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Abstract. This paper presents an optimisation technique to select auto-
matically a set of control parameters for a Markov Random Field applied
to stereo matching. The method is based on the Reactive Tabu Search
strategy, and requires to define a suitable fitness function that measures
the performance of the MRF stereo algorithm with a given parameters
set. This approach have been made possible by the recent availability of
ground-truth disparity maps. Experiments with synthetic and real im-
ages illustrate the approach.

1 Introduction

Three-dimensional (3D) reconstruction is a fundamental issue in Computer Vi-
sion, and in this context, structure from stereo plays a major role. The process
of stereo reconstruction aims at recovering the 3D scene structure from a pair of
images by searching for conjugate points, i.e., points in the left and right images
that are projections of the same scene point. The difference between the posi-
tions of conjugate points is called disparity. The search is based on a matching
process that estimates the ”similarity” of points in the two images on the basis
of local or punctual information [10]. A wide class of methods based on Markov
Random Fields (MRF) models [8] has been recently introduced (see [10] for a
review). Even if those methods have proved effective for the estimation of the
stereo disparity, they often need a thoroughly phase of manual tuning of the free
parameters that occurs in the MRF functional, using trial and errors.

In this paper we propose a technique capable of automatic selection of the
“best” free parameters, based on an optimisation algorithm and a suitable fitness
function that measures the performance of the MRF stereo algorithm with a
given parameters set.

We consider the probabilistic stereo method R-SMW, proposed in [4], where
the winner-takes-all approach of the Symmetric Multiple Window (SMW) algo-
rithm [5] is relaxed by exploiting the non-determinism of the MRF. The MRF
functional has two free parameters that in this paper are computed as the result
of an optimisation based on the Reactive Tabu Search [6, 1], which mitigates the
problem of local minima trapping while driving the search to unexplored regions
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of the solution space. The fitness function is defined by comparing the output
disparity with a known ground-truth.

Similar approaches, based on Genetic Algorithms, have been proposed in the
past, focusing on different applications [2, 9].

2 The R-SMW method

The R-SMW algorithm [4] is a probabilistic relaxation of the SMW algorithm
[5], using a Markov Random Filed.

In general, when an MRF model is applied to computer vision problems, the
image is interpreted as a realization of a discrete stochastic process in which
each pixel i is associated to a random variable D i. By applying the Bayes rule
and the Hammersley-Clifford theorem, the estimated solution (i.e., the solution
that satisfies the Maximum A-Posteriori probability criterion) is obtained with
the minimisation of U(d | g) = U(g | d) + U(d), where U(g | d) is the observa-
tion model and U(d) is the a-priori model. In particular, the observation model
describes the noise that degrade the image and the a-priori model describes the
a-priori information independent from the observations, like, for instance the
smoothness of the surfaces composing the scene objects. In the proposed appli-
cation, in order to deal with the stereo problem [3], the scene is modelled as
composed by a set of planes located at different distances to the observer, so
that each disparity value corresponds to a plane in scene. Therefore, the a-priori
model is piecewise constant.

Whilst the a-priori model impose a smoothness constraint on the solution,
the observation model should describe how the observations are used to produce
the solution. In the R-SMW method, the observation term encodes a multiple
windows heuristic inspired from the SMW algorithm. For each site, we take into
account all the disparity values in the neighbourhood weighted by the related
SSD error values.

First a disparity map is computed using the simple SSD matching algorithm,
taking in turn the left and the right images as the reference one. This produces
two disparity map, which we will call left and right, respectively. A left-right
consistency constraint is implemented by coupling the left disparity and the
right disparity values.

In order to define the MRF model, we introduce two random fields Dl and
Dr to estimate the left and the right disparity map, two random fields Gl and
Gr to model the left and the right observed disparity map, and two random field
Sl and Sr to model the SSD error. The field Dl (or equivalently Dr) will yield
the output disparity.

In the following we shall describe the MRF functional, by defining the the
a-priori model, the observation model, and the left-right consistency term1.

1 In the next two subsections, will shall omit superscript l and r in the field variables.
It is understood that the a-priori model and the observation model applies to both
left and right fields



2.1 A-priori model

With the a-priori term we encode the hypothesis that the surfaces in the scene
are locally flat. Indeed, we employ a piecewise constant model, defined as:

U (d) =
∑

i∈I

∑

j∈Ni

δ (di, dj) (1)

where di and dj are the estimate disparities value (the realization of the field D)
and the function δ(x, y) is defined as:

δ (x, y) =
{

0 if x = y
1 otherwise

(2)

This term introduces a regularisation constraint, imposing that all pixels
assume the same value in a region, thereby smoothing out isolated spikes.

