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ABSTRACT

This paper proposes a robust matrix completion method to solve
the localization problem in wireless sensor networks. A novel cost
function is formulated which inherently copes with missing mea-
sures and corrupted data. In particular, the proposed algorithm
robustly completes the range map between pairs of sensors by cast-
ing the problem as a low-rank and sparse matrix decomposition,
while constraining the solution to be close to an Euclidean Dis-
tance Matrix. Numerical accuracy and computational e�ciency are
demonstrated by synthetic experiments. The empirical results also
show that our method outperforms state-of-the art algorithms in
several scenarios.
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1 INTRODUCTION

Wireless Sensor Networks (WSNs) are a collection of autonomous
microelectronic devices distributed over a geographical area (in-
door or outdoor) that cooperate to monitor several physical or
environmental data. Typically, each sensor consists of a low power
processor, a limited amount of memory, a sensor board and a wire-
less network transceiver. They constitute an instance of a wireless
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ad-hoc network, which can also be mobile, depending on the appli-
cation. In this work we will consider both cases.

WSNs are currently exploited in several applications, includ-
ing environmental monitoring, failure detection or reporting in
smart buildings, and target tracking. These applications rely on
accurate position information of sensor nodes: it is necessary to
orient the nodes with respect to a global coordinate system in order
to report data that is geographically meaningful and to express
all the measurements in a common reference frame. Furthermore,
basic network services such as routing often rely on location in-
formation. These facts motivate the research on the problem of
Sensor Network Localization (SNL), in which sensors self-organize
a coordinate system.

Localization methods can provide a global reference frame, mean-
ing that sensor nodes are aligned with some external system, or
a relative one, meaning that their positions are de�ned up to an
arbitrary rigid transformation from the global frame. At least three
non-collinear anchor nodes are required to de�ne a global reference
frame in two dimensions, and at least four non-coplanar in tree
dimensions. Anchor nodes are ordinary sensor nodes that have a
priori knowledge about their coordinates. Such information could
be hard coded, or acquired through some additional hardware like
a GPS receiver.

Typically, SNL methods determine the positions of sensor nodes
either starting from pairwise range or bearing measurements. This
work focuses on the case of range measurements.

Distances between pairs of nodes can be measured using the
Received Signal Strength Indicator (RSSI) of radio signals sent by
neighbor sensors. Indeed, the energy of a radio signal diminishes
with the distance from the signal’s source. As a result, a node
listening to a radio transmission should be able to use the strength
of the received signal to estimate its distance from the transmitter.
Likewise, sensors nodes can asses the Time of Arrival (TOA) or
the Time Di�erence of Arrival (TDOA) of radio or acoustic signals
emitted by neighbor sensors, which in turn can be converted into
pairwise distance estimates.

Measuring distances using RSSI or ToA is subject to noise, rogue
measures (or outliers), and missing data. Noise depends on radio
propagation which tends to be highly non-uniform, outliers are
due to environmental factors (sensitivity to re�ections, and inter-
ferences) or hardware malfunctioning (su�ering from transmitter,
receiver, and antenna variability), and missing data depend on
shields, or limitations in the radio range.

Our solution to the SNL problem is inspired by recent advances
in the �eld of Low-Rank and Sparse (LRS) matrix decompositions.
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We exploit this framework to complete the range information be-
tween pairs of sensors in the presence of rogue measures, namely
to solve a robust Matrix Completion (MC) problem. In particular,
we devise a novel cost function that not only includes unspeci�ed
measurements and outliers in its de�nition, but also constrains the
solution to stay close to an Euclidean Distance Matrix (EDM), i.e.,
a matrix containing squared distances between sensors. We also
develop a minimization procedure – dubbed Euclidean R-GoDec, or
ER-GoDec for short – that is able to e�ectively minimize such cost
function. Moreover we propose a simple variation of ER-GoDec
which e�ciently handles mobile SNL.

The paper is organized as follows. Existing solutions to the SNL
problem are reviewed in Section 2. Section 3 is an overview of the
theoretical background on Robust Matrix Completion via LRS ma-
trix decomposition and EDM Completion. In Section 4 we describe
our method ER-GoDec and its variation for e�ciently addressing
mobile networks. In Section 5 we show the results of several experi-
ments on synthetic data and we highlight the bene�ts introduced by
applying our method. The conclusions along with possible further
developments are presented in Section 6.

