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Abstract. Matches between images are represented by partial permu-
tations, which constitute the so-called Symmetric Inverse Semigroup.
Synchronization of these matches is tantamount to joining them in multi-
view correspondences while enforcing loop-closure constraints.
This paper proposes a novel solution for partial permutation synchroniza-
tion based on a spectral decomposition. Experiments on both synthetic
and real data shows that our technique returns accurate results in the
presence of erroneous and missing matches, whereas a previous solution
[12] gives accurate results only for total permutations.

Keywords: permutation synchronization, partial permutations, spec-
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1 Introduction

Consider a network of nodes where each node is characterized by an unknown
state. Suppose that pairs of nodes can measure the ratio (or difference) between
their states. The goal of synchronization [14] is to infer the unknown states
from the pairwise measures. Typically, states are represented by elements of
a group Σ. Solving a synchronization problem can be seen as upgrading from
relative (pairwise) information, which involves two nodes at a time, onto absolute
(global) information, which involves all the nodes simultaneously. In practice, a
solution is found by minimizing a suitable cost function which evaluates the
consistency between the unknown states and the pairwise measures.

Several instances of synchronization have been studied in the literature, which
correspond to different instantiations of Σ [7, 14, 13, 4, 2, 8, 9, 17, 3, 6]. In particu-
lar, Σ = Sd gives rise to permutation synchronization [12], where each state is an
unknown permutation (i.e. reordering) of d objects. Permutation synchronization
finds application in multi-image matching [5, 18], where a set of matches between
pairs of images is computed through standard techniques (e.g. SIFT [11]), and
the goal is to combine them in a global way so as to reduce the number of false
matches and complete the matches with new ones retrieved indirectly via loop
closure.

The authors of [12] derive an approximate solution based on a spectral de-
composition, which is then projected onto Sd. This method can effectively handle
false matches, but it can not deal with missing matches (i.e. partial permuta-
tions), as confirmed by the experiments.
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To overcome this drawback, we propose a novel method that extends [12] to
the synchronization of partial permutations.

The paper is organized as follows. In Sec. 2 the concept of synchronization
is formally defined, and it is shown that, if Σ admits a matrix representation,
a solution can be obtained via spectral decomposition. In Sec. 3 the multi-view
matching problem is introduced, and it is expressed as a synchronization prob-
lem. Sec. 4 reviews the spectral solution proposed in [12] for permutation syn-
chronization, while Sec. 5 is devoted to explain our solution to partial permu-
tation synchronization. Sec. 6 presents experiments on both synthetic and real
data, and Sec. 7 draws the conclusion.

2 Synchronization

The goal of synchronization is to estimate elements of a group given a (redun-
dant) set of measures of their ratios (or differences). Formally, let Σ be a group
and let ∗ denote its operation. Suppose that a set of measures zij ∈ Σ is known
for some index pairs (i, j) ⊆ {1, . . . , n} × {1, . . . , n}. The synchronization prob-
lem can be formulated as the problem of recovering xi ∈ Σ for i = 1, . . . , n such
that the following consistency constraint is satisfied

zij = xi ∗ x−1j . (1)

It is understood that the solution is defined up to a global (right) product with
any group element, i.e., if xi ∈ Σ satisfies (1) then also xi ∗y satisfies (1) for any
(fixed) y ∈ Σ.

If the input measures are corrupted by noise, then the consistency constraint
(1) will not be satisfied exactly, thus the goal is to recover the unknown elements
xi ∈ Σ such that a consistency error is minimized, which measures the violation
of the consistency constraint, as shown in Fig. 1. If we assume that Σ is equipped
with a metric function δ : Σ ×Σ → R+, the consistency error can be defined as

ε(x1, . . . , xn) =
∑
(i,j)

δ
(
zij , xi ∗ x−1j

)
. (2)

Definition 1. An inverse semigroup (Σ, ∗) is a semigroup in which for all s ∈ Σ
there exists an element t ∈ Σ such that s = s ∗ t ∗ s and t = t ∗ s ∗ t. In this
case, we write t = s−1 and call t the inverse of s. If Σ has an identity element
1Σ (i.e. it is a monoid), then it is called an inverse monoid.

Inverses in an inverse semigroup have many of the same properties as inverses
in a group, e.g., (a ∗ b)−1 = b−1 ∗ a−1 for all a, b ∈ Σ.

