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Strada Le Grazie, 15 - 37134 Verona, Italy
colombari@sci.univr.it, {andrea.fusiello,vittorio.murino}@univr.it

Abstract

This paper deals with the problem of segmenting a video
shot into a background (still) mosaic and one or more fore-
ground moving objects. The method is based on ego-motion
compensation and background estimation. In order to be
able to cope with sequences where occluding objects per-
sist in the same position for a considerable portion of time,
the papers concentrates on robust background estimation
method. First the sequence is subdivided in patches that are
clustered along the time-line in order to narrow down the
number of background candidates. Then the background is
grown incrementally by selecting at each step the best con-
tinuation of the current background, according to the prin-
ciples of visual grouping. The method rests on sound prin-
ciples in all its stages, and only few, intelligible parameters
are needed. Experiments with real sequences illustrate the
approach.

1. Introduction

The usefulness of digital video – which is nowadays
widespread on the World Wide Web and in multimedia
databases – is limited by the lack of a true content-based
description, that would allow interactive manipulation and
adaptation. Content-based representation of videos was in-
troduced several years ago in the MPEG-4 [15] standard,
yet reliable and automatic tools for automatic extraction of
Video Objects are not available. Although some attempts
have been made [10, 5, 31, 18, 4], the challenge is to cope
with real, complex situations, where Video Objects interacts
with themselves and with the environment.

This paper makes a step forward in this direction, in the
case where the scene is composed by a static background
plus some foreground (possibly moving) objects.

After having compensated for camera motion, fore-
ground objects can be extracted effectively by subtracting
the static background from each frame [23], provided that
the background can be estimated. The problem – also called

background initialization in the surveillance literature – is
defined as follows: given a video sequence taken with a sta-
tionary camera, in which a static background is occluded by
any number of foreground moving objects, output a single
image of the static background (even if such an image have
never been captured).

In the most fortuitous cases, foreground has the property
to insist on each pixel location for less than 50% of the en-
tire sequence length. In this case background is obtained
as the median of each pixel color distribution. Other tech-
niques [26, 8, 30] have been proposed which, like the me-
dian, operate at pixel-level, making decisions independently
for each pixel. The Adaptive Smoothness Method [17], for
example, finds intervals of stable intensity in the sequence.
Then, using some heuristics, the longest stable value for
each pixel is selected and used as the value that most likely
represents the background. Unfortunately, pixel-level data
can be useful in narrowing the number of possible candidate
values for the background, but, if foreground is stationary
for a long period of time, these techniques fail.

Spatial support must be taken into consideration as an
additional heuristics in order to overcome this problem
[19, 12, 16]. The Local Image Flow algorithm [6], for in-
stance, considers also information generated by the neigh-
boring locations, namely the local optical flow. Background
values hypotheses are generated by locating intervals of rel-
atively constant intensity, which are weighted with local
motion information. This technique, however, cannot cope
with foreground objects that move only in few frames, or
equivalently, with the problem of estimating the background
from two images only.

Our approach is able to cope with sequences where fore-
ground objects persist in the same position for a consider-
able portion of time. First the sequence is subdivided in
patches that are clustered along the time-line in order to
narrow down the number of background candidates. Then
the background is grown incrementally by selecting at each
step the best continuation of the current background. Spa-
tial continuity is enforced through the principles of visual
grouping [28].



Related works can be found in the areas of video inpaint-
ing [29, 20, 13] where the problem is to repair holes in a
video sequence with plausible values. Background initial-
ization could be cast as video inpainting if the foreground
masks were known beforehand, which do not makes sense
in our case. Moreover we seek to estimate a physically
valid view of the background, by choosing pixel values only
along the same time-line, whereas this is not usually a con-
straint in video inpainting.