2 KNOWN SOLUTIONS AND LIMITATIONS

We �rst introduce some notations and basic concepts about SNL.
Suppose we have n sensors which we refer to as the nodes of the
network. We denote the positions of the nodes by a set of n points
in Rm (in our case m = 2, 3) ascribed to the rows of a matrix
X ∈ Rn×m , X = [x1, x2, . . . , xn]T . The distance between node i
and j is di j = ‖xi − xj ‖2, and the associated Euclidean Distance
Matrix D ∈ Rn×n is de�ned as the matrix of squared distances
between the nodes, i.e.

Di j := d2i j = | |xi − xj | |
2
2 . (1)

In real world applications, we rarely have a perfect EDM. We
know that the measured distances could be a�ected by noise, out-
liers, and often we can acquire just a subset. We denote as D̂ the
matrix of squared measured distances, henceforth called data ma-
trix.

The goal of localization methods is to recover the point coordi-
nates X from D̂. An illustration of the SNL problem is shown in
Figure 1.

In range-based SNL, it is useful to model the sensor network
using the distance graph G = (V, E), where vertices represent
the sensor nodes, and edges correspond to the pairs of sensors for
which a distance measurement is available. SNL can also be seen
as a graph realization problem, where the goal is to assign to each
vertex coordinates xi ∈ Rm so that the Euclidean distances between
pairs of nodes match the distances of the corresponding edges.

A sensor network is uniquely localizable if exists a unique X

that realizes the distances in D̂ (up to a rigid transformation). It is
demonstrated in [11] that if the distance graph is generically globally
rigid – GGR for short –, then the network is uniquely localizable.
Jackson et al. [22] proved that in two dimensions the distance graph
is GGR if and only if it satis�es two properties that can be veri�ed
in polynomial time, namely 3-connectivity and redundant rigidity.
For more details about these concepts see [22].

Figure 1: The SNL problem. On the left, the input data ma-

trix D̂: colored entries represent distance measurements d̂2i j ,

black entries stand for outliers and question marks (?) for

unspeci�ed measurements. On the right, the computed po-

sitions of the sensor nodes.

We now review the most common localization techniques which
appeared throughout the literature.

If all pairwise distance measurements are available, namely D̂ is
complete, the simplest approach to solving the SNL problem is the
classical Multidimensional Scaling (MDS) [8], originally proposed
by [29]. MDS exploits the following relationship between the Gram
matrix G = XXT and the associated EDM matrix

G = −
1
2
JDJ := T (D) (2)

where J is the centering operator de�ned as J = I − 1
n 11

T (1 denotes
the column vector of all ones and I the identity matrix). In particular,
MDS minimizes the following cost function

min
X
‖T (D̂) − XXT ‖2F . (3)

The point coordinates X ∈ Rm can be found by computing the
eigen-decomposition of T (D̂) truncated at the m largest eigen-
values. MDS is fast and closed-form, however it is ine�ectual in
practice as it does not manage unspeci�ed measurements, and it is
not robust to outliers. MDS is summarized in Algorithm 1.

Observe that applying MDS is straightforward, thus there is no
practical di�erence in localization methods between recovering
X , or rather the Gram Matrix G, or the EDM D. Indeed, point
coordinates can always be derived from G or D by carrying out
MDS (in whole or in part).

Algorithm 1 MDS

Require: D̂,m,
Ensure: X ,
J ← I − 1

n 11
T

G ← − 1
2 J D̂ J = T (D̂)

[Q, Λ]← eig(G )

X ← QmΛ
1/2
m

In case of unspeci�ed measurements, the data matrix is a partial
matrix. This means that the entries of D̂ are speci�ed on a sampling
set, namely a subset of index pairs, and unspeci�ed elsewhere. Let
Ω be a (0, 1)-matrix representing the sampling set of D̂, i.e. Ωi j = 1
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if D̂i j is speci�ed and 0 otherwise, then we de�ne PΩ (D̂) = Ω �

D̂ = A � D̂, where � is the Hadamard (entry-wise) product (where
unspeci�ed value multiplied by 0 gives 0) and A is the adjacency
matrix of the distance graph G.

An approach to solving the SNL problem in case of missing data
is by minimizing the following stress function

min
X
‖PΩ (D̂1/2 − D1/2)‖2F . (4)

One iterative method to solve (4) is a variant of the gradient de-
scent called stress majorization algorithm, also known as SMACOF
[8, 18], originally proposed by [13]. SMACOF is computationally
e�cient, however, it is not robust to outliers.