2.2 Observation model

In order to mimic the behaviour of the SMW algorithm, the observation model
term introduces a local non-isotropic relaxation, favouring the neighbour obser-
vations with the lowest SSD value:

U (g, s | d) =
∑

i∈I

∑

j∈Ni∪{i}
δ (di, gj) ·

(
1
sj

)
(3)

where g is the observation disparity map (the realization of the field G), s is
the observed SSD values (the realization of the field S), and d is the disparity
estimate (the realization of the field D).

In this term, the estimate value at site i, di, is compared with all its observed
neighbours {gj}j∈Ni and with gi. When di takes the disparity of one (or more)
of its neighbours, one (or more) term(s) in the sum vanishes. The lower is the
SSD error of the chosen disparity, the higher is the cost reduction.

2.3 Left-right consistency constraint term

Let dl
i be the left disparity (i.e., the disparity computed taking the left image as

the reference) at site i, and dr
i the right disparity at site i. The left-right consis-

tency constraint states that: dl
i = −dr

i+dl
i

. The corresponding energy term is:

V
(
dl, dr

)
=

∑

i∈I

δ
(
dl

i,−dr
i+dl

i

)
(4)

In this way we introduces a payload when the left-right constraint is violated.



2.4 Summing up

The final MRF functional writes:

U
(
dl, dr | gl, sl, gr, sr

)
= k1 ·

[
U

(
gl, sl | dl

)
+ U (gr, sr | dr)

]
+

+ k2 ·
[
U

(
dl

)
+ U (dr)

]
+ k3 · V

(
dl, dr

)
(5)

where U
(
gl, sl | dl

)
and U (gr, sr | dr) are the observation model applied to the

left and right disparity reconstruction, U
(
dl

)
, U (dr) are the a-priori models

and V
(
dl, dr

)
is the left-right constraint term. The positive weights k1, k2, k3 are

the parameters that control the performance of the algorithms. As the absolute
magnitude of the functional is not important in the MRF minimisation, we can
set k1 + k2 + k3 = 1, thereby reducing the free parameters to only two.

It is customary to adjust these parameters using trial and error; in the follow-
ing of this paper we will describe our strategy for automatic optimal parameters
selection based on Reactive Tabu Search [1].

3 Tabu Search

Tabu Search (TS) is a meta-heuristic introduced by [6] that systematically im-
poses constraints on the feasible solutions to permit exploration of otherwise
forbidden regions of the search space. In particular, TS will not only remember
the current and best solution but it will also keep information on the itinerary
through the last solutions visited. Such information will be used in order to guide
the transition from the current to the next solution.

The following components defines the TS.

Fitness function: this is a scalar function defined over the solution set, that
return a score for each solution.

Move: a move is a procedure by which a new (feasible) solution is generated
from the current one.

Neighbourhood: a neighbourhood of a solution is the set of all the solutions
that can be reached with one move.

Tabu list: this is a list of moves that are forbidden (or tabu). Its length is fixed
but it is updated dynamically with the last move that was picked.

Aspiration conditions: these are rules that overrides tabu restrictions. If the
aspiration condition is satisfied, a tabu move becomes allowed.

The TS algorithm can be described as follows:

1. Given a starting solution, compute its fitness.
2. Generate the neighbourhood of the current solution, or, equivalently, a set

of candidate moves. A move is allowed if it is not tabu or it satisfies the
aspiration condition. Pick the allowed move that get to the best neighbouring
solution and consider it to be the new current solution.

3. Repeat step 2 until some termination conditions are satisfied.



At each iteration, the chosen move is put in the tabu list, thereby preventing
the algorithm to go back to recently visited solutions. However, given the fixed
size of the tabu list, the search might be trapped in a cycle of length greater
than the size list. In order to cope with this drawback, the Reactive Tabu Search
(RTS) [1] has been proposed, which dynamically adjusts the tabu list size. In
particular, the size is increased when configurations are repeated, otherwise it is
reduced. Another reactive mechanism is the escape, which consist of a number of
random step, and it is triggered whenever too many configurations are repeated
too often. The reader is refereed to the bibliography [1, 7] for more information
on TS and RTS.