Regarding background initialization, the closest works
to ours are [2] and [22], that deals with background initial-
ization and mosaic completion respectively. They are based
on the same scheme: (i) identify an initial region which is
sure to be background and then (ii) fill-in the remaining un-
known background incrementally by choosing values from
the same time-line. At each step, the patch that maximizes
a likelihood measure with respect to the surrounding zone,
already identified as background, is selected. This entails
that the background should be self-similar (like a building’s
facade) and that the starting region should be large enough
to provide sufficient information. On the contrary, this need
not to be assumed in our algorithm.

2. Overview

The input is a video shot1 with a stationary background.
If the background is planar (like a facade) the camera can
move freely, otherwise it is constrained to rotate only (like
in a panning operation). These constraints derive from the
fact that background recovery is based on mosaicing.

The output is a representation of the sequence suitable
to be encoded in MPEG-4 (Main Profile) [15]. The central
concept in MPEG-4 is that of the Video Object (VO). Be-
ing content-based oriented, MPEG-4 considers a scene to
be composed of several VOs, which are separately encoded
[21]. Each VO is characterized by intrinsic properties such
as shape, texture, and motion. Shape is represented by a bi-
nary mask or by an 8-bit transparency mask (this feature is
available in the MPEG-4 Main Profile).

In our case, the shot is represented as being composed
by a sprite panorama (i.e., a still image describing the con-
tent of the background over all the frames in the shot) and
one arbitrary-shape VO for each foreground object, with a
binary mask as shape descriptor. For each frame, the global
motion parameters are given by the coordinates of the four
corners of the image transformed in the mosaic reference
frame.

The method we are proposing for extracting Video Ob-
jects is based on segmenting moving objects from the static
background and tracking them in the video sequence. As

1A video shot is defined as an image sequence captured with a single
operation of the camera and presenting a continuous action in time and
space [1].

the processing is non-causal, all the frames composing the
video shot are needed simultaneously.

The processing pipeline can be decomposed into several
stages: Ego-motion compensation (Sec. 3), Background
modeling (Sec. 4), Foreground segmentation (Sec. 5),
and Blob tracking (described elsewhere [4]), where blobs
are tracked through the sequence – using frame-to-frame
matching and a graph representation – and associated to
Video Objects. The overall framework was set forth in
[18], but the background estimation and the blob tracking
were extremely simple and relied on fairly restrictive as-
sumptions. In [4] we improved radically the blob tracking
algorithm, allowing for occlusions between objects, occlu-
sions between an object and background, objects entering
and leaving the scene at any point. In [3] we proposed the
robust technique for background recovery that is also de-
scribed here. The experiments reported in Sec. 6 have been
performed with the whole pipeline, including tracking.

3. Ego-motion compensation

Camera’s motion compensation is carried out with re-
spect to a stabilization plane, which can be either a scene
plane or the infinity plane. In the latter case camera’s mo-
tion is constrained to rotate and all the static components of
the scene are stabilized. In the former case, instead, even
static objects that do not lay on the stabilization plane ex-
hibit a residual motion, called parallax.

The background is defined as the static part in the
motion-compensated sequence, whereas foreground objects
are parts that has non-zero residual motion, either due to
relative motion wrt the camera or to parallax wrt the stabi-
lization plane.

The definition of background implies that it can be re-
covered as a mosaic, as the absence of residual motion is
what allows to seamlessly compose images together (after a
suitable transformation) into a larger aggregate.

It is well known that, if i) the scene is planar or ii) the
point of view does not change (pure rotation), two pictures
of the same static scene are related by a non-singular linear
transformation of the projective plane (or homography).