The state-of-the-art approach to solve localization is based on
Semide�nite Programming (SDP) [6, 7]. SDP is robust and copes
with unspeci�ed measurements. The idea is to consider the follow-
ing cost function

min
X
‖PΩ (D̂ − D)‖1 (5)

which can be rewritten in terms of the Gram matrix as

min
G
‖PΩ (D̂ − K (G ))‖1 s.t. G = XXT (6)

where K (G ) is de�ned as

K (G ) := diag(G )1T − 2G + 1diag(G )T = D. (7)
Observe that this is another form of the relationship between

the Gram Matrix and the associated EDM. The minimization in
(6) is then cast into a Semide�nite Programming by relaxing the
constraint G = XXT to G � 0, and the resulting problem is solved
by interior point methods (as explained in [20]). Naturally, since
the minimization variable is G, a partial MDS is then needed to
recover the point coordinates X ∈ Rm .

SDP provides very accurate results. However it does not scale
well and relies on sophisticated optimization procedures that cannot
be easily implemented on devices with limited resources.

After running any localization procedure which �nds point co-
ordinates X , the obtained solution can be expressed in a global
coordinate frame using some �xed anchor nodes (at least 3 or 4 in
our case) exploiting a rigid registration routine. A common proce-
dure exploits Orthogonal Procrustes Analysis [17].

3 MATHEMATICAL BACKGROUND

Our solution to the SNL problem exploits a Low-rank and Sparse
decomposition to robustly complete PΩ (D̂). In particular, our
method constrains the completion of the partial matrix PΩ (D̂) to
approach a Euclidean Distance Matrix, namely attempts to compute
a EDM completion of the data matrix. For these reasons, we now
brie�y review the main concepts about robust Matrix Completion
via LRS decompositions, and EDM completion.

3.1 Robust Matrix Completion via LRS Matrix

Decompositions

Matrix Completion is concerned with the problem of recovering
unspeci�ed entries of a low-rank partial matrix. A completion of
a partial matrix consists in ascribing values to the missing data.

Conventional solvers for MC, as for example SVT [10], ALM [25],
APGL [28] and OptSpace [23], can �ll unspeci�ed entries, but they
are not robust to the presence of outlier measurements in the data
matrix.

In order to handle outlier measurements, one possibility is to
cast MC as a Low-Rank and Sparse matrix decomposition problem.
LRS decompositions address the general problem of decomposing
a data matrix as the sum of a low-rank term representing some
meaningful low-dimensional structure contained into the data, a
sparse term representing rogue measures and a term accounting for
a di�use noise. Such a problem arises in a number of applications
in Computer Vision, as for example in the separation of foreground
objects from the background [3], or in synchronization problems
in Structure from Motion [1, 2]. A wide overview of LRS matrix
decompositions and their applications can be found in [9].

Let us consider the following LRS decomposition problem

PΩ (D̂) = PΩ (L) + S + N . (8)

Here PΩ (D̂) is the partial data matrix, L is an unknown low-rank
term representing a cleaned completion of the data matrix, S is an
unknown sparse matrix representing outliers, and N is a di�use
noise. The problem of computing L (and eventually S) from PΩ (D̂)
is known as Robust Matrix Completion (RMC). RMC is illustrated
in Figure 2.

Figure 2: Robust Matrix Completion. On the left, the input

matrix: Colors represent the low-rank structure, black en-

tries represent outliers and symbols ? represent unspeci�ed

entries. On the right, the completed (and cleaned) low-rank

matrix.

R-GoDec [1] is an algorithm that solves RMC under the LRS
matrix decomposition framework. R-GoDec is built on GoDec
[30] which was originally designed to solve the conventional MC
problem only. R-GoDec splits the sparse term as the contribution
of two terms S1 and S2 with complementary supports:

• S1 is a sparse matrix with support on Ω representing outlier
measurements;

• S2 has support on f (where f is the complement of Ω),
and it is an approximation of −Pf (L), representing the
completion of unspeci�ed entries.

This results in the following decomposition problem

PΩ (D̂) = L + S1 + S2 + N (9)
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which is translated into the minimization



min
L,S1,S2

1
2




PΩ (D̂) − L − S1 − S2




2
F
+ λ ‖S1‖1

s.t. rank(L) ≤ r , supp(S1) ⊆ Ω, supp(S2) = f
(10)

R-GoDec solves the problem above using a block-coordinate
scheme that alternates the L, S1, and S2 updates. L is updated as the
rank-r projection of PΩ (D̂) − S1 − S2 using Bilateral Random Pro-
jections (BRP) [19]. S1 is updated by applying the soft-thresholding
operatorΘλ [5] to the matrix PΩ (D̂ − L). S2 is updated as −Pf (L).
These steps are iterated until convergence.

