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Abstract

This paper presents a technique for tracking complex ob-
jects (both polyhedral and smooth boundaries) in a monoc-
ular sequence. Our aim is to use thismodel trackingmethod
in an Augmented Reality context to compute the pose of a
real object to be able to register it with a synthetic one. A
scalar score function for an object pose is defined, based on
the local image gradient along the projected model bound-
aries. A local search is then carried out in the configuration
space of the pose to maximize the score. This technique is
robust to occlusions, since the whole object contour is used,
not just few control points. The proposed method is effec-
tive yet simple. No image feature extraction is necessary
and no complex temporal evolution is used. Experimental
results with real sequences show good performance of our
technique.

1. Introduction

In this paper we present a technique for tracking complex
objects (both polyhedral and smooth boundaries) in monoc-
ular sequences where the camera or the object is moving.
The model of the object is known, whereas motion and cam-
era parameters are unknown.

Our aim is to use thismodel trackingmethod in an Aug-
mented Reality context to solve the so-calledregistration
problem. Augmented Reality (AR) supplements reality by
allowing the user to perceive virtual objects composed with
the real world. A comprehensive review of AR can be found
in [1]. In order to make synthetic graphics appear in proper
place (for example, as a wire-frame outline superimposed
on top of a corresponding real-world object), it is neces-
sary to know exactly where the camera (or the user) is in
the real world. This is the so-calledregistration problem,
which have been addressed in early systems with tracking
devices (like beacons, transponders, etc.).

In video-based AR, where the real image and the graphic
overlay are combined using a computer (opposed to optical
approaches, where the overlay takes place by means of a
see-through display), the same video camera used to cap-
ture video serves as a tracking device. Since the system
captures a digitized image of the real environment, it is pos-
sible to enforce registration of the model onto the view of
the real world, thereby closing the loop. A known object
is tracked in the images, and the camera pose (position and
orientation) is computed as a result. Since the pose calcu-
lation is accurate in the image plane, the perceived image
alignment error is minimized.

The problem of computing the position and orientation
(pose) of a camera given its intrinsic parameters and 3D-2D
points correspondence is known as theabsolute orientation
problem[5].

Model trackingconsists basically in repeatedly solving
absolute orientation problems, with the difference that cor-
respondences are to be computed as well and that temporal
coherence is exploited to alleviate the task of model to im-
age matching, for example by using a Kalman Filter [12].

Many of the methods in literature differ in the way they
match image features to model features. Lowe, in his pio-
neering work [9, 10], extracts features in the image (points
or lines) and then relies on grouping in order to match model
with image features. In our experience grouping is not a re-
liable technique, for it is strongly problem dependent and
based on fine tuned thresholds. In [16] the model – image
matching is iteratively refined following the idea of the It-
erative Closest Point algorithm [2]. A drawback of all these
methods is that errors introduced in the feature extraction
phase cannot be eliminated subsequently.

Other methods [6] are based on the projection of model
control points. These points are matched to image lines,
usually with local search techniques, and pose is computed
from point – line correspondence. Robust fitting must be
used, because some correspondence may be wrong. These
techniques are easily broken by occlusions.



The work by Worral et. al [15] first introduced anactive
model, in which the object’s pose is successively updated
according to forces derived by examining local peaks of di-
rectional derivatives of the image, under the control of the
current estimate.

Our work is close to the one by Robert [13] and by Marc-
hand et al. [11]. The former is a work on camera calibra-
tion that for the first time (at the best of our knowledge)
introduced the idea of optimizing a criterion computed di-
rectly from the gray-level image, without extracting refer-
ence points explicitly. It first computes a rough estimate of
the projection matrix. The refinement stage requires a set of
3-D reference points which should project in the image onto
edge points. Then, for any given set of camera parameters,
an energy value is computed from the image gradient at the
projected reference points. Camera calibration consists of
minimizing this energy iteratively.

In our work, starting from the ideas outlines above, a
scalar evaluation score for an object pose is defined, based
on the local image gradient along the projected model lines.
A local search is then carried out in the configuration space
of the pose to maximize the score. Since this algorithm con-
sists of iteratively optimizing a criterion directly measured
in the image, the process is somewhat analogous to an active
contour [8]. Yet, this scheme is passive, in that the value at
a single pose gives no indication on the movement of the
model most likely to improve the score. This technique is
robust to occlusion, since it uses the whole object contour,
not just few control points. In summary the features of the
algorithm are: i) no image feature extraction is necessary;
ii) no complex temporal evolution like Kalman filter is used;
iii) it copes with zoom cameras; iv) it copes with any type
of object that OpenGL can render (polyhedral and smooth
objects).

Our work differ from [11] in point iii) and iv), in the min-
imization algorithm, and in the special two steps procedure
for the computation of the focal distance.