We observe that the notion of synchronization can be extended to the case
where Σ is an inverse monoid. In this case Eq. (1) still makes sense, with the
provision that x−1j now denotes the inverse of xj in the semigroup. Note that

x−1j ∗xj and xj ∗x−1j are not necessarily equal to the identity. The solution to the
synchronization problem in an inverse monoid is defined up to a global (right)
product with any element y ∈ Σ such that y ∗ y−1 = 1Σ = y−1 ∗ y.
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Fig. 1: The synchronization problem. Each node is characterized by an unknown
state and measures on the edges are ratios of states. The goal is to compute the
states that best agree with the measures.

2.1 Matrix Formulation

If Σ admits a matrix representation, i.e. Σ can be embedded in Rd×d, then
the synchronization problem can be expressed as an eigenvalue decomposition,
resulting in an efficient and simple solution. Specifically, the unknown states are
derived from the leading eigenvectors of a matrix constructed from the pairwise
measures.

Suppose, e.g., that Σ is the orthogonal group of dimension d, i.e. Σ = O(d),
which admits a matrix representation through orthogonal d × d real matrices,
where the group operation reduces to matrix multiplication, the inverse becomes
matrix transposition and 1Σ = Id (the d × d identity matrix). Let Xi ∈ Rd×d
and Zij ∈ Rd×d denote the matrix representations of xi ∈ Σ and zij ∈ Σ,
respectively. Using this notation, Eq. (1) rewrites Zij = XiX

T
j .

Let us collect the unknown group elements and all the measures in two ma-
trices X ∈ Rdn×d and Z ∈ Rdn×dn respectively, which are composed of d × d
blocks, namely

X =


X1

X2

. . .
Xn

 , Z =


Id Z12 . . . Z1n

Z21 Id . . . Z2n

. . . . . .
Zn1 Zn2 . . . Id

 . (3)

Thus the consistency constraint can be expressed in a compact matrix form as

Z = XXT. (4)

Proposition 1 ([14]). The columns of X are d (orthogonal) eigenvectors of Z
corresponding to the eigenvalue n.

Proof. Since XTX = nId it follows that ZX = XXTX = nX, which means that
the columns of X are d eigenvectors of Z corresponding to the eigenvalue n.
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Note that, since rank(Z) = d all the other eigenvalues are zero, so n is
also the largest eigenvalue of Z. In the presence of noise, the eigenvectors of
Z corresponding to the d largest eigenvalues can be seen as an estimate of X.
Note that closure is not guaranteed, thus such solution must be projected onto
Σ = O(d), e.g., via singular value decomposition.

This procedure was introduced in [14] for Σ = SO(2), extended in [1, 15] to
Σ = SO(3), and further generalized in [2, 4] to Σ = SE(d). The same formula-
tion appeared in [12] for Σ = Sd, which is a subgroup of O(d).

3 Problem Formulation

Consider a set of n nodes. A set of ki objects out of d is attached to node i (we
say that the node “sees” these ki objects) in a random order, i.e., each node has
its own local labeling of the objects with integers in the range {1, . . . , d}.
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Fig. 2: In the center, two nodes with partial visibility match their three common
objects. At the extrema the ground truth ordering of the objects. Each node
sees some of the objects (white circles are missing objects) and puts them in a
different order, i.e., it gives them different numeric labels.

For example, with reference to Fig. 2, the same object is referred to as n. 5,
e.g., in node A and as n. 3 in node B. Pairs of nodes can match these objects,
establishing which objects are the same in the two nodes, despite the different
naming. For example, a match means that the two nodes agree that “my object
n. 5 is your object n. 3”. The goal is to infer a global labeling of the objects,
such that the same object receives the same label in all the nodes.

A more concrete problem statement can be given in terms of feature match-
ing, where nodes are images and objects are features. A set of matches between
pairs of images is given, and the goal is to combine them in a multi-view match-
ing, such that each feature has a unique label in all the images.

Each matching is a bijection between (different) subsets of objects, which is
also known as partial permutation (if the subsets are improper then the permu-



Synchronization in the Symmetric Inverse Semigroup 5

tation is total). Total and partial permutations admit a matrix representation
through permutation and partial permutation matrices, respectively.

Definition 2. A matrix P is said to be a permutation matrix if exactly one
entry in each row and column is equal to 1 and all other entries are 0. A matrix
P is said to be a partial permutation matrix if it has at most one nonzero entry
in each row and column, and these nonzero entries are all 1.

