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Abstract. Leveraging on recent advances in robust matrix decompo-
sition, we revisit Lambertian photometric stereo as a robust low-rank
matrix recovery problem with both missing and corrupted entries, tai-
loring Grasta and R-GoDec to normal surface estimation. A method to
automatically detect shadows is proposed. The performance of differ-
ent robust matrix completion techniques are analyzed on the challenging
DiLiGenT datasets.
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1 Introduction

Robust matrix decomposition and completion has been an active research topic
in recent years, and many methods exploiting low rank and sparsity constraints
have sprouted out in several fields of applications, such as pattern recognition,
machine learning, and signal processing just to name a few. In this work, we
explore the performances of these techniques on calibrated Lambertian photo-
metric stereo [9], i.e. the problem of estimating the surface normals of an object
by observing several intensity images captured by a fixed camera under different
known lighting conditions. In particular, we offer an overview on robust matrix
decomposition methods tailored to photometric stereo – using for the fist time
Grasta and R-GoDec for this scope – and a quantitative experimental evalua-
tion on the recently proposed DiLiGenT dataset. A simple yet effective shadow
detection method is also presented.

Notation: Matrix will be indicated in sans serif font A = [aij ], the i-th row of

A is denoted by Ai, while the j-th column of A is indicated by Aj .

2 The geometry of single-light images

Let I ∈ Rp be an image composed by p pixels stacked by column. Following
[3], under Lambertian assumption the proprieties of interest of an object Y can
be encoded in matrix form as diag(R)N> ∈ Rp×3, where R = (ρ1, . . . , ρp)

> is
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the vector of pixels albedos, and N = [N1, . . . ,Np] ∈ R3×p collects the unitary
normals of the object. Thus the image of Y illuminated by a distant point-light
source L ∈ R3, is given by:

I = max(diag(R)N>L, 0). (1)

Varying L, one obtains the so-called illumination space of Y defined as L = {I :
I = diag(R)NL : L ∈ R3} ⊂ Rp. Clearly dim(L) = rank(N>L) ≤ 3, therefore, if
the normals span R3, the dimension of L is 3.

Belhumeur and Kriegman also observe that L intersect at most4 p(p− 1) + 2
orthants of Rp. Let L0 = L ∩ Rp+,where Rp+ = {x ∈ Rp : xi > 0 ∀i}, and Li be
the intersection of L with the other orthants. By construction, Li are convex
cones, and correspond to different shading configuration of pixels. As instance,
L0 corresponds to images having all the pixels illuminated by a lighting source.
The space of all possible images of Y is obtained by adding to L0 the images
where not all the pixels are simultaneously illuminated, i.e. the projection of
the cones Li, i 6= 0, on the boundary of Rp+ via the map P : I 7→ max(I, 0).
Therefore, the space of all the images of a convex Lambertian object, varying
the direction of a single light source is given by the union of at most p(p−1) + 2
convex cones.

ν(ν−1)+2⋃
i=0

P (Li). (2)

Experimentally, it was demonstrated that this union of cones is “flat” and can
be approximated by a linear subspace of dimension 3.

3 Robust Matrix Completion and Decomposition

The linear property of light superposition inspired the use of matrix completion
and robust decomposition techniques to tackle the photometric stereo prob-
lem [10, 11]. Given f images of the same object organized as a p × f matrix
X = [I1, . . . , If ], with images stacked as columns, the main intuition is to re-
cover the illumination space as a low-rank matrix A that models the diffusive
Lambertian observations, and to handle the non-Lambertian measurements as
outliers. In particular, shadows, i.e. pixels outside L0, are treated as missing
entries, whereas a sparse error matrix S accounts for the corruptions produced
by strong specularities (highlights).

More formally, the image formation model can be rephrased as

X = PΩ(A) + S (3)

where A = diag(R)N>L is low rank, L = [L1, . . . , Lf ] collects the known light
source vectors, Ω = {(i, j) : where N>L is nonzero} is the set of observed en-
tries, PΩ indicates a linear projection of matrices defined component-wise as

4 more precisely, L intersects ν(ν − 1) + 2 orthants, where ν is the number of distinct
normal in B.
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Fig. 1: The factorization of the intensities of an ideal Lambertian object (left),
the same factorization in presence of shadow and highlights

[PΩ(A)]ij = Aij if (i, j) ∈ Ω and 0 otherwise, and S is the matrix of sparse error.
A graphical representation of this model is depicted in Fig. 1, where the operator
PΩ – which is the matrix counterpart of the projection P onto the positive or-
thant – is represented in an equivalent fashion as the Hadamard (element-wise)
product between A and a matrix V defined component-wise as

Vij =

{
1 if (i, j) ∈ Ω,
0 otherwise.