We demonstrate our model tracking algorithm in the con-
text of a video-based virtual reality applications, where the
tracker is used to compute the camera pose, which allows to
overlay a synthetic object (with OpenGL) to the real image.
Demonstration movies (MPEG) are available from our web
site: http://www.sci.univr.it/˜fusiello/demo/mdt.

The rest of the paper is organized as follows. In Section
2 the notation is introduced and the pinhole camera model is
quickly reviewed. Section 3 describes our method, and Sec-
tion 4 reports some results. Finally, conclusions are drawn
in Section 5.

2. Notation and Basics

Let w = [x y z 1℄> be the homogeneous coordi-
nates of a 3D pointW in the model reference frameand

m = [u v 1℄> the homogeneous coordinates of its projec-
tion M in the image plane (pixels). The mapping from 3-D
coordinates to 2-D coordinates is theperspective projection,
which is is given by the3�4 matrixP:�m = Pw; (1)

where� is an arbitrary scale factor. The camera is therefore
modeled by itsperspective projection matrixP, which can
be decomposed, using the QR factorization [4], intoP = A[Ij0℄G: (2)

The matrixA depends on fiveintrinsic parametersonly:
focal length in pixel, aspect ratio, principal point and skew
factor. Camera position and orientation (the sixextrinsic
parameters) are encoded by4 � 4 matrixG representing
(in homogeneous coordinates) the rigid transformation that
brings the camera reference frame onto the model reference
frame.

If we collect the 11 parameters (extrinsic and intrinsic) in
one vector�, we can parameterize the projection operator:m = �(w;�): (3)

In the absolute orientation problem, given a certain num-
ber of (mi;wi) matching pairs, one want to compute the
vector parameters� such that Eq. 3 is satisfied for each
pair. Depending on the parameterization chosen for the
rotation matrix one obtains linear or non-linear equations
[5, 9]. Each correspondence gives two equation, therefore
six correspondences are needed at least. A line-to-line cor-
respondence yields the same information (two equations) of
a point-to-point correspondence, and the structure of algo-
rithm remains unchanged. (see [14] for more details).

Following [13, 11], we take a different approach, which
does not require feature extraction. The pose computation
is casted as an optimization problem, where the cost func-
tion for an object pose is defined as the integral of the local
image gradient along the projected model contours.

3. Method

This section describes our method for tracking arbitrary
objects in monocular sequences. At each discrete time stept, the pose of the camera is computed, based on its pose at
time t � 1. When dealing with dense sequences, the tem-
poral prediction can be accomplished without complex dy-
namical models. We found that a simple mobile average is
sufficient in most cases, and often the time window can be
even reduced to be only one sample. The model is projected
according to the predicted pose, and the actual camera po-
sition and orientation are computed as follows.



We set the problem as the optimization of the following
score functionE(�) =Xi jrI(�(wi;�))j (4)

whererI(x) is the image gray level gradient computed at
pointx. Pointswi belongs to model edges (both model con-
tour and colour edges). The idea is that a model edge gives
rise to a gray level edge in the image, and the score func-
tion weight how much the projected points are close to an
image edge, identified by gradient maxima. In other word,
we want to maximize the amount of image gradient col-
lected by the projected model edges: when the maximum is
reached model edges and image edges coincides. Actually,
only visible model edges are considered; let�� be the set
of the projected visible edge points:E(�) = 1j��j Xx2�� jjrI(x)jj = 1j��jXx jjrI(x)��� (x)jj

(5)
where��� is the characteristic function of the set��, also
calledmodel edge map. Every point with a non-zero gra-
dient and with��� = 1 gives a contribution to the score
function. Normalization is necessary in order to remove
bias toward longer edges.

In presence of noisy or textured images it is advisable
to take into account the direction of the gradient [11] by
projecting it onto the direction normal to the model edge,n̂��(x):E(�) = 1j��jXx j(rI(x) � n̂��(x))��� (x)j (6)

In order to have a smooth and larger basin of attraction
for the optimum, we consider not only the point belonging
to ��, but also their neighbours in a given range, weighted
by a Gaussian function. This can be formalized by consid-
ering a fuzzy characteristic function���� which decreases
with a Gaussian law as points are farther from the actual
edge. The point on which the normal is computed is always
the centre of the window – which belongs to the model edge.

The use of the gradient direction makes the cost func-
tion selective in the neighbourhood of the minimum, and
it counteracts the smoothing effect which could flatten too
much the cost function near the optimum.

Model projection is obtained by OpenGL. In this way
we renounce to a vectorial representation of projected
edges, but we gain generality and flexibility. Indeed, our
method copes with any type of object, both polyhedral and
with smooth boundaries, thanks to the rendering engine of
OpenGL. The projection of the wire-frame model (in the
case of polyhedral objects) or the boundary of the silhou-
ette (in all the other cases), in raster format, is the model

edge map��� . The contour normal is computed by fitting
a line to each point belonging to�� and its right and left
neighbours on the contour.