Specifically, the partial permutation matrix P representing the matching be-
tween node B and node A is constructed as follows: [P ]h,k = 1 if object k in
node B is matched with object h in node A; [P ]h,k = 0 otherwise. If row [P ]h,·
is a row of zeros, then object h in node A does not have a matching object in
node B. If column [P ]·,k is a column of zeros, then object k in node B does not
have a matching object in node A.

The set of all d × d permutation matrices forms a group with respect to
matrix multiplication, where the inverse is matrix transposition, which is called
the symmetric group Sd. The set of all d× d partial permutation matrices forms
an inverse monoid with respect to the same operation, where the inverse is again
matrix transposition, which is called the symmetric inverse semigroup Id.

Let Pij ∈ Id denote the partial permutation representing the matching be-
tween node j and node i, and let Pi ∈ Id (resp. Pj ∈ Id) denote the unknown
partial permutation that reveals the true identity of the objects in node i (resp.
j). The matrix Pij is called the relative permutation of the pair (i, j), and the
matrix Pi (resp. Pj) is called the absolute permutation of node i (resp. j). It can
be easily verified that

Pij = PiP
T

j . (5)

Thus the problem of finding the global labeling can be modeled as finding n
absolute permutations, assuming that a set of relative permutations is known,
where the link between relative and absolute permutations is given by Eq. (5).

If permutations were total, Eq. 5 would be recognized as the consistency
constraint of a synchronization problem over Sd [12], and this will be reviewed
in Sec. 4. However, in all practical settings, permutations are partial, thus in
Sec. 5 we address the synchronization problem over the inverse monoid Id, as
the main contribution of this paper.

4 Permutation Synchronization

Let us describe the synchronization problem over Σ = Sd [12]. Since Sd is a
subgroup of O(d), permutation synchronization can be addressed as explained
in Sec. 2.1. Specifically, as done in Eq. (3), all the absolute/relative permutations
are collected in two matrices X ∈ Rdn×d and Z ∈ Rdn×dn respectively, namely

X =


P1

P2

. . .
Pn

 , Z =


P11 P12 . . . P1n

P21 P22 . . . P2n

. . . . . .
Pn1 Pn2 . . . Pnn

 (6)
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where Pii = PiP
T
i = Id. Thus the consistency constraint becomes Z = XXT

with Z of rank d, and the columns of X are d (orthogonal) eigenvectors of Z
corresponding to the eigenvalue n, as stated by Prop. 1. In the presence of noise,
the eigenvectors of Z corresponding to the d largest eigenvalues are computed.

We now explain the link between this spectral solution and the consistency er-
ror of the synchronization problem. Let us consider the following metric δ(P,Q) =

d− trace(P TQ) = d−
∑d
r,s=1[P ]r,s[Q]r,s, which simply counts the number of ob-

jects differently assigned by permutations P and Q. Thus Eq. (2) rewrites

ε(P1, . . . , Pn) =

n∑
i,j=1

(
d− trace

(
P T

ijPiP
T

j

))
(7)

and hence the synchronization problem over Sd becomes equivalent to the fol-
lowing maximization problem

max
P1,...,Pn∈Sd

n∑
i,j=1

trace
(
P T

ijPiP
T

j

)
⇐⇒ max

X∈Sn
d

trace
(
XTZX

)
. (8)

Solving (8) is computationally difficult since the feasible set is non-convex.
A tractable approach consists in relaxing the constraints and considering the
following optimization problem

max
UTU=nId

trace
(
U TZU

)
(9)

which is a generalized Rayleigh problem, whose solution is given by the d leading
eigenvectors of Z.

Since Problem (9) is a relaxed version of Problem (8), the solution U formed
by eigenvectors is not guaranteed to be composed of permutation matrices. Thus
each d×d block in U is projected onto Sd via the Kuhn-Munkres algorithm [10].
As long as U is relatively close to the ground-truth X, this procedure works well,
as confirmed by the experiments.

5 Partial Permutation Synchronization

Consider now the synchronization problem over Σ = Id. Despite the group
structure is missing, we show that a spectral solution can be derived in an
analogous way, which can be seen as the extension of [12] to the case of partial
permutations.