(4)

In this way, photometric stereo becomes the problem of recovering a low-
rank matrix with both missing entries – the shadows – and corrupted entries
corresponding the unmodelled phenomena (e.g., non Lambertian). The rank of
A may vary according to the image formation model adopted, and for Lambertian
photometric stereo rank(A) = 3. Once the low rank matrix have been recovered,
in the calibrated scenario, the normals can be easily estimated in closed form by
normalizing the row of L+A, where L+ denotes the pseudo-inverse of L.

Decomposition into low-rank and sparse matrices has been developed in dif-
ferent formulation problems, hereinafter, we briefly review some of them that
can be profitably adopted to tackle the Problem (3), namely: Robust Principal
Component Analysis and L1-ALM (that have already been tailored to photo-
metric stereo problem), together with Grasta and R-GoDec that we are going to
apply to this scenario for the first time.

Robust Principal Component Analysis (RPCA) decomposes X into a low rank
and sparse terms, without being given rank(A). The cost function is:

arg min
A,S

rank(A) + λ‖S‖0 s.t. X = PΩ(A) + S. (5)

Unfortunately this problem turns to be intractable, therefore, instead of directly
minimizing the discontinuous rank function and the `0 norm, the above objective
function is relaxed to its convex surrogate; the rank of A is replaced with the
nuclear norm ‖A‖∗ – i.e. the sum of the singular values of A – and the `0 norm
is substituted for the `1 norm:

arg min ‖A‖∗ + λ||S||1 s.t. X = PΩ(A) + S. (6)

Several technique can be used to minimize Eq. (6); in [10], e.g., an adaptation
of the augmented Lagrange multiplier method is used.
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L1-ALM [11] proposes to find a solution to Problem (3) by enforcing exactly
the low rank constraint rank(A) = r, and leverages on the factorization of the
matrix A = HK as the product of a p× r matrix H and a r× f matrix K. As the
factorization is defined up to an invertible matrix, in order to shrink the solution
space, the matrix H is enforced to be column-orthogonal, i.e. H>H = Ir, where
Ir denotes the r× r identity matrix. The objective L1-ALM tries to minimize is

arg min
H,K
‖PΩ(X− HK)‖1 + λ‖K‖∗ s.t. H>H = Ir. (7)

where PΩ(X − HK) is the `1 norm of the sparse error matrix S = X − PΩ(A)
and ‖K‖∗ = ‖HK‖∗ = ‖A‖∗ is a trace-norm regularization term, which, due to
the orthogonality of H, is equivalent to the nuclear norm of A. This optimization
problem is resolved via inexact augmented Lagrange multiplier and Gauss-Seidel
iterations

Grassmannian Robust Adaptive Subspace Tracking Algorithm (Grasta) [5] is an
online robust subspace tracking algorithm, that works in the presence of cor-
rupted and missing data. Given a sequence of incomplete vectors {v1, . . . , vt}
that lie on a r-dimensional subspace, Grasta estimates this subspace, by min-
imizing the `1 error between the recovered subspace and the observed partial
vector. This formulation can be casted to the problem of Eq. (3) as

min
S
‖S‖1 s.t. X = PΩ(HK) + S (8)

where, similarly to Eq. (7), A is expressed as the product of two factors H,K,
the first being an element of the Grassmanian Manifold G(r, p). The problem
is iteratively solved for H and K separately: fixed H, K is update via ADMM,
whereas, when K is fixed, H is updated performing incremental gradient descent
on the Grassmanian manifold. Even if the partial measurements of the matrix X
are required to be exactly fixed, nevertheless, in practice, it was demonstrated
that the algorithm is robust to small non sparse additive noise.