3.2 Euclidean Distance Matrix Completion

A matrix D ∈ Rn×n is an EDM if and only if there exist n
points in Rm ascribed to the row of a matrix X ∈ Rn×m , X =
[x1, x2, . . . , xn]T , such that the squared distance between xi and
xj is given by Di j = ‖xi − xj ‖22 . In particular, every EDM is a
non-negative symmetric matrix with zero diagonal.

A notable fact about EDMs is that their rank is at most m + 2
(this can be easily derived from (7)). As for the SNL problem, the
rank of the associated EDM matrix is thus at most 4 (if m = 2)
or 5 (if m = 3). This result also states that the rank of an EDM is
independent of the number n of points. Thus, since we can suppose
thatm << n in the SNL problem, the associated EDM is low-rank.

Other notable facts about EDMs regard their geometrical struc-
ture. The set of all EDMs in Rn×n forms a closed convex cone
referred to as EDMn . Furthermore, let K1 and K2 be two convex
cones de�ned as follows

K1 = S
n
h (11)

K2 = {M ∈ S
n s.t. − JMJ � 0} (12)

where Sn is the set of n × n symmetric matrices, Snh is the set of
n × n symmetric matrices with zero diagonal and J is the centering
operator. Then it is demonstrated in [12] that EDMn is the inter-
section of K1 and K2. There also exist analytic formulas to project
symmetric matrices respectively on K1 and K2. Let be M ∈ Sn ,
then the projections are given by

PK1 (M ) = M − diag(M ) (13)
PK2 (M ) = M − PSn+ (JMJ ) (14)

where PSn+ (JMJ ) := QΛ+QT , QΛQT is the eigen-decomposition
of JMJ with eigenvalues arranged in non-increasing order, and
Λ+ii = max{0, Λii } for i = 1, . . . ,n.

Let now PΩ (D̂) be a partial EDM. A matrix D is an EDM com-
pletion if D is a completion of PΩ (D̂) and it is an EDM. In other
terms, the EDM completion is the problem of �nding an EDM that
completes a given partial EDM.

We brie�y recall some of the available approaches to solve the
EDM completion. Observe that, in general, algorithms for Robust
Matrix Completion do not guarantee that the completion of a partial
EDM is again an EDM.

A �rst possibility is to combine conventional solvers for RMC
with the Alternating Projections Algorithm (APA) [14]. Given two
convex sets A, B and a starting point M , APA alternately projects
the point on A and B in order to reach a point in their intersection.
In [4], it is shown that APA converges as the number of iteration

approaches to in�nity. As a consequence, the method can be slow,
but it can be useful if we have some e�cient method, such as closed-
form, for the projections.

Exploiting the geometric characterization of EDMn , and the
closed-form projections on K1 and K2, APA can be applied to
get an EDM which is close to the output of a RMC method. This
methodology is depicted in Figure 3.

Mishra et. al. in [26] proposed a Manifold Based-Optimization
method – MBO for short – by casting the EDM completion into
a minimization over the set of low-rank positive semide�nite ma-
trices. In particular, they derived an unconstrained optimization
problem on a smooth Riemannian manifold which they tackled via
gradient descent.

Another possibility is to reformulate the EDM completion as
an instance of the SDP, as explained in [16, 24]. Indeed, since a
symmetric zero-diagonal matrixM is an EDM if and only ifT (M ) �
0, then forcing T (M ) to be PSD is the same of imposingM to belong
to K2. Thus, intuitively, the SDP method, while searching for the
Gram Matrix G, also �nds an EDM completion of PΩ (D̂).

Figure 3: Alternating projections algorithm on EDMn
.

4 PROPOSED METHOD

In this section we describe an algorithm we dubbed ER-GoDec,
that robustly solves the EDM completion problem.

Starting from the LRS decomposition proposed by R-GoDec in
Eq. (9), we constrain the completion of PΩ (D̂) to belong to K1 and
K2 through the following minimization problem




min
L,S1,S2

1
2




PΩ (D̂) − L − S1 − S2




2
F
+ λ ‖S1‖1

s.t. rank(L) ≤ m + 2,
L ∈ K1,

L ∈ K2,

supp(S1) ⊆ Ω,

supp(S2) = f.

(15)

This problem can be solved using the procedure reported in
Algorithm 2. As in R-GoDec, variables L, S1 and S2 are updated
iteratively one at a time. A rank-(m + 2) projection of PΩ (D̂2) −
S1 − S2 is performed in order to �nd the low-rank term L. The
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projection is computed using Bilateral Random Projections (BRP)
[19]. Then, the resulting L is �rst projected on K2 and then on K1
according to Eq. (14) and Eq. (13) respectively. Finally, S1 is updated
via soft-thresholding of PΩ (D̂ − L) and −PΩ (L) is assigned to S2.

