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Abstract. In this paper we present a structure-from-motion pipeline
based on the synchronization of relative motions derived from epipo-
lar geometries. We combine a robust rotation synchronization technique
with a fast translation synchronization method from the state of the art.
Both reduce to computing matrix decompositions: low-rank & sparse
and spectral decomposition. These two steps successfully solve the mo-
tion synchronization problem in a way that is both efficient and robust to
outliers. The pipeline is global for it considers all the images at the same
time. Experimental validation demonstrates that our pipeline compares
favourably with some recently proposed methods.
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1 Introduction

Structure from Motion (SfM) is a crucial problem in Computer Vision. The
goal is to recover both 3D structure, namely 3D coordinates of scene points,
and motion parameters, namely attitude (rotation) and position of the cameras,
starting from image point correspondences.

For many years, most practical SfM pipelines have adopted either sequential
or hierarchical approaches. Sequential methods, such as [20], incrementally in-
crease a partial reconstruction by iteratively adding new cameras and 3D points,
whereas hierarchical ones, such as [22], organize images in a binary tree and pro-
gressively merge smaller reconstructions into larger ones. Although being highly
accurate, these approaches suffer from two main disadvantages: on one hand
they require computationally-expensive intermediate bundle adjustment mini-
mizations to contain error propagation, on the other hand the final reconstruc-
tion may depend on the order in which cameras are added or on the choice of
the initial pair.

Recently, global SfM pipelines, such as [15, 18, 1, 17, 19], have gained increas-
ing attention in the community. Such methods start from the relative motions,
i.e. epipolar geometries computed from point matches among the images, com-
pute the angular attitude and position of the cameras with respect to an absolute
coordinate frame, and then recover the 3D structure. Here the term global means
that such techniques take into account the entire relative motion information at
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once, or, in other terms, they consider the whole epipolar graph, which has a ver-
tex for each camera and edges in correspondence of view pairs having consistent
matching points. Global methods have the advantage of fairly distributing errors
among the cameras, and thus they need bundle adjustment refinement only at
the end, thereby performing faster than the other methods.

The core of global methods is the so-called motion synchronization problem
(a.k.a motion registration or motion averaging), i.e. computing absolute posi-
tions and attitudes starting from relative measurements. Formally, the goal is to
compute n rotation matrices Ri ∈ SO(3) and n translation vectors ti ∈ R3 such
that the projection matrix of the i-th camera is expressed as Pi = Ki

[
Ri ti

]
,

where Ki ∈ R3×3 are the internal calibration matrices, assumed known. It is
inherent to the problem that the motion parameters can be recovered up to a
roto-translation and a single scaling factor. Most techniques split such a problem
in two stages: first they compute the absolute attitude of each camera, and then
they recover camera positions.

The first stage is known as rotation synchronization (or rotation registration
or multiple rotation averaging) and a thorough overview of the theory behind it
can be found in [12]. Several approaches have been proposed to solve this prob-
lem, both within SfM pipelines and in stand-alone works. Non-robust methods,
such as [18, 1, 17], suffer from the presence of inconsistent/outlier pairwise in-
formation, i.e. skewed epipolar geometries caused by mismatches, and thus they
need a computationally-expensive preliminary step devoted to detect and remove
such outliers. On the contrary, robust techniques, such as [11, 8, 2], are inherently
resilient to outliers and hence they are more efficient.

The position recovery stage (a.k.a. translation synchronization or translation
registration) can use only constraints derived from relative translation directions,
such as [4, 9, 17, 19], or additionally exploit point correspondences among the
images, such as [15, 1, 24]. In practical SfM pipelines, methods from the former
category should be preferred: besides being more consistent with the structure
from motion paradigm – where structure comes into play only after motion has
been computed – they are potentially more efficient, since they reduce memory
usage.