Inter-frame homography computation is based on
correspondences for details produced by the Kanade-
Lucas-Tomasi (KLT) tracker [27], initialized with phase-
correlation to reduce search range. Assuming that the ma-
jority of the tracked features belong to the background,
Least Median of Squares is used to be robust against track-
ing errors and features attached to moving objects. Fi-
nally, given the set of inlier point matches, the homogra-
phy is computed according to a technique proposed in [14],
which obtains an optimal estimate and reduces the instabil-
ity of images alignment even with a small overlap between
frames. A frame is chosen as the reference one, then, for



Figure 1. Ego-motion compensation. Frames are warped so as to compensate for camera motion.

each other frame, the stabilizing homography is obtained
by combining the inter-frame homographies. All the frames
are warped accordingly to produce a new video sequence
where the background is static (Fig. 1). More details on this
technique are given in [18].

4. Background modeling

As we have discussed in the previous section, foreground
objects can be extracted effectively by subtracting the back-
ground in the image frames, provided that the background
can be estimated.

Consider the stabilized sequence: Starting from a single
pixel in one frame, a temporal line (or time-line) piercing
all the aligned frames will intersect pixels that correspond
to the background and pixels belonging to foreground. Our
method is based on the following hypothesis (as in [6]): (i)
the background is stationary; (ii) along each time-line the
background is revealed at least once.

The first hypothesis implies that the same background
point is imaged always onto the same pixel. The second hy-
pothesis implies that no object can occlude the background
for the entire sequence. Please note that this is necessary as
we want to use only observed values to fill the background
at each location.

If hypothesis ii) were stronger, requiring that along each
time-line the background is revealed for more than 50% of
the entire sequence length, the background could be easily
obtained as the median value along the time-line. The tech-
nique presented here can deal, in principle, with sequences
where the background is revealed exactly once.

We model the stabilized video sequence as a 3D array
vx,y,t of pixel values. Each entry contains a color value,
which is a triplet (R,G,B). A 3D patch vS is a sub-array of
the video sequence, defined in terms of the ordered set of
its pixel coordinates: S = Ix × Iy × It, where Ix, Iy, It

are set of indexes. The set W = Ix × Iy is the spatial
footprint of the patch. A 2D patch vR (or image patch) is
a 3D patch with a singleton temporal index: R = W × {t}
or R = (W, t).

4.1. Estimating image noise.

The first step is to estimate the noise affecting pixel val-
ues in the video sequence. In the following we shall assume
that the three color channels (R,G,B) are statistically inde-
pendent, therefore we will consider here one color channel
at a time.

Assuming that noise is i.i.d. Gaussian with zero-mean
N (0, σ2

m), the pixel values of the video sequence of length
L − 1 obtained by subtracting each consecutive frame:
nx,y,t = vx,y,t − vx,y,t+1 are distributed with N (0, 2σ2

m)
plus outliers due to foreground objects. The noise stan-
dard deviation σm is then estimated robustly from nx,y,t.
In order to get more statistics, we consider not only the dif-
ference between consecutive frames but also frames of dis-
tance two and three.

A robust estimator of the spread of a distribution is given
by the Median Absolute Difference (MAD):

MAD = medi{|ni − medi{ni}|}. (1)

It can be seen [7] that, for symmetric distributions, the
MAD coincides with the inter-quartile range, hence, in our
case:

MAD =
1
2

(
Φ−1( 3

4 ) − Φ−1( 1
4 )

)√
2σm =

Φ−1( 3
4 )
√

2σm ≈ 0.9539σm. (2)

where Φ−1(α) is the α-th quantile of the cumulative normal
distribution.

4.2. Temporal clustering

The spatial indexes are subdivided into windows Wi of
size N ×N , overlapping by half of their size in both dimen-
sions as shown in Fig. 3.

Let vS , S = Wi × {1 · · ·L}, be a patch of footprint Wi

which extends in time from the first to the last frame. In or-
der to reduce temporal redundancy, in each 3D patch vS we
cluster image patches that depict the same static portion of
the scene with single linkage agglomerative clustering [11].
Starting from all singletons, each sweep combines two clus-
ters into a single cluster. After establishing a distance be-
tween objects, a method needs to be chosen to determine



Figure 2. Clustering example. The top im-
age summarizes the motion compensated
“Dado” sequence and the images in the bot-
tom row are (magnified) cluster representa-
tives insisting on the highlighted footprint.

which two groups should be linked. The simple linkage
rule says that the two groups that achieve the smallest inter-
group distance between any pair of objects are linked. A
cutoff distance, i.e., a distance behind which two clusters
are not linked, is to be set.