Algorithm 2 ER-GoDec

Require: D̂, Ω,m, ϵ , λ
Ensure: L, S1, S2

Initialize: L = D̂, S1 = 0, S2 = 0
while




PΩ (D̂) − L − S1 − S2




2
F
/




PΩ (D̂)




2
F
> ϵ do

(1) L ← rank-(m+ 2) approximation of PΩ (D̂)−S1 −S2
via BRP

(2) L ← PK2 (L)
(3) L ← PK1 (L)

(4) S1 ← Θλ (PΩ (D̂ − L))
(5) S2 ← −Pf (L)

end while

Once the EDM completion problem is solved via ER-GoDec, the
point coordinatesX can be obtained by applying the MDS algorithm
to L. The complete procedure is depicted in Figure 4.

Figure 4: SNL as a robust EDM completion problem. On the

top left, the input data matrix: colors represent distance

measurements d̂i j , black entries represent outliers and sym-

bols ? represent unspeci�ed entries. On the top right, the

completed (and cleaned) EDM. On the bottom, the positions

of the sensor nodes computed applying the MDS algorithm

to the EDM.

4.1 Incremental ER-GoDec for mobile SNL

Most of the state-of-the-art techniques assume that sensor nodes
are in �xed positions, and if they move a new instance of SNL has
to be solved from scratch.

Up to this point we worked under the same assumption, albeit
not necessary. As a matter of fact, ER-GoDec, can easily cater for
mobile sensors. We now present a simple variation of the ER-GoDec
algorithm, dubbed Incremental ER-GoDec or IER-GoDec, which
e�ciently addresses mobile SNL, namely networks where a subset
of sensors is moving.

We propose to �rst perform localization as explained in Section
4 using ER-GoDec. Then, localization in subsequent time points
can be obtained using IER-GoDec. If consecutive network con-
�gurations are su�ciently close one to each other, then applying
IER-GoDec solves the SNL problem more quickly than applying
ER-GoDec afresh with new range measurements.

IER-GoDec exploits an alternative initialization of the variables
with respect to ER-GoDec. Let us suppose that at time τ = t the
localization is performed via ER-GoDec, and that St1 and St2 are
the sparse terms computed by the algorithm. Let PΩ (D̂t+1) be the
partial data matrix at time at time τ = t + 1. Then IER-GoDec
initializes the low-rank term L as D̂t+1−St1 −S

t
2 and then continues

implementing the same steps as ER-GoDec.
Again, once the EDM completion problem is solved, the point

coordinates X t+1 can be obtained by applying the MDS algorithm
to Lt+1.

The Incremental ER-GoDec is summarized in Algorithm 3.

Algorithm 3 IER-GoDec

Require: D̂t+1, St1 , St2 , Ω,m, ϵ , λ
Ensure: L, St+11 , St+12

Initialize: L = D̂t+1 − St1 − S
t
2 , St+11 = St1 , St+12 = St2

while



PΩ (D̂

t+1) − L − St+11 − St+12




2
F
/




PΩ (D̂
t+1)




2
F
> ϵ do

(1) L ← rank-(m + 2) approximation of PΩ (D̂t+1) −
St+11 − St+12 via BRP

(2) L ← PK2 (L)
(3) L ← PK1 (L)

(4) St+11 ← Θλ (PΩ (D̂
t+1 − L))

(5) St+12 ← −Pf (L)
end while

5 EXPERIMENTS

In this section we validate our solution through synthetic exper-
iments in MATLAB®.

We �rst analyze some algorithmic features of ER-GoDec. In par-
ticular, we tune the soft-thresholding parameter λ and we evaluate
some alternative iteration schemes. Then, we compare ER-GoDec
respectively with two methods for SNL (SDP and SMACOF), a com-
bination of a solver for RMC and APA (R-GoDec + APA), and an
algorithm for EDM completion (MBO). The implementations of
SDP [6] (based on the SDPT3 solver [27]), MBO [26] and SMACOF
are available online, while for ER-GoDec and R-GoDec + APA we
use our implementations. We compare the performances of the
methods in terms of noise resilience, robustness to outliers, sensi-
tivity to missing data, and e�ciency. Finally, we assess IER-GoDec
in a mobile scenario.

In each experiment, we generate n random points in a squared
box of side l centered in the origin, representing the ground truth
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node positions. We perturb the true distances between points with
Gaussian noise with 0-mean and standard deviation σ . We discard
a portion (H%) of distances to simulate unspeci�ed data. We set
a portion (O%) of the speci�ed distances to random values in the
interval [0, l] to simulate outliers. We check the localizability of the
distance graph using our implementations of redundant rigidity
[21] and 3-connectivity [15].