We define two block-matrices X and Z containing absolute and relative per-
mutations respectively – as done in (6) – so that the consistency constraint
becomes Z = XXT with Z of rank d. Note that here Pi ∈ Id, thus the d × d
(diagonal) matrix Pii = PiP

T
i is not equal, in general, to the identity, unless

Pi ∈ Sd. Indeed, the (k, k)-entry in Pii is equal to 1 if node i sees object k, and
it is equal to 0 otherwise. When all the objects seen by node i are different from
those seen by node j we have PiP

T
j = 0, resulting in a zero block in Z.
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Proposition 2. The columns of X are d (orthogonal) eigenvectors of Z and the
corresponding eigenvalues are given by the diagonal of V :=

∑n
i=1 P

T
i Pi.

Proof. Define the d× d diagonal matrix V := XTX =
∑n
i=1 P

T
i Pi. Then ZX =

XXTX = XV which is a spectral decomposition, i.e. the columns of X are d
eigenvectors of Z and the corresponding eigenvalues are on the diagonal of V .

Although Id is not a group, we have obtained an eigenvalue decomposition
problem where the non-zero (and hence leading) eigenvalues are d integers con-
tained in the diagonal of V . Specifically, the k-th eigenvalue counts how many
nodes see object k. In the case of total permutations all the nodes see all the
objects, thus V = nId and all the eigenvalues are equal, hence we get Prop. 1.

In the presence of noise, the eigenvectors of Z corresponding to the d largest
eigenvalues, which are collected in a nd × d matrix U , solve Problem (9) as in
the case of total permutations.

Note that the reverse of Prop. 2 is not true, i.e., the matrix U is not necessarily
equal (up to scale) to X. Indeed, a set of eigenvectors is uniquely determined
(up to scale) only if the corresponding eigenvalues are distinct. However, when
eigenvalues are repeated, the corresponding eigenvectors span a linear subspace,
and hence any (orthogonal) basis for such a space is a solution. Note that all
the eigenvalues are integer numbers lower or equal to n. Thus, when the number
of objects is larger than the number of nodes (i.e., d > n) – which is likely
to happen in practice – the eigenvalues are indeed repeated, therefore U is not
uniquely determined.

So we have to face the problem of how to select, among the infinitely many Us,
the one that resembles X, a matrix composed of partial permutations. Projecting
each d × d block of U onto Id does not solve the problem, as confirmed by
the experiments. A key observation is reported in the following proposition,
suggesting that such a problem can be solved via clustering techniques.

Proposition 3. Let U be the nd × d matrix composed by the d leading eigen-
vectors of Z; then U has d+ 1 different rows (in the absence of noise).

Proof. Let λ1, λ2, . . . , λ` denote all the distinct eigenvalues of Z (with ` ≤ d),

and let m1,m2, . . . ,m` be their multiplicities such that
∑`
k=1mk = d. Let Uλk

denote the mk columns of U corresponding to the eigenvalue λk, and let Xλk
be

the corresponding columns of X. Up to a permutation of the columns, we have

U = [Uλ1 Uλ2 . . . Uλ`
], X = [Xλ1 Xλ2 . . . Xλ`

]. (10)

Since Uλk
and Xλk

are (orthogonal) eigenvectors corresponding to the same
eigenvalue, there exists an orthogonal matrix Qk ∈ Rmk×mk representing a
change of basis in the eigenspace of λk, such that Uλk

= Xλk
Qk. In matrix

form this rewrites

U = X blkdiag(Q1, Q2, . . . , Q`)︸ ︷︷ ︸
Q

(11)
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where blkdiag(Q1, Q2, . . . , Q`) produces a d×d block-diagonal matrix with blocks
Q1, Q2, . . . , Q` along the diagonal. Note that the rows of X are the rows of Id
plus the zero row. Since Q is invertible (hence injective), U = XQ has only d+1
different rows as well.

In the presence of noise, we can cluster the rows of U with k-means into d + 1
clusters, and then assign the centroid which is closest to zero to the zero row,
and arbitrarily assign each of the other d centroids to a row of Id. Recall that the
solution to partial permutation synchronization is defined up to a global total
permutation.

Note that, if we assign each row of U to the centroid of the corresponding
cluster, then we may not obtain partial permutation matrices. Indeed, since
there are no constraints in the clustering phase, it may happen that different
rows of a d × d block in U are assigned to the same cluster, resulting in more
than one entry per column equal to 1. For this reason, for each d × d block in
U we compute a partial permutation matrix that best maps such block into the
set of centroids via the Kuhn-Munkres algorithm [10], and such permutation is
output as the sought solution.