Contribution. In this paper we combine the rotation synchronization technique
in [2] with the translation synchronization method in [4]. The resulting global
pipeline successfully solves the motion synchronization problem, while ensuring
at the same time both efficiency and robustness to outliers. More precisely,
motion synchronization is reduced to computing two matrix decompositions,
involving matrices of dimension 3n×3n: first a low-rank & sparse decomposition,
then a spectral factorization. Experimental validation demonstrates that our
pipeline compares favourably with some recently proposed methods.

1.1 Overview

The proposed SfM pipeline is organized as follows.
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Step 1: computing relative motions. First, a collection of reliable corre-
spondences for each image pair is obtained by extracting and matching SIFT
features. After expressing these image points in normalized coordinates (i.e. left-
multiplying by the inverse of the calibration matrices), the essential matrices
are computed through RANSAC in combination with the 8-point algorithm.
The epipolar graph is then built with an edge linking two views for which a
sufficient number of inliers have been found. For each edge the relative motion
is computed from the essential matrix, and it is subsequently refined through
Bundle Adjustment (BA). The X84 rejection rule [10] is introduced at each step
of BA, removing image points with the highest reprojection error.

Step 2: motion synchronization. The first step synchronizes relative rota-
tions in a robust manner, and it is at the same time efficient, thanks to the usage
of a faster alternative to singular value decomposition for computing low-rank
projections (Section 2). The second step (Section 3) reduces translation recovery
to a graph embedding problem, which is equivalent to computing the smallest
eigenvector of a data matrix, which does not involve corresponding points, result-
ing in an extremely fast method. The relative translation directions are refined
through Iteratively Reweighted Least Squares (IRLS).

Step 3: final refinement. The correspondences are tracked through the images
and 3D coordinates of scene points are computed by triangulation. The structure
and absolute translations are refined with a partial BA with fixed rotations.
Then, a global BA is applied to improve the quality of structure and motion
estimation. The idea of using a two-stage BA is inspired by [17, 18] and it is
motivated by the fact that rotations are more reliable in general. As in Step 1,
at each iteration of BA the X84 rejection rule singles out outliers, based on the
reprojection error.

2 Rotation synchronization

The rotation synchronization step in a global structure-from-motion pipeline
takes as input the observed pairwise rotations R̂ij ∈ SO(3) and returns the
absolute rotations of the cameras Ri ∈ SO(3) such that the latter are “compat-

ible” with the former, i.e. RiR
T
j ≈ R̂ij . In this paper we use the hat accent to

denote noisy measurements. The notion of compatibility can be formalized by
considering the chordal distances between the estimated and unknown relative
rotations, resulting in the following rotation synchronization problem

min
Ri∈SO(3)

∑
(i,j)∈E

∥∥∥R̂ij −RiRT
j

∥∥∥2
F
. (1)

where E ⊆ {1, . . . , n} × {1, . . . , n} is the edge set of the epipolar graph.
More precisely, we use the R-GoDec Algorithm introduced in [2] which

solves a regularized version of (1) in order to cope with outlying relative rota-
tions. In Section 2.1 we describe such an algorithm in a general scenario, while
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in Section 2.2 we explain how to apply this method to find camera absolute
rotations.

2.1 The R-GoDec Algorithm

The matrix completion problem [7, 14, 5] consists in completing a low-rank ma-

trix X̂ starting from an incomplete subset of its entries PΩ(X̂) possibly corrupted
with a low level of noise. Here Ω denotes the sampling set and PΩ is the projec-
tion onto the space of matrices that vanish outside Ω. The goal of low-rank and
sparse matrix decomposition [6, 25] is to find a low-rank term L, a sparse term S
representing outlier measurements, and a noise term N such that a data matrix
X̂ can be written as

X̂ = L+ S +N. (2)

On one hand, matrix completion techniques are able to guess missing entries,
but they are not robust to outliers. On the other hand, matrix decomposition
techniques handle sparse errors of large intensity but they do not deal with miss-
ing data. There is a small fraction of methods (including [23, 13, 2]) addressing
this double problem simultaneously, i.e. performing robust matrix completion or
equivalently matrix decomposition with missing entries.