The error measure we used is the Root Mean Square Error (RMSE)

RMSE =

√
1
n




X − X̃




2
F

(16)

where X̃ are the estimated point coordinates and X the true ones.
The RMSE is computed after the alignment of X̃ with respect to X̃
obtained using Orthogonal Procrustes Analysis [17] (also available
in MATLAB® through the procrustes command).

In each experiment, results are averaged over 100 di�erent simu-
lations minus the number of tests in which the localizability check
fails.

5.1 ER-GoDec Setup

We �rst study the behavior of ER-GoDec with respect to the
soft-thresholding parameter λ. Figure 5 shows the (average) RMSE
obtained using ER-GoDecwith di�erent values of λ. The considered
parameter con�guration is n = 100, l = 100, H = 50%, O = 20%,
and σ = 0.6.

0 100 200 300 400 500
0

5

10

15

20

R
M

S
E

Figure 5: Performances of ER-GoDec as a function of λ. On
the x-axis the values of λ, on the y-axis the corresponding

(average) RMSE obtained using ER-GoDec. The number of

sensors is n = 100, the box side is l = 100, the portion of

unspeci�ed entries is H = 50%, the portion of outliers is O =
20% and the noise std deviation is σ = 0.6.

ER-GoDec achieves the best performances (RMSE ≤ 0.5) for
λ ∈ [25, 150], hence a reasonable value for λ can be picked within
this interval. Since similar trends have been observed also with
other parameter con�gurations, we choose to �x the value λ = 50
for all the next experiments.

We are also interested in tuning the number of internal projec-
tions of ER-GoDec (respectively on K2 and K1) with respect to

outer iterations, with the purpose of attaining best e�ciency and
accuracy. Besides the ER-GoDec algorithm described in Algorithm
2, we analyze two di�erent iteration schemes. The �rst scheme
projects L alternatively on K2 and K1 5 times for each outer iter-
ation. The second scheme projects L on K2 and K1 every 5 outer
iterations. We denote the two schemes respectively as ER-GoDec-A
and ER-GoDec-B.

In Figure 6 we plot the residuals corresponding to ER-GoDec and
the two schemes just de�ned as function of the number of outer
iterations. For each scheme, the residue is de�ned as ‖PΩ (D̂) − L −
S1 − S2‖2F /‖PΩ (D̂)‖

2
F . The considered parameter con�guration is

n = 100, l = 100, H = 50%, O = 20%, and σ = 0.6.

Figure 6: Behaviors of di�erent iteration schemes. On the

x-axis the number of iterations, on the y-axis the residuals.

The number of sensors is n = 100, the box side is l = 100,
the portion of unspeci�ed entries is H = 50%, the portion of

outliers is O = 20% and the noise std deviation is σ = 0.6.

The resulting RMSE values are respectively 0.383 for ER-GoDec,
0.379 for ER-GoDec-A, 0.402 for ER-GoDec-B. Figure 6 shows that
ER-GoDec and ER-GoDec-A are almost equivalent both in terms
of convergence speed (measured in number of outer iterations)
and accuracy (measured by RMSE). However, ER-GoDec-A is less
e�cient than ER-GoDec since each outer iteration of ER-GoDec-
A is computationally about 5 time more complex than an outer
iteration of ER-GoDec. Conversely, the residuals of ER-GoDec-B
present an undesired oscillating behavior, and the method stops
after reaching the maximum number of iterations (1500). On the
whole, we choose ER-GoDec as reference method, since it balances
the trade-o� between accuracy and e�ciency.

5.2 Noise Resilience

In this experiment we evaluate the noise resilience of ER-GoDec
without considering unspeci�ed and outliers data. In particular we
set n = 100, l = 100, H = 0% (no unde�ned entries), andO = 0% (no
outliers). Clearly in this case the localizability test is trivial, since
the input matrices are complete. Results are shown in Figure 7.

Observe that SMACOF achieves the most accurate results, fol-
lowed by MBO. This depends on the fact that the SMACOF maxi-
mizes a likelihood function (stress), hence it is statistically optimal
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Figure 7: Noise Resilience. On the x-axis the noise std de-

viation σ , on the y-axis the corresponding (average) RMSE

obtained with several methods. The number of sensors is

n = 100, the box side is l = 100, the portion of unspeci�ed

entries is H = 0% and the portion of outliers is O = 0%.

in presence of i.i.d. Gaussian noise. The robust methods, namely
ER-GoDec, R-GoDec + APA and SDP, are sub-optimal because they
trade statistical e�ciency for robustness. All errors grow linearly
with respect to the noise std deviation. Thus we �x a reasonable
level of noise, namely σ = 0.6, for the following experiments. This
level of noise provides an RMSE approximately lower than 0.2 for
all the methods.