Robust Go Decomposition (R-GoDec) [2] proposes a robust approximate matrix
completion and decomposition technique that improves GoDec [12]. An addi-
tional sparse term S′ that has support on ΩC – the complementary of Ω – is
introduced to account for missing entries. In addition small sparse noise E is
explicitly introduced in the decomposition:

X = A + S + S′ + E. (9)

The corresponding minimization problem is

arg min
A,S
‖X− A− S− S′ ‖2F (10)

such that rank(A) ≤ r, S is sparse and S′ has support in ΩC . This problem
is solved using a block-coordinate minimization scheme. At first, the rank-r
projection of the incomplete matrix given in input is computed through Bilateral
Random Projection – faster than SVD– and assigned to A. Then, the two sparse
terms S and S′ are updated separately. The outlier term S is computed via
soft-thresholding operator, and S′ is updated as −PΩC (A).
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4 Detecting shadows

This section is aimed at estimating the set ΩC of shadowed pixels, in order to
treat them as missing data and to reduce their influence in the low-rank matrix
recovery. For this purpose, it becomes necessary to reason about the visibility of
light source with respect to each image pixel in order to recognize which lights
shine on which points and to discard the pixels in shadow.

To this end, a commonly employed solution is intensity-based thresholding:
Pixels whose intensity lies below a certain threshold are considered in shadow.
While this heuristic in some cases is enough to recover the light-visibility infor-
mation, in general, the intensity of individual pixels depends on the variations
of the unknown albedo of the object, thus, the brightness alone turns to be an
unreliable cue.

In order to overcome this pitfall, other techniques have been proposed. For
example, [4] adopts a graph cuts based method to estimate light visibility in
a Markov Random Field formulation, where a per-pixels error, based on pho-
tometric stereo, is balanced by a smoothness constraints on shadows, aimed at
promoting spatial coherence. Sunkavalli et al. in [8] avoid to enforce spatial co-
herence on shadows and present a method that works both in the calibrated and
uncalibrated scenario leveraging on subspace clustering. Pixels sharing the same
visibility configuration lie on linear subspaces, termed visibility subspaces, that
are extracted using Sequential Ransac. Once these subspaces are recovered and
the object surface is segmented accordingly, the set of lights that shine on each
region are identified analysing the magnitude of the subspace lighting obtained
via SVD.

The visibility information can be encoded in the n × f visibility matrix V
defined as in Eq. (4). Each row of V can be seen as the indicator function of the
subset of lights visible by each pixel.

In our calibrated scenario, we want to recover V given the intensity matrix X
and the lighting directions L. To this end, assuming that there are at leas f ≥ 4
images, we propose a simple approach based on Lmeds [6].

The main idea is to approximate at first the space of the possible visibility
configuration by randomly sampling triplets ω of lights. Fixed a pixel i, a ten-
tative normal vector is estimated via least square regression for every lighting
triplets. Hence, the normal N̂i which minimise the median of squared residuals
is retained as a solution. By scrutinising the residual vector Ii−max(0, N̂>i L), a
binary weighting vector wi is defined setting its j-th entry equals 1, if the j-th
error is smaller of 2.5σ̂, and 0 otherwise, where σ̂ is a robust estimate of the
variance of the per pixels residuals defined by:

σ̂ = 1.4826(1 + 5/(f − 3))
√

median r2
ω̂ (11)

At the end, the normal estimate N̂i is refined using iteratively reweighted least
squares (IRLS) on the set of lights {Lj : wji = 1}.

The matrix W = [w1, . . . , wp]
>, composed by the weight-vectors arranged by

row, could be used as a proxy for the visibility matrix, however here we take
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light directions into account, and we obtain a visibility matrix V̂ setting:

V̂ij =

{
1 if N̂>i Lj > 0,

0 otherwise.
(12)

5 Evaluation the DiLiGenT dataset

The methods presented in the previous section are here challenged on the Directio-
nal Lightings, objects of General reflectance, and ground T ruth shapes datasets
(DiLiGenT) [7], a recently proposed benchmark of ten objects shown in Fig. 2.
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Fig. 2: The ten object of the DiLiGenT datasets with the respective d̂ index.

This collection offers a great variety in terms of materials, appearances, ge-
ometries and type of deviations from the Lambertian model – from sparse spec-
ular spikes to broad specular lobes. This miscellany of non-diffusive phenomena
can be captured analyzing the behavior of the index

d̂ = min
d

{∑f
i=d+1 σ

2
i∑f

i=1 σ
2
i

< τ

}
(13)
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Fig. 3: Example of visibility masks on the ball and on the pot1 dataset. Visi-
bility patterns are color coded: same colors correspond to the same shadowing
configurations.

with respect to τ which represents the smallest number such that the fraction
of information discarded by the corresponding rank approximation is less than
a threshold τ : the last three objects are the ones that deviates more from the
rank-3 Lambertian approximation.