The R-GoDec Algorithm [2] is a combination of matrix completion and
matrix decomposition techniques, and was derived by properly modifying the
GoDec Algorithm [25] in order to handle outliers and missing entries simulta-
neously. More precisely, the sparse term S in (2) is replaced by the sum of two
terms S1 and S2 having dual supports: S1 is a sparse matrix over the sampling
set Ω which is nonzero in correspondence of the outlier entries only; S2 has sup-
port on ΩC (the complementary of Ω) and it is an approximation of −PΩC(L),
representing recovery of missing entries. This results in the following model

X̂ = L+ S1 + S2 +N. (3)

Assuming that the rank r of the low-rank term is known in advance, the associ-
ated minimization problem is

min
L,S1,S2

1

2

∥∥∥X̂ − L− S1 − S2

∥∥∥2
F

+ λ ‖S1‖1

s.t. rank(L) ≤ r, supp(S1) ⊆ Ω, supp(S2) = ΩC

(4)

where λ ≥ 0 is a regularization parameter, and ‖S1‖1 denotes the `1-norm of its
argument considered as a vector. Since the `1-norm is a sparsity-inducing norm,
it is expected to separate sparse outliers from non corrupted low-rank data by
minimizing the cost function in (4).

In order to solve problem (4), R-GoDec alternatively minimizes the cost
function with respect to each optimization variable, keeping constant the others.
In other words, the following steps are iterated until convergence.

– The rank-r approximation of X̂ − S1 − S2 is assigned to L;
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– The minimizer of the cost function in (4) with respect to S1 is assigned to S1,
i.e. the result of applying entry-wise Soft Thresholding [3] with parameter λ

to the matrix PΩ(X̂ − L);

– The quantity PΩC(X̂ − L− S1) = −PΩC(L) is assigned to S2.

The low-rank projection is computed through Bilateral Random Projections
(BRP) [25] instead of Singular Value Decomposition (SVD) in order to reduce
the computational cost. More details can be found in [2].

2.2 Robust Rotation Synchronization

Let us introduce the following notation:

R =


R1

R2

. . .
Rn

 ∈ R3n×3, X =


I R12 . . . R1n

R21 I . . . R2n

. . . . . .
Rn1 Rn2 . . . I

 ∈ R3n×3n. (5)

As observed in [1], it follows from the compatibility constraint Rij = RiR
T
j that

the block matrix X admits the factorization X = RRT and hence it has rank 3.
Let X̂ be an estimate of X, constructed by replacing Rij with R̂ij in (5). Matrix

completion is required here since not all R̂ij are available in practice, i.e. the
epipolar graph is not complete. Moreover, matrix decomposition is required since
some pairwise rotations may be wrong due to repetitive patterns and symmetries
in the images. Indeed, these structures generate false essential matrices, namely
two-view geometries which do not agree with the real 3D geometry, even if they
are satisfied by the majority of point matches. Thus, in order to handle both
missing and outlier blocks in X̂, in addition to a diffused noise, a decomposition
of the form (3) is required, and it can be computed through the R-GoDec
Algorithm with r = 3.

Formally, computing the low-rank & sparse matrix decomposition of X̂ is
equivalent (up to a relaxation) to solve the rotation synchronization problem (1)
in a robust manner. We now briefly explain this connection, more details can
be found in [2]. By using the notation in (5), it is straightforward to see that
problem (1) can be expressed equivalently as

min
X

1

2

∥∥∥PΩ(X̂ −X)
∥∥∥2
F

s.t. X = RRT, R ∈ SO(3)n
(6)

which, if all the requirements on X are ignored but the rank constraint, reduces
to

min
L

1

2

∥∥∥PΩ(X̂ − L)
∥∥∥2
F

s.t. rank(L) ≤ 3.
(7)

The notation L instead ofX highlights that L will not coincide withX in general,
due to the rank relaxation, i.e. L will not be symmetric positive semidefinite and
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composed of rotations. Problem (7) is a matrix completion problem [7], and it
can be written in an equivalent form as follows

min
L,S2

1

2

∥∥∥X̂ − L− S2

∥∥∥2
F

s.t. rank(L) ≤ 3, supp(S2) = ΩC
(8)

where the additional variable S2 is introduced to handle missing entries and the
projection operator PΩ is not required. Finally, if robustness is introduced in (8)
through `1-regularization, then problem (4) is obtained.