4 RTS applied

The RTS is used to maximise a fitness function that measures the performance
of the R-SMW stereo algorithm as the difference between the estimated disparity
and the ground truth. The independent variables of the fitness function are the
weights k1 and k2 (k3 is recovered as k3 = 1 − k1 − k2.) In more details the
computation of the fitness function proceeds as follows:

– given a solution (parameter set) s(`) = (k(i)
1 , k

(i)
2 ),

– run the stereo process with s(`) and find the disparity map D`,
– compute the fitness f(s(`)) = −err(D`, Do), where Do is the ground truth

disparity.

Following [10], the disparity error is given by the fraction of wrong matches in
non-occluded regions:

err(D`, Do) =
1
N

∑

(i,j)∈I\B
δ
(
D`(i, j), Do(i, j)

)
(6)

where N is the number of pixel, B is the set of occluded pixels (provided with
the ground truth), and δ(x, y) has been defined in Equation (2).

A solution of the RTS is a point in the the region of the plane k1, k2 limited
by the axes and by the line k2 = 1 − k1 (the search space). A move consists in
changing the parameters value in such a way that the ratio between two of them
is preserved. This gives three directions along which one can move starting from
the current solution. A discrete change in the value of one parameter is obtained
by flipping one bit of its binary representation. The tabu list is always updated
with the last chosen move. The aspiration condition says that if a move leads to
a better solution it is chosen even if is tabu.

5 Experiments

In this section experiments are reported for both synthetic and real cases.
First we estimated the optimal parameters for Random Dots Stereograms

(RDS). The fitness function was computed using a square RDS and and circular



(a) (b) (c) (d)

Fig. 1. Random Dots Stereograms. (a) Left image; (b) disparity obtained by SMW; (c)
disparity obtained by R-SMW with optimal parameters; (d) ground truth disparity.

RDS (Figure 1). The RTS optimisation found the following values for the pa-
rameters k2 = 1, k1 = k3 = 0, which reproduced the behaviour of the original
SMW algorithm (not considering occluded areas), as can be seen in Figure 1.
These values of the parameters make sense: the planar a-priori term is not needed
since there is no noise; for the same reason and also because occlusions are not
considered in the fitness function, the left-right consistency term is switched off.

Then we carried out experiments with the Middlebury data set [10], which is
emerging as the de-facto standard data set for testing the performance of stereo
algorithms. It consists of four stereo pairs: Map, Venus, Sawtooth and Tsukuba
(Figure 2). The parameters estimation has been carried out using all the four
stereo pairs (the global fitness function is the sum of the fitness for each set). The
optimal parameters are reported in Table 1, in the column “Joint parameters”.
Figure 2 show the results obtained with these parameters for each stereo pair.

In order to assess the sensitivity of the parameters to the specific data set
used for training, we estimated the optimal parameters separately for each stereo
pair. The results are reported in Table 1, in the column “Single parameters”.
The error columns refer to the disparity error (i.e. the opposite of the fitness)
value achieved by the given parameters set on a specific stereo pair.

It is worth noting that Sawtooth and Venus images are similar and so are the
optimal parameters computed for these two stereo pairs. This seems to suggest
that there are optimal parameters for classes of similar images.



(a) (b) (c) (d)

Fig. 2. Real experiments. (a) Left image of the stereo pair; (b) disparity obtained by
SMW; (c) disparity obtained by R-SMW with optimal parameters; (d); ground truth
disparity. Each row corresponds to a different stereo pair: (from top to bottom) Map,
Venus, Sawtooth, and Tsukuba.

Table 1. Errors achieved by different parameters sets on different stereo pairs.

Stereo pair Single parameters Err. Joint parameters Err.

Map (0.03, 0.88, 0.09) 0.26 (0.68, 0.23, 0.09) 0.55

Venus (0.67, 0.26, 0.07) 2.92 (0.68, 0.23, 0.09) 3.16

Sawtooth (0.69, 0.21, 0.10) 2.38 (0.68, 0.23, 0.09) 2.41

Tsukuba (0.56, 0.12, 0.32) 4.67 (0.68, 0.23, 0.09) 4.71

6 Conclusion

The purpose of this paper has been to show that parameters tuning can be au-
tomated by using an optimisation strategy. We concentrated on stereo matching
with a MRF-based algorithm (R-SMW) and used Reactive Tabu Search for pa-
rameters optimisation. The core ingredient is the fitness function, that measures



the performance of a particular parameters set. The usefulness of such an ap-
proach is based on the claim that there are optimal parameters that are valid
for classes of images, instead of being image-specific. Future work will aim at
substantiating this claim.
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