5.3 Sensitivity to Unspeci�ed Data

In this experiment we study the sensitivity of ER-GoDec to
unspeci�ed data. We set n = 100, l = 100, σ = 0.6 and two portions
of outliers, namely O = 0% (no outliers) and O = 30%. Results are
shown in Figure 8.

In the case without outliers (upper plot of Figure 8), all the
methods are insensitive to unspeci�ed entries up to a portion of the
50%. When the portion of unspeci�ed entries is between the 50% and
the 80%, ER-GoDec achieves similar results compared to SDP, better
results compared to R-GoDec + APA and MBO, while SMACOF
performances get worse. When the portion of unspeci�ed entries
is greater than the 80%, the accuracy drops for all the methods,
although ER-GoDec performances still remain acceptable.

The lower plot of Figure 8 shows that SMACOF and MBO become
sensitive to unspeci�ed entries when outliers are present (although
not reported in the �gure, their RMSE stands at around 10 even for
portions of unspeci�ed entries lower than or equal to the 50%). R-
GoDec + APA, ER-GoDec and SDP are not sensitive to unspeci�ed
entries up to a portion of the 50%, even in the presence of outliers.
When the percentage of unspeci�ed entries is greater than the 50%
all the methods worsen. ER-GoDec shows the best breaking point
at the 70%.

In our 100 simulations the localizability check fails approximately
20 times when the portion of unspeci�ed entries is greater than the
80%, while for portions lower than the 80% the check never fails.
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Figure 8: Sensitivity to unspeci�ed data. On the x-axis the

portion of unspeci�ed entries H%, on the y-axis the (aver-

age) RMSE obtained with several methods. The number of

sensors is n = 100, the box side is l = 100 and the noise std

deviation is σ = 0.6. The portions of outliers are respectively
O = 0% (no outliers) in the upper plot and O = 30% in the

lower plot.

In Figure 9 we �x a set of parameters in order to appreciate the
results of a single simulation. As expected, ER-GoDec provides
the most accurate localization, followed by SDP and R-GoDec +
APA which fail in localizing a couple of sensors (located near the
top-right border). Instead SMACOF and MBO obtain inaccurate
positions for almost all the sensors. The bottom-right plot is the
scatter plot between D (X ) (the ground truth EDM) and D (X̃ )) (the
distance matrix associated to the computed positions). Observe that
distance values computed by of SDP are almost undetectable to
those computed by ER-GoDec.

5.4 Robustness to Outliers

In this experiment we analyze the robustness to outliers of ER-
GoDec. We set n = 100, l = 100, σ = 0.6 and two portions of
unspeci�ed entries, namely H = 0% (no unspeci�ed entries) and
H = 60%.
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Figure 9: Localization of a network of n = 100 sensors in a

box [−50, 50] (i.e. l = 100) with noise std deviation σ = 0.6. The
portion of unspeci�ed entries is H = 60% and the portion of

outliers isO = 10%. Green circles represent the true point co-

ordinates, red stars the estimated ones and segments the dis-

crepancies between them. The bottom-right plot is the scat-

ter plot between D (X ) and D (X̃ ).

Results in the upper plot of Figure 10 con�rm that ER-GoDec,
R-GoDec + APA and SDP are robust, since they obtain rather good
results up to a portion of outliers of the 40%. On the contrary,
SMACOF and MBO are non-robust, indeed the RMSE is considerable
also for portion of outliers lower than the 5%. The lower plot of
Figure 10 shows that ER-GoDec has the best breaking point at
the 30%, achieving accurate results also for high portions of both
unspeci�ed data and outliers, while R-GoDec + APA and SDP
obtain worse results. SMACOF and MBO produce highly inaccurate
positions.

An explanation for these results is that ER-GoDec and R-GoDec
+ APA correctly identify (and discard) outliers because they are
robust MC methods. The robustness of SDP depends on the fact
that it minimizes a robust cost function (based on `1-norm). On the
contrary, SMACOF and MBO fail in identifying outliers since they
minimize non-robust cost functions (based on the Frobenius norm).
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Figure 10: Robustness to outliers. On the x-axis the portion

of outliers O%, on the y-axis the (average) RMSE. The num-

ber of sensors is n = 100, the box side is l = 100, and the noise

std deviation is σ = 0.6. The portion of unspeci�ed entries

are respectivelyH = 0% (no unspeci�ed entries) in the upper

plot and H = 60% in the lower plot.