Once problem (4) is solved by means of the R-GoDec Algorithm, the opti-
mal L is used to estimate the absolute rotations. Since the solution of rotation
synchronization is defined up to a global rotation, any block-column of L – after
projection onto SO(3) – can be viewed as an estimate of R. The absolute ro-
tations computed in this way are resilient to outliers, since the cost function in
(4) naturally includes the outliers in its definition through the sparse matrix S1.
However, a posteriori outlier detection is useful for the subsequent step of trans-
lation synchronization. Rogue relative rotations correspond to non-zero entries
in the sparse matrix S1. Thus a rotation R̂ij is classified as outlier if the number
of non-zero entries in the associated 3 × 3 block in S1 is greater than a given
threshold θ, with θ ∈ {1, . . . , 9}. In this case, the edge (i, j) is removed from E ,
since the entire epipolar geometry associated to (i, j) is likely to be wrong.

3 Translation synchronization

The translation synchronization step in a global structure-from-motion pipeline
takes as input either a set of corresponding points or the relative translation
directions, and returns the absolute translations of the cameras ti ∈ R3, or
equivalently the camera positions (centers) ci = −RT

i ti. Accordingly, there are
several ways to define a suitable cost function for the problem. A possibility is
to constraint camera locations to be linear combinations of rays emanating from
their neighbours, with known directions and unknown coefficients. This concept
is formalized in [4] where a fast spectral solution is developed. In Section 3.2
we describe such algorithm, while in Section 3.1 we explain how to refine the
translation directions in an accurate way, based on the knowledge of absolute
rotations and corresponding points.

3.1 Refining the relative translation directions

First, the relative rotations are updated by using the compatibility constraint
Rij = RiR

T
j , where Ri are the absolute rotations returned by R-GoDec. Then,

the epipolar constraint with known rotation becomes a linear equation in the
unknown tij ∈ R3 for each pair of point matches.

Let {pki ,pkj }
Nij

k=1 denote a set of Nij corresponding points for the pair (i, j) ∈
E expressed in normalized coordinates. By using the invariance to permutation
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of a triple product (up to sign), the epipolar constraint of this image pair can
be expressed equivalently as

(pki ×Rijpkj )Ttij = 0. (9)

By stacking all these equations, a homogeneous system is obtained, whose so-
lution is the desired estimate of the relative translation direction tij/ ‖tij‖. In
order to cope with rogue point correspondences we apply Iteratively Reweighted
Least Squares (IRLS) to the residuals ek of the linear system (9). The weights
wk are computed by using Mosteller and Tukey’s weight function [16], namely
wk = (1− (ek/s)

2)2 if ek ≤ s, wk = 0 otherwise.

3.2 A Fast Spectral Method

Let cij = ci − cj = −RT
i tij denote the baseline of the pair (i, j) and let

dij = cij/ ‖cij‖ = −RT
i tij/ ‖tij‖ denote its direction. Let d̂ij be an estimate

of dij , computed as explained in the previous section. The goal is to find a real-

ization of the locations ci ∈ R3 starting from the measurements d̂ij . In [4] cam-
era positions are recovered by imposing that camera-to-camera displacements
(ci − cj) are maximally “consistent” with the constraint directions d̂ij . The
notion of consistency is expressed as a minimum-squared-error problem where
the components of the displacements that are orthogonal to the constraints are
minimized. This results in the following problem

min
ci∈R3

∑
(i,j)∈E

∥∥∥(ci − cj)
TK̂ij

∥∥∥2
F

(10)

where K̂ij is an orthonormal basis for the kernel of d̂ij . Optionally, weights can

be included in (10) to reflect the uncertainty of the estimates d̂ij (see [4] for
details).