In our case, the distance between two image patches
v(W,t1) and v(W,t2) is given by the Sum of Squared Dis-
tances (SSD):

SSD(W, t1, t2) =
1

2σ2
m

∑

x,y∈W
||vx,y,t1−vx,y,t2 ||2 (3)

The cutoff distance should prevent clustering together
image patches that do not depict the same objects. It is ob-
tained from a statistical test, based on the expected distribu-
tion of the SSD between two image patches that depict the
same static portion of the scene. The SSD has a Chi-square
distribution with 3N2 degrees of freedom, which is evident
if we re-write (3) as a Mahalanobis distance:

SSD(W, t1, t2) = (v̄W,t1 − v̄W,t2)
�(2σ2

mI)−1

(v̄W,t1 − v̄W,t2) (4)

where v̄W,t is the 3N2-dimensional vector obtained by
“vectorizing” vW,t (because N2 = |W|, and 3 is the num-
ber of color channels).

Therefore, given a desired confidence level α, we deem
that image patches vW,t1 and vW,t2 depict the same static
portion of the scene (hence they can be linked in the clus-
tering) if:

SSD(W, t1, t2) < χ−1
3N2(α) (5)

where χ−1
n (α) is α-th quantile of the cumulative Chi-square

distribution with n d.o.f.

Although clusters are made of image patches instead of
pixels, the clustering phase implements the same idea as
the intervals of stable intensity defined in [17], except for
clusters do not need to form a connected temporal interval,
and there are no fancy thresholds.

The resulting clusters are 3D patches, with possibly not
consecutive temporal indexes. Let W × Tk denote cluster
k over spatial footprint W , a representative image patch for
that cluster is obtained by averaging pixel values along the
time-line:

ux,y,k =
1

|Tk|
∑

t∈Tk

vx,y,t ∀x, y ∈ W. (6)

As a consequence, the noise affecting the values ux,y,k is

i.i.d. N (0, σ2
k) with σ2

k = σ2
m

|Tk| .
In each spatial footprint W we have now a variable num-

ber of cluster representatives ux,y,k1 . . .ux,y,k�
(see Fig. 2).

The underlying assumption is that (at least) one of them de-
picts only static background: The subsequent stage is de-
voted to find out which one.

A heuristic that demonstrated helpful to cull the clusters
is discarding clusters composed by only one frame provided
that this do not eliminate all the clusters insisting on a foot-
print. This is related to the practice of discarding patches
with high motion energy [22, 6]. In our case, as the SSD is
related to the motion energy, image patches with high mo-
tion energy tends to form cluster of size one.

By introducing this heuristic, we implicitly strengthen
our hypothesis, requiring that along each time-line the back-
ground is revealed at least twice.

4.3. Background tessellation

The background is constructed with a sequential ap-
proach: Starting from seed patches, a tessellation is grown
by choosing, at each site, the best continuation of the cur-
rent background.

The background seeds are the representatives of the
largest clusters. Since we assume that no foreground object
is stationary in all the frames, if the largest clusters have
size L (maximal), the seeds are fully reliable. Otherwise,
mistakes are possible.

W0

W1

W4

W3

W2

Figure 3. Overlapping footprints.



Figure 4. Snapshots of the background as the tessellation proceeds.