Remark 1. As observed (e.g.) in [5], the multi-view matching problem can be
seen as a graph clustering problem, where each cluster corresponds to one object
(feature) out of d. The underlying graph is constructed as follows: each vertex
represents a feature in an image, and edges encode the matches. Note that the
matrix Z defined in (6) coincides with the adjacency matrix of such a graph.
Our procedure first constructs a dn×d matrix U from the d leading eigenvectors
of Z, and then applies k-means to the rows of U . This coincides with solving the
multi-view matching problem via spectral clustering applied to the adjacency
matrix, rather than to the Laplacian matrix as customary.

6 Experiments

The proposed method – henceforth dubbed PartialSynch – was implemented
in Matlab and compared to the solution of [12] (which will be referred to as
TotalSynch1), considering both simulated and real data.

In the synthetic experiments, performances have been measured in terms of
precision (number of correct matches returned divided by the number of matches
returned) and recall (number of correct matches returned divided by the number
of correct matches that should have been returned). In order to provide a single
figure of merit we computed the F-score (twice the product of precision and
recall divided by their sum), which is a measure of accuracy and reaches its best
value at 1. In the real experiments the number of matches that should have been
returned is not known, hence only the precision could be computed.

For the synthetic case, a fixed number of d = 20 objects was chosen, while the
number of nodes varied from n = 10 to n = 50. The observation ratio, i.e., the

1 The code is available at http://pages.cs.wisc.edu/~pachauri/perm-sync/
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(a) (b)

(c) (d)

Fig. 3: F-score (the higher the better) of PartialSynch (a,c) and TotalSynch
(b,d). In (a,b) the number of nodes n and the input error rate are varying, while
the observation ratio is constant and equal to 0.6. In (c,d) the observation ratio
and input error rate vary with n = 30.

probability that an object is seen in a node, decreased from 1 (that corresponds to
total permutations) to 0.2. After generating ground-truth absolute permutations,
pairwise matches were computed from Eq. (5). Then random errors were added
to relative permutations by switching two matches, removing true matches or
adding false ones. The input error rate, i.e., the ratio of mismatches, varied
from 0 to 0.8. For each configuration the test was run 20 times and the mean
F-score was computed. In order to evaluate a solution, the total permutation
that best aligns the estimated absolute permutations onto ground-truth ones
was computed with the Kuhn-Munkres algorithm.

Results are reported in Fig. 3, which shows the F-score for the two methods
as a function of number of nodes, observation ratio and input error rate. In
the case of total permutations (observation ratio = 1) both techniques perform
well. Our method (PartialSynch) correctly recovers the absolute permutations
even when not all the objects are seen in every node, and in the presence of
high contamination. On the contrary, TotalSynch cannot deal with partial
permutations, indeed its performances degrade quickly as the observation ratio
decreases. In general, the accuracy increases with the number of nodes.

In the experiments with real data, the problem of feature matching across
multiple images was considered. The Herz-Jesu-P8 and Fountain-P11 datasets
[16] were chosen, which contain 8 and 11 images respectively. A set of features
was detected with SIFT [11] in each image. Among them a subset was manually
selected by looking at the tracks, with the aim of knowing the total number of
objects (equal to d = 30). Subsequently, correspondences between each image
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pair (i, j) were established using nearest neighbor and ratio test as in [11] and
refined using RANSAC. The resulting relative permutations Pij were given as
input to the considered methods.

Table 1: Precision [%] achieved by the two methods.

Data PartialSynch TotalSynch

Fountain-P11 95.4 43.6

Herz-Jesu-P8 93.6 50.7

When evaluating the output, matches were considered correct if they lie
within a given distance threshold (set equal to 0.01 times the image diagonal)
from the corresponding epipolar lines, computed from the available ground-truth
camera matrices. The precision achieved by the two methods on these sets is
reported in Tab. 1, which confirm the outcome of the experiments on simulated
data. For illustration purposes, Fig. 4 shows the results for some sample images.

Fig. 4: Matches for a representative image pair from the Fountain-P11 dataset
(top) and from the Herz-Jesu-P8 dataset (bottom). True matches and false
matches are shown in light-blue and red, respectively, for PartialSynch (left)
and TotalSynch (right).

7 Conclusion

In this paper we proposed a novel solution for partial permutation synchro-
nization based on a spectral decomposition, that can be applied to multi-image
matching. The method was evaluated through synthetic and real experiments,
showing that it handles both false and missing matches, whereas [12] gives ac-
curate results only for total permutations.
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