If c = [cT1 , . . . , c
T
n]T ∈ R3n denotes the stack of the unknown locations ci,

then the following equalities hold for the cost function in (10)∑
(i,j)∈E

∥∥∥(ci − cj)
TK̂ij

∥∥∥2
F

=
∑

(i,j)∈E

(ci − cj)
TK̂ijK̂

T
ij(ci − cj) =

∑
(i,j)∈E

cTi D̂ijci + cTj D̂ijcj − cTi D̂ijcj − cTj D̂ijci = 2cTĤc
(11)

where D̂ij = I3 − d̂ijd̂
T
ij = K̂ijK̂

T
ij ∈ R3×3 is the orthogonal projector onto

Ker(d̂ij), D̂ ∈ R3n×3n is constructed by placing D̂ij in each 3×3 block (and zero

blocks in correspondence of missing edges), and Ĥ = blockdiag(D̂(1n⊗I3))−D̂.
Here 1n denotes the vector in Rn with 1 at each entry, and ⊗ denotes the
Kronecker product. Thus problem (10) is equivalent to minimize the following
quadratic form

min
‖c‖=1

cTĤc. (12)
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Problem (12) admits a closed-form solution which is the eigenvector of Ĥ
with minimum eigenvalue. However, ci = cj for all i, j is a trivial solution to
problem (10), that corresponds to mapping all the cameras to a single point in

R3. This trivial subspace is spanned in R3n by the vectors
[
1 0 0 . . . 1 0 0

]T
,[

0 1 0 . . . 0 1 0
]T

,
[
0 0 1 . . . 0 0 1

]T
which can be concatenated to form the ma-

trix 1n⊗ I3 ∈ R3n×3. Thus the kernel of Ĥ will have (exactly or approximately)

dimension 4, and the sought solution must belong to Ker(Ĥ) and be orthogonal
to 1n ⊗ I3 at the same time, in order to avoid the trivial solution. To com-
pute it, it is sufficient to project Ĥ onto an orthogonal basis Q ∈ R3n×3n−3 of
Ker(1n⊗I3), compute the eigen-decomposition of the reduced problem and then
back project the eigenvectors.

This method has the advantage of being both simple and extremely fast, as
translation synchronization is cast to an eigenvalue decomposition of a matrix
whose size does not depend on the number of matching points. More details
about this technique can be found in [4], including problem pathologies that
appear where the data are insufficient or inconsistent.

4 Experiments

In this section we evaluate our pipeline on publicly available datasets [21] where
the number of cameras varies from 8 to 30 and ground-truth motions are avail-
able. All the experiments are carried out in MATLAB on a dual-core 1.3 GHz
machine.

To define the epipolar graph, we consider only image pairs having more than
500 inlier correspondences. As for rotation averaging, we perform at most 100
iterations of R-GoDec, using the value λ = 0.05, and we choose the value θ = 3
for outlier detection. In order to compare our results with ground-truth absolute
rotations, we find the optimal rotation that aligns them by performing single
rotation averaging [11]. As for camera positions, we find the scale and translation
of the optimal alignment by solving the associated linear system in the least-
square sense. We use the angular distance and the euclidean norm as distance
measures for rotations and positions respectively. The results of our simulations
are reported in Tables 1, 2 and 3, where our pipeline is compared with the
global methods described in [19, 17]. As for [19], the online code concerns motion
averaging only, thus we used our pipeline for the remaining steps. The results of
Moulon et al. reported in Table 2 are taken from their original paper [17], where
only translation errors are disclosed. We also include in the comparison the
hierarchical approach of [22], whose binary code is available online. To evaluate
the execution times, we consider the largest datasets, i.e. HerzJesu-P25 and
Castle-P30, and MATLAB implementations.