The optimization strategy is the Hook and Jeeves algo-
rithm [7], a direct search method which belongs to thepat-
tern search algorithmsclass. Direct search methods relies
only on the direct comparison of function values, and are
particularly suited for situations where the derivatives are
unavailable, like in our case. In particular pattern search
algorithms are provably convergent under conventional as-
sumptions [3].

Many model tracking methods are restrict to the case of
known and fixed intrinsic parameters. Actually, having a
model of the object, the problem is equivalent to camera
calibration, hence all the 11 parameters can be computed,
in principle. The problem is that parameters are correlated,
making difficult to attribute individual contributions, and
the search space is quite big, compared toR6.

In our algorithm we carry out minimization over seven
parameters, the six motion parameters and the focal length.
The principal point is taken in the centre of the image, the
aspect ratio is set to one and the skew to zero.

The case of varying focal length is treated separately
from the estimation of the motion parameters, because in
this case the same (or nearly so) score can be obtained by
changing the focal lengthf or the distance of the object
from the camera focal planed. This is true only for ortho-
graphic images, but it is approximately true for perspective
images. In practice, the minimization algorithm attributes
small translations along the optical axis to a change inf and
viceversa. If all seven parameters are minimized simultane-
ously, the values forf change randomly from one frame to
another. To counteract this effect, we use a two-step proce-
dure, where first we compute the extrinsic parameters with
fixed focal, and then we changef while keepingf=d con-
stant (extrinsic are changed accordingly). The idea is that
the first minimization, even with an imprecise estimate forf , computes the right global scalef=d, hence the model
edges get roughly overlaid to the image, whereas the sec-
ond step adjusts the perspective skew, by changing the focal
length while leaving the overall scale fixed.

4. Results

For reason of space we show here only a few results. As a
model to track we used a metal calibration jig and a checker-
board pattern printed on a paper sheet. The full MPEG se-
quences, as well as results with other objects, are available
on the web at: http://www.sci.univr.it/˜fusiello/demo/mdt.

For each video sequence two movies are produced: 1)
a sequence with the model edges (��) overlaid to the to
the image; 2) a sequence with a synthetic teapot (the “Utah
teapot”) overlaid to the image. As the camera (or the object)



(a) First frame from the original se-
quence

(b) Central frame with the model over-
laid

(c) Last frame with a synthetic teapot
overlaid

Figure 1. Checkerboard sequence.

(a) First frame from the original se-
quence

(b) Central frame with the model over-
laid

(c) Last frame with a synthetic teapot
overlaid

Figure 2. Panning sequence.

(a) First frame from the original se-
quence

(b) Central frame with the model over-
laid

(c) Last frame with a synthetic teapot
overlaid

Figure 3. Zoom sequence.
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Figure 4. Zoom sequence. Values are in degrees for angles and meters for translations; focal distance
is in pixels



moves, the teapot is projected in a way that it appears to
stick onto the real object.

Figures 1,2 and 3 shows selected frames from the origi-
nal sequence and the two synthetic ones. Three results ob-
tained with three different sequences here: the “Checker-
board” sequence, with a planar target and unknown mo-
tion (Fig. 1), the “Panning” sequence with a calibration jig
and a rotating (panning) camera (Fig. 2), the “Zoom” se-
quence with a calibration jig and a zooming stationary cam-
era (Fig. 3).

Figure 4 shows the values of pose parameters and fo-
cal distance recovered by our tracker at each step for the
“Zoom” sequence.

The translation[TxTyTz℄ represents the position of the
origin of the object reference frame in the camera coordi-
nate system. As a single distanced cannot be assigned to
the whole object, in practice we consider the distance of the
origin of the object reference frame. In this way,d coincides
with theTz component of the translation.

Rotations represent the camera pose in terms of Euler
angles (RPY). In this sequence the pose is fixed, so fluctua-
tions of the rotation angles are just noise.

The graph ofTx andTy can be explained as a compensa-
tion of the drift of the image centre that was not allowed to
vary in the minimization process. Indeed, it is well known
that when the focal length changes in a real camera, not
only the focal length of the pinhole model changes, but also
the other intrinsic parameters.Tz is very noisy, as the fo-
cal length is. Not surprisingly, the ratiof=Tz has a regular
graph. This is becausef andTz compensates each other to
give anyhow the correct global scale for the object projec-
tion. This means that while the scale is computed reliably,f andTz separately are less reliable.

5. Discussion

Even if parameter values are affected by errors, visual
quality, measured as perceived misalignment in the image,
is fairly good. This suggests that errors in different param-
eters compensate each other (like we pointed out forf andTz) to fit the projected model to the image.

Although we are satisfied with the visual quality of the
VR, we plan to study more in depth this phenomenon, and
to devise a tracking technique that reduces to the minimum
this correlation. In this way, tracking results could be used
for robotics and visual servoing tasks, where accuracy of
parameters is a concern.

Since we are now dealing with an off-line processing,
we did not make any effort to keep computing time to min-
imum. This issue will be addressed in the next future.
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