The growing proceeds as follows. Let W0 be a spatial
footprint where a background patch has already been as-
signed. We consider in turn each of the four footprints that
overlap with it: Wi, i = 1, . . . , 4, (see Fig. 3), and try to
assign a background to each of them (if it was not already
assigned) by choosing one from the cluster representatives
that insist on Wi. The selected patch has to fulfill two re-
quirements:

i) in the part that overlaps with W0 it has to depict the
same scene points as the background patch, so that it
can be stitched seamlessly to it;

ii) in the non-overlapping part it has to represent the “best
continuation” of the background.

This procedure is repeated for all the footprints, until all the
background has been assigned (Fig. 4).

As for the first requirement, the discrepancy of a can-
didate image patch u(Wi,k) with the background patch
u(W0,k0) in the overlapping part is measured with:

SSD(W0 ∩Wi, k0, k) =
1

σ2
k0

+σ2
k

∑

x,y∈W0∩Wi

||ux,y,k0 − ux,y,k||2. (7)

By the same token as before (Eq. (5)), u(Wi,k) is considered
for inclusion in the background with confidence α if

SSD(W0 ∩Wi, k0, k) < χ−1
3M (α) (8)

If Wi happens to overlap with other footprints than W0

where the background has already been assigned, the same
test is applied, mutatis mutandi, to the entire area of overlap.

As for the second requirement, we propose here a
method to compare two candidates (if there are more candi-
dates a round robin tournament is used), based on the prin-
ciples of visual grouping [28]. The approach rest on the
observation that foreground objects generally introduce a
discontinuity with the background (as in [9]). When a pure
background patch is compared to an image patch containing
foreground, their binarized difference defines a partition-
ing of the pixels into two groups (Fig. 5), i.e., a segmenta-
tion. The previous observation implies that the score of this
segmentation according to the principles of visual group-
ing (similarity, proximity, and good continuation) must be
higher in the patch containing foreground than in the one
containing background. This links the problem of selecting

Figure 5. From left to right: two cluster rep-
resentatives candidate to fill a background
patch and their binarized difference.

the best continuation of the background to the visual group-
ing theory.

Graphs cuts have been proposed in [25] as general com-
putational framework for grouping. The image is rep-
resented as a complete weighted undirected graph G =
(V,E), by taking each pixel as a node and connecting each
pair of pixels by an edge. The weight on that edge reflects
the likelihood that the two pixels belong to the same region.
Grouping is cast as the problem of partitioning the vertices
into disjoint sets, where the similarity among the vertices
in a set is high and across different sets is low. The edge
weight connecting the two nodes i and j is defined as [25]:

wij = e−(fi−fj)
�(2Λ)−1(fi−fj) (9)

where fi is a feature vector containing the spatial position
of a pixel i, xi and yi, and its RGB color values, Ri, Gi, Bi:
fi = [xi, yi, Ri, Gi, Bi]. The diagonal matrix Λ contains
normalizing values, which are approximately (the square
of) 1/4 of the range of variability of the respective com-
ponent: Λ1/2 = diag(N/4, N/4, σm, σm, σm).

The graph can be partitioned into two disjoint sets, A
and B, A∪B = V , A∩B = ∅, by simply removing edges
connecting the two parts. This set of edges constitute a cut.
The cost of the cut, which measures the degree of similarity
between the two region A and B, is the sum of all its edge
weights:

cut(A,B) =
∑

i∈A,j∈B

w(i, j) (10)

The optimal segmentation is the cut with the minimal cost.
Going back to the problem of choosing between two im-

age patches the one that yields the best continuation of the
background, consider the cut defined by their binarized dif-
ference:

A = {(x, y) : (ux,y,k1 − ux,y,k2)
�(σ2

k1
I + σ2

k2
I)−1

(ux,y,k1 − ux,y,k2) < χ−1
3 (α)} (11)



The patch where cut(A,B) is lower, is the one containing
the foreground pixels (because the cut is along the discon-
tinuity), whereas the same cut in the background patch has
a higher cost, because – not being correlated with the struc-
ture of the background patch – it is more likely to contain
expensive edges.