Tables 1 and 2 show that our pipeline is able to recover camera motion accu-
rately, achieving results which are comparable to the other analysed techniques,
and within the accuracy of the ground truth [21]. We obtain an average an-
gular error less than 0.1 degrees and an average location error of the order of
millimeters, after the final Bundle Adjustment (BA), confirming that motion
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Table 1: Mean angular errors [degrees] on the absolute rotations.

Our Pipeline Ozyesil et al. [19] Samantha [22]
before BA after BA before BA after BA

Castle-P30 0.78 0.05 1.97 0.05 0.06
Castle-P19 1.57 0.05 3.69 0.05 0.09
Entry-P10 0.44 0.03 0.56 0.04 0.05
Fountain-P11 0.03 0.03 0.03 0.03 0.06
HerzJesu-P25 0.13 0.04 0.14 0.04 0.03
HerzJesu-P8 0.04 0.03 0.06 0.03 0.04

Table 2: Mean errors [meters] on the absolute positions.

Our Pipeline Ozyesil et al. [19] Moulon et al. [17] Samantha [22]
before BA after BA before BA after BA after BA

Castle-P30 1.123 0.030 1.393 0.030 0.022 0.033
Castle-P19 1.493 0.036 1.769 0.032 0.026 0.046
Entry-P10 0.433 0.009 0.203 0.010 0.006 0.022
Fountain-P11 0.006 0.003 0.004 0.003 0.003 0.006
HerzJesu-P25 0.038 0.009 0.065 0.009 0.005 0.031
HerzJesu-P8 0.009 0.004 0.007 0.005 0.004 0.007

synchronization provides a good initialization. In some cases the result is more
than an initialization, being already very close to the BA optimum. In some
other cases (namely, Castle-P*), the difference with BA is higher. Nevertheless,
the angular errors obtained with our pipeline before BA are lower than those ob-
tained with [19], confirming the effectiveness of low-rank & sparse decomposition
for outlier handling.

As concerns the execution cost, our method outperforms the technique in
[19]. Indeed, the method used in our pipeline, is one of the fastest translation
synchronization techniques present in the literature as it finds camera positions
by eigenvalue-decomposition of a 3n × 3n matrix. Also the rotation synchro-
nization is very efficient, as the R-GoDec Algorithm is based on fast BRP. We
cannot directly compare the performances of [17], as the code is in C++, but
we draw the attention of the reader on the outlier removal step, which consists
in performing Bayesian inference on cycles within the epipolar graph, analysing
the deviation from the identity. The number of cycles analysed must be high
in order to make meaningful statistical inference, resulting in a computationally
expensive technique.

Table 3: Execution times [seconds] of motion synchronization.

Our pipeline Ozyesil et al. [19]
Rotation Translation Rotation Translation

Castle-P30 0.05 0.05 0.15 0.80
HerzJesu-P25 0.04 0.04 0.13 1.32
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Finally, in Figure 1 we report the 3D point cloud obtained with our system
in the case of the Castle-P30 sequence. Even if these images contain repetitive
windows, resulting in outlying two-view geometries, we are able to recover the
3D structure accurately.

Fig. 1: Left: sample images of the Castle-P30 dataset. Right: sparse 3D recon-
struction obtained with our pipeline. The root-mean-squared reprojection error
(RMSE) is 0.1681 pixels.

5 Conclusion

In this paper we proposed a global SfM pipeline, based on the synchronization
of relative motions. We combined a robust rotation synchronization technique
with a fast translation synchronization method from the state of the art. Ab-
solute rotations are computed through low-rank & sparse matrix decomposition
(R-GoDec), while absolute locations are recovered through eigenvalue decom-
position. The resulting system inherits robustness from R-GoDec and efficiency
from both matrix decompositions. Thus it is able to recover camera motion ac-
curately, even in the presence of outliers, achieving low computational cost, as
demonstrated by the experiments.
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