Visibility mask. Sample results attained by this method on the DiLiGenT
dataset are shown in Fig. 3, where it can be appreciated that V̂ well approx-
imates the ground truth visibility – computed as in Eq. 4 using the ground
truth normals. As a reference, we also compare the Lmeds approach with the
one based on visibility subspace [8]. Some differences can be pointed out. First,
the extraction of visibility subspaces requires two parameters, namely the in-
lier threshold of Ransac and a threshold on the magnitude of light. The inlier
threshold is not always an educated guess, as the subspace estimation may be
strained by the presence of highlighted pixels whose intensity profiles follow a
different distribution with respect to shadowed points. Lmeds, on the contrary,
is parameter-free and avoids this difficulties.

Second, Lmeds estimates the visibility configuration locally per pixels, vis-
ibility subspace, on the other hand, are estimated globally and pixels that lie
in the intersections of multiple subspaces are not properly handled. Third, the
random sampling performed to extract the visibility subspace acts on pixels,
therefore the dimension of possible samples is

(
p
3

)
, which, as usually p > f is

higher than the upper bound on the number of samples of Lmeds
(
f
3

)
. Finally,

Lmeds procedure can be parallelized in a straightforward way.

The visibility masks estimated by Lmeds are fed to the matrix completion
algorithms to reduce the influence of shadowed pixels on the low rank estimation
step.

Normal estimation. We randomly chose 9 different lighting configurations for
each dataset, and we compare the estimated normals with the ground truth
ones, averaging the results on 10 trials per dataset. The rank was fixed to 3 for
Grasta and R-GoDec, and the regualarization parameter to λ = 1/

√
p, whereas

for L1-ALM we used λ = 10−3 as suggested in the authors implementation [1].
The performances of the matrix factorization methods are recorded in Tab. 1
where the mean, the median and the standard deviation of angular errors were
reported for each method. As a reference we also detailed the errors attained by
Least Square and Lmeds. When the accuracy of a method is worse than Least
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Table 1: Angular error on the DiLiGenT dataset

Least Square Lmeds RPCA L1-ALM Grasta R-Godec

mean med std mean med std mean med std mean med std mean med std mean med std

ball 4.38 2.53 0.74 3.59 2.40 0.86 5.23 3.77 0.53 5.20 2.53 0.87 2.70 2.28 0.92 2.86 2.35 0.80

cat 9.09 6.78 0.67 8.50 6.45 0.84 10.05 7.28 1.22 10.85 7.64 6.39 8.24 6.23 1.27 8.24 6.28 1.24

pot1 9.46 6.83 0.70 8.93 6.43 0.93 9.33 6.68 0.93 9.41 6.69 0.99 8.69 6.11 0.95 8.87 6.43 0.87

bear 10.49 8.16 1.15 9.90 7.77 1.21 10.13 8.28 0.99 10.32 8.08 1.31 9.39 7.50 1.50 9.36 7.55 1.48

pot2 15.89 12.02 1.12 15.46 11.35 1.13 12.37 10.21 0.88 15.88 11.77 1.03 15.38 10.88 1.05 15.57 11.41 1.10

buddha 15.45 10.25 0.87 14.34 9.46 1.00 15.37 10.96 1.30 14.28 9.33 1.35 14.37 9.20 1.39 14.19 9.24 1.28

goblet 19.43 15.72 0.71 18.65 14.76 0.75 17.26 13.96 0.91 20.82 16.21 5.51 18.43 14.03 0.81 18.39 14.05 0.83

reading 20.20 12.55 1.48 18.16 10.84 1.36 23.12 19.79 0.92 29.44 21.62 7.33 37.08 33.77 4.04 19.38 12.17 1.57

cow 26.48 26.87 0.75 25.63 25.75 0.84 15.00 13.95 1.37 33.02 28.16 8.78 31.83 31.15 2.43 26.66 26.58 0.61

harvest 31.19 25.59 0.61 30.34 24.16 0.59 27.74 22.37 1.61 35.75 29.57 3.18 33.88 27.59 2.55 32.31 24.73 0.96

Square, we colored the corresponding cell with gray. Other colors are used to
highlights the best results achieving the minimum error.

