A)κ3(X)A>. (4)

The first two relationships are well-known, while the third is proved in [3].
Using the ”vec trick” [14], we get the following equivalent formulae:

vecκ1(Y ) = (I3 ⊗A) vecκ2(X) + t (5)

vecκ2(Y ) = (A⊗A) vecκ2(X) (6)

vecκ3(Y ) = (A⊗A⊗A) vecκ3(X). (7)
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3 Method

Given two multivariate random variables X and Y we want to find the affine
transformation that match the first three cumulants of Y with those of X.

The translation can be recovered from Eq. (2) once A has been determined,
so let us concentrate on Eq. (3) and Eq. (4) and on the linear transformation A.

Let us start with the second cumulant (covariance), and follow [10]. Since
κ2(X) and κ2(Y ) are positive definite, letΣXΣ

>
X = κ2(X) and, likewise,ΣYΣ

>
Y =

κ2(Y ) (see Lemma 1 in the Appendix). Substituting this into (3) yields:

ΣYΣ
>
Y = (AΣX)(AΣX)> (8)

from which a solution is derived as:

A = ΣYΣ
−1
X . (9)

Since the factorization of a psd matrix as per Lemma 1 is not unique, we arbi-
trarily set

ΣX = UD1/2 diag(1, 1,det(U)) (10)

where
κ2(X) = UDU> (11)

is the spectral decomposition of κ2(X), whith ordered eigenvalues. It is easy to
see that ΣXΣ

>
X = κ2(X). The same applies to ΣY likewise.

Then, as observed by [10], the general solution, that matches the second order
cumulants of X and Y , is given by:

A = ΣYQΣ
−1
X (12)

where QQ> = I. This leaves three d.o.f. in the choice of Q, that have been fixed
according to different considerations, in the literature.

For example, in the principal components (PCA) method [20, 9], a rotation
is sought that align the principal axis of κ2(X) with those of κ2(Y ), and Q is
chosen among four possible matrices, namely:

diag(1, 1, 1), diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1). (13)

In the Monge-Kantorovitch (MK) solution [10]:

AMK = Σ̂−1X

(
Σ̂Xκ2(Y )Σ̂X

) 1
2

Σ̂−1X (14)

where Σ̂X = κ2(X)
1
2 and Σ̂Y = κ2(Y )

1
2 . This corresponds to

Q = Σ−1Y AMKΣX . (15)

Keeping in mind that Σ̂X = UD1/2U> (and likewise for Σ̂Y ) it can be proven
that Q is indeed an orthogonal matrix.
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None of the previous methods, however is able to exactly recover the affine
transformation, when the two histograms are affinely related. Our method in-
stead achieve exact recovery by exploiting the third order cumulant κ3 in Eq.
(7). In particular, we fix the remaining three d.o.f. by solving the non-linear
system of 10 equations:

G3κ3(Y ) = G3(A⊗A⊗A) vecκ3(X) with A = ΣYQΣ
−1
X (16)

in the least squares sense with the Levenberg-Marquardt method.
Experiments reported in the next section show that in this way the affinity

is always recovered, upon convergence of the numerical method.
If we restrict to A with positive determinant, then Q ∈ SO(3) and so we can

parametrize it with the Euler angles ω, φ, ϑ. This assumption can be relaxed at
the price of searching for the minimum in −SO(3) as well, since O(3) has two
connected components.

The Matlab code that implements our method is available on the web at
http://www.diegm.uniud.it/fusiello/demo/ahm/

4 Experiments

In order to validate the method in a controlled setting, we applied random affine
transformations (with positive determinant) to the reference image shown in
Fig. 1 and then run our method to retrieve the affine transformation matrix.
Convergence is only local, so we started the minimization in a neighborhood of
the ground truth.
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Fig. 2. Convergence rate as a function of the number of initial points (left); the first
bar corresponds to the MK solution, while the second includes the four PCA solutions.
Sample of images mapped according to the random affine transformation (right).

The error was measured as the Frobenius norm of the difference between the
output matrix and the ground truth one. Upon convergence it was of the order of
1e− 10 (or less). To be more realistic we also started our method from multiple



6 Andrea Fusiello

points by picking N regularly spaced samples in SO(3), in addition to the MK
solution and the four PCA solutions. These samples are the centers of an equal
area partitioning of the unit sphere in R4 [5], which is a double cover of SO(3)
(antipodal points represent the same rotation) via the quaternion representation
of rotations. Figure 2 shows the convergence rate as a function of N for 1000
random affine transformations. These experiments indicates empirically that the
method is able to recover the correct affine transformation, up to numerical
errors, when suitably initialized.

In the real experiments that follow the underlying transformations are more
regular than the random ones (see Fig. 2 for a sample), although not necessarily
affine, so we initialized instead the method with the MK solution, that provides
a reasonable starting point, thanks to the minimization of the transportation
cost. Our solution is nevertheless different from MK, as one can see in Fig. 3.

Source Target

IDT MK Ours

Fig. 3. Comparison with results reported in [11] (IDT) and [10] (MK)
.

In our first real experiment we shoot eight pictures of an indoor scene with
a Sony α6300 camera, while varying the temperature of the LED light source
from 3200K to 5500K. The image at 5500K was chosen as the target one and
all the others have been transformed with the affinity found by our algorithm to
match the target histogram. The results are shown in Fig. 4.

A similar experiment has been conducted outdoor (Fig. 5). A series of nine
photos have been taken during the day, one has been selected as target and all
the others have been transformed to match its histogram.

Fig. 6 shows the result of our method on a portion of the dataset that origi-
nally motivated this research [16], where the effect of the illumination change is
particularly prominent.
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Source Output Checkerboard (target/output)

Fig. 4. Indoor scene with varying light temperature. The top image is the target, then
from the second row onward images are: source, output and checkerboard comparison.
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Source Output Checkerboard (target/output)

Fig. 5. Outdoor scene in different time of the day. The top image is the target, then
from the second row onward images are: source, output and checkerboard comparison.
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Fig. 6. Top row: two images of the same area under different illumination, source (left)
and target (right) Bottom row: output (left), i.e., source image transformed to match
the target, and checkerboard comparison (right) between target and output (a small
misalignment is present).

In the last experiment we tried also to apply our algorithm to color transfer,
although this was not our focus. As a global method, it achieved reasonable
results on some of images used in [6] (Fig. 7), while it failed on more challenging
cases where local operations (and a segmentation) are required, e.g. changing
the color of the eyes, or lighting the windows of a building.

5 Conclusions

In this paper we have shown how to retrieve an unknown affine transformation
between the colors of two images (formally, between two probability distribu-
tions) thanks to the use of the third cumulant, which allows to fix the three d.o.f.
that remain after matching mean and covariance. This study was motivated by
image mosaicking, but can also find application in color transfer or in histogram
normalization [9]. Future work will study the extension of this approach to more
general classes of transformations.

Appendix

Lemma 1 [2] A real matrix M is positive semi-definite (psd) if and only if it
can be decomposed as M = ΣΣ>.

The decomposition is not unique: if M = ΣΣ> also M = ΣQQ>Σ> =
(ΣQ)(ΣQ)> with QQ> = I. Requiring Σ to be psd as well makes the factoriza-
tion unique. In this case Σ is referred to as the square root of M .
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Source Target Output

Fig. 7. Some examples of color transfer on images from [6]. The output is the affine
transform of the source to match the target palette.
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