Our method based on graph-cuts can be seen as a princi-
pled way of applying the same continuity criterion as in [9],
where a heuristic based on the comparison of the inner and
outer boundaries of the difference region is employed.

5. Foreground segmentation

As the footprints are overlapping, on a single pixel
(x, y) in the final background image might insist up to four
patches. Let T be the set of temporal indexes of the frames
that contributed to the background value at (x, y), via the
cluster representatives. The estimate of the background
color cx,y and its variance σ2

x,y are obtained as the sam-
ple mean and variance – respectively – of the values vx,y,T .
A sample variance image is shown in Fig. 6. Due to small
misalignment errors and to the low pass effect introduced
by warping, the edges have a higher variance.

Figure 6. Gray level visualization of the per-
pixel variance of the “Dado” background (val-
ues are normalized in [0,255]).

Foreground/background segmentation is cast as the
problem of testing (at a desired confidence level) whether
two values comes from the same Gaussian distribution. Us-
ing again the Mahalanobis distance, a pixel vx,y,t of the
stabilized sequence is deemed to belong to the background
with confidence α if:

(vx,y,t −cx,y)�(σ2
mI+σ2

x,yI)
−1(vx,y,t −cx,y) < χ−1

3 (α)

This defines a binary image that “masks” foreground ob-
jects, which is then cleaned with morphological filtering.
Examples of binary masks are shown in Fig. 7.

6. Results

In this section, we report some results obtained by ap-
plying our technique to video shots acquired with a digital

Figure 7. Binary masks obtained after seg-
menting frames shown in Fig. 1.

hand-held camera. The sequences were selected to set dif-
ferent challenges to our algorithm. Fig. 8 shows the results
organized in a table, one row for each sequence.

In the experiments we used the following parameter set-
ting: N = 17 and a confidence level α = 0.999999.

In the “Dado” sequence, a young woman is walking from
right to left and passes behind a man who is standing still;
the camera does a panning motion following the walking
woman. In order to clutter the background, the woman stops
for a while and then walks towards the camera. Indeed,
she is still visible in the median image, whereas our method
recovers the clean background. Despite the young woman is
fragmented in several parts, before and after the occlusion,
our tracking phase can recover from over-fragmentation and
recognizes it as a single VO.

The “Road-sign” sequence depicts a road-sign in front
of a building. As the background (the facade) is planar,
the camera can move freely. In the motion-compensated
sequence, the road-sign moves due to parallax. Its motion,
however, is not sufficiently prominent to make it disappear
in the median image. Our method, instead, first recovers the
background without occlusions and then extract the road-
sign as an independent Video Object.

In the “Yard” sequence, two persons that are standing
still for more than half of the sequence, start to walk to-
wards each other and then cross in the middle. The camera
does a panning motion, following the young woman from
right to left. The clutter is severe also in this case, indeed
the median fails to obtain a clean background whereas our
background modeling method succeeded. Despite the two
persons overlap in the image for a significant number of
frames, our technique is able to track them trough the video
shot.

Original sequences and results are available on the web
(http://profs.sci.univr.it/˜fusiello/demo/bkg).

7. Conclusions

We illustrated a method for video objects segmentation
in a video sequence based on background recovery. The
method is robust, as it can cope with serious occlusions
caused by moving objects. It is scalable, as it can deal
with any number of frames greater or equal than two. It
is effective, as it always recovers the background when the
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Figure 8. For each sequence, the top row shows some selected frames, the middle row shows the
mosaic of the motion-compensated background obtained using the median operator (left) and our
technique (right), and the bottom row shows some selected frames of the Video Object sequence.



assumptions are satisfied. Moreover, our method rests on
sound principles in all its stages, and only few, intelligible
parameters are needed, namely the confidence level for the
tests and the patch size. Future work will aim at estimating
it from the data, using a multi-resolution approach. We also
plan to include a shadow removing stage, as shadows can
deceive foreground segmentation [24].
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