As for the localizability check, we observe that with these pa-
rameter con�gurations the check never fails.

Figure 11 con�rms that the accuracy of the localization is more
in�uenced by outliers rather than by random unspeci�ed entries.
Furthermore, only ER-GoDec provides an accurate localization,
while R-GoDec + APA and SDP cannot manage such portions of
unspeci�ed data and outliers. SMACOF and MBO get completely
inaccurate localizations. The scatter plot between D (X ) and D (X̃ )
(the bottom-right plot) veri�es that only ER-GoDec accurately
recovers the distance matrix.

5.5 Execution Time

In this experiment we evaluate the execution time as a function
of the number of sensors. We consider l = 100, σ = 0.6, H = 30%
and O = 10%. Results are reported in Figure 12.

From the upper plot of Figure 12 we can see that SDP is drastically
slow (10 to 50 times slower than the other methods). Also R-GoDec +
APA is quite slow with respect to SMACOF, ER-GoDec and MBO. In
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Figure 11: Localization of a network of n = 100 sensors in a

box [−50, 50] (i.e. l = 100) with noise std deviation σ = 0.6.
The portion of unspeci�ed entries is H = 60% and the por-

tion of outliers is O = 30%. Green circles represent the true

point coordinates, red stars the estimated ones and segments

the the discrepancies between them. The bottom-right plot

is the scatter plot between D (X ) and D (X̃ ).

order to compare the execution time of the most e�cient methods,
we increased the number of sensors excluding SDP and R-GoDec +
APA from the evaluation. The lower plot of Figure 12 shows that
MBO and SMACOF are noticeably faster with respect to ER-GoDec,
even if ER-GoDec still remains acceptable.

We observe that with this portion of unspeci�ed entries (30%)
the localizability check never fails.

5.6 IER-GoDec

We evaluate Incremental ER-GoDec through the following ex-
periment: we proceed as explained in Section 5 for generating D̂t

and we localize the network using ER-GoDec. Then we move ap-
proximatively one unity (in the plane) a random subset of sensors
generating D̂t+1. Figure 13 shows the speed-up obtained by using
IER-GoDec at time τ = t + 1 rather than using ER-GoDec at time
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Figure 12: In the upper plot, the execution time of all the

methods. In the lower plot, execution time of SMACOF, ER-

GoDec and MBO. On the x-axis the number of sensor nodes

(n), on the y-axis the execution time (in seconds). The box

side is l = 100, the portion of unspeci�ed entries is H = 30%,
the portion of outliers isO = 10% and the noise std deviation

is σ = 0.6.

τ = t + 1 from scratch. The accuracy of the two methods is the
same.

We can appreciate that the speed-up is signi�cantly high if few
sensors are allowed to move. Anyway, even if all sensors are moving
the speed up is still favorable to IER-GoDec.

We can conclude that IER-GoDec is a promising approach to
solve the SNL problem in mobile scenarios as those described in
Section 4.1.

6 CONCLUSIONS

In this paper we have presented ER-GoDec: a novel algorithm
which exploits a Low-Rank and Sparse matrix decomposition tai-
lored to SNL. We argue that the bene�t yielded by ER-GoDec is
twofold. First, it is both e�cient and highly accurate, as demon-
strated by synthetic experiments. Such occurrence permits to lo-
calize the network using low-power processor. The second bene�t



ICFNDS ’17, July 19-20, 2017, Cambridge, United Kingdom B. Rossi et al.

0 20 40 60 80 100

# of mobile sensors

60

65

70

75

80

85

s
p

e
e

d
-u

p

Figure 13: E�ciency of IER-GoDec. On the x-axis the num-

ber of mobile sensors, on the y-axis the speed-up (expressed

in terms of gained number of iterations of IER-GoDec with

respect to ER-GoDec, namely

(
1 − #iter(iER )

#iter(ER )

)
100%) obtained

by using IER-GoDec at time τ = t + 1 (after having applied

ER-GoDec at time τ = t ) rather than using ER-GoDec at

time τ = t + 1 from scratch. The box side is l = 100, the por-

tion of unspeci�ed entries isH = 30%, the portion of outliers

is O = 10% and the noise std deviation is σ = 0.6.

is that, thanks to its structure, ER-GoDec can easily cater for net-
works where a subset of sensors is moving and therefore it can be
pro�tably exploited for tracking purposes.

Future work will be aimed at better characterizing the perfor-
mances of IER-GoDec with respect to node density, node speed
and motion model.
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