Grasta performed well on those datasets that manifest a clear diffusive com-
ponent corrupted by local and sparse non-Lamberitan effects, whereas it wors-
ened the results of Least Square estimation with respect to the last three se-
quences.

On the contrary RPCA achieved less accurate results on the first sequences
and performed better on those challenging datasets characterized by board spec-
ularity and complex BRDF (pot2, goblet,cow and harvest have a metal appear-
ance). R-GoDec behavior is similar to Grasta as can be sensed, looking at Fig.
4 – where the mean angular error is plotted for each sequence of the dataset.

Sample results of attained normals are shown in Fig. 5. One can also note
that Lmeds always improved the performance of LS.

ball cat pot1 bear pot2 buddha goblet reading cow harvest
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Fig. 4: Mean angular error on the diligent dataset (9 images, average on 10 trials)

Regularization parameter. We recall that λ is a weighting parameter that is
used by L1-ALM, R-GoDec and RPCA to balance between the low-rank and the
sparsity terms. In all the above experiments, this parameter was fixed. However,
with better choice, it is possible to correct larger amount of outliers, enhancing
the performance of the algorithms. Here we demonstrated the effect of λ on L1-
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Fig. 5: Sample normal maps obtained on cat, buddha and harvest.

ALM, R-GoDec and RPCA with respect to different number of input images we
performed normal estimation on 4, 6, 12, 18, 24, 30, 36 randomly drawn images
using C 1√

p with C ∈ {0.05, 0.1, 0.2, 0.4, 0.8, 1, 1.2, 1.4, 1.6}. The corresponding

mean angular errors are shown in Fig. 6, where it can be appreciated that L1-
ALM and R-Godec benefit of the prior knowledge of rank being less sensitive to
the number of images and the choice of λ. The minimum mean angular error per
each datasets are reported in Tab. 2, where, for completeness, we also added the
performance of Grasta varying only the number of images (λ is not required).

Table 2: Minimum mean error in degree varying λ and the number of images

ball cat pot1 bear pot2 buddha goblet reading cow harvest mean median

RPCA 2.68 7.41 7.42 6.38 10.40 11.99 14.56 15.04 10.80 25.58 11.23 10.60

L1-ALM 2.11 7.14 7.89 6.10 12.74 12.41 16.65 14.30 24.09 29.49 13.29 12.58

Grasta 2.11 7.13 7.95 6.11 12.78 12.45 16.64 20.81 25.03 29.60 14.06 12.61

R-godec 2.11 7.08 7.90 6.09 12.74 12.41 16.65 14.29 23.96 29.51 13.27 12.58

Distribution of light directions. In this experiment, we studied the effects
of the distribution of light sources. We considered three different light config-
urations depicted in Fig. 7b: A) 9 lights are randomly selected; B) we choose
a central light and the reaming 8 are those maximizing their distance from it;
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Fig. 6: Average angular error on the whole DiLiGenT dataset varying the num-
ber of images and the regularization parameter λ. (the scale of the colorbar is
different for each methods)

C) we select 9 neighboring light sources. We run all the methods on the ball
dataset, which is the only convex object and therefore results are less affected
by the actual light orientations.

The summary of the experiment is that Grasta and R-GoDec preferred ran-
dom and spread distribution, whereas RPCA and L1-ALM take advantage of
the redundancy provided by the dense configuration.
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Fig. 7: Varying the light configurations on the ball dataset

6 Conclusion

In this work, we tackle the problem of photometric stereo leveraging on robust
matrix factorization techniques. We showed that the proposed shadow estima-
tion based on Lmeds is able to produce accurate results, that, in turn, can
be profitably fed to matrix completion algorithms. Experiments on a challeng-
ing datasets demonstrate that, if the object of interest is mostly Lambertian
with strong and sparse non diffusive phenomena,it is advisable to adopt matrix
approximation method with fixed rank. In this situation Grasta, followed by
R-GoDec, performs better than L1-ALM. On the other side, if one is interested
in recovering the normals of a surface that does not exhibit a strong diffusive
behavior, all the methods suffer of low precision, but RPCA attains the more
accurate results.
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