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Abstract

In structure-from-motion the viewing graph is a graph
where vertices correspond to cameras and edges represent
fundamental matrices. We provide a new formulation and
an algorithm for establishing whether a viewing graph is
solvable, i.e. it uniquely determines a set of projective cam-
eras. Known theoretical conditions either do not fully char-
acterize the solvability of all viewing graphs, or are ex-
ceedingly hard to compute for they involve solving a system
of polynomial equations with a large number of unknowns.
The main result of this paper is a method for reducing the
number of unknowns by exploiting the cycle consistency. We
advance the understanding of the solvability by (i) finish-
ing the classification of all previously undecided minimal
graphs up to 9 nodes, (ii) extending the practical solvability
testing up to minimal graphs with up to 90 nodes, and (iii)
definitely answering an open research question by showing
that the finite solvability is not equivalent to the solvability.
Finally, we present an experiment on real data showing that
unsolvable graphs are appearing in practical situations.

1. Introduction
Solving structure-from-motion is important, e.g., for 3D re-
construction from images [33, 34, 29], image matching [26]
and visual odometry and localization [22, 1, 28, 35]. The
basic problem in structure-from-motion is to determine
which image sets can be reconstructed. This can be done,
e.g., by analyzing the viewing graph.

The viewing graph [19] (also known as the epipolar
graph) of a set of images is a graph where vertices cor-
respond to cameras/images and edges correspond to fun-
damental matrices. In other terms, an edge is present be-
tween two vertices if and only if the fundamental matrix
between such image pair is available, meaning that there ex-
ist enough corresponding points. In most practical scenar-
ios such graph is not complete due to the fact that different
cameras may view different portions of the scene.

A relevant question is whether a viewing graph is solv-
able, i.e., if it uniquely determines a projective configura-

Figure 1: Viewing graphs with eight vertices that were left unde-
cided in [37] and that we determined to be solvable.

tion of cameras, up to a single projective transformation.
In other terms, for a non-solvable viewing graph there exist
multiple transformations that can be applied to the cameras
without affecting the fundamental matrices. An equivalent
definition of solvability is given in [19], stating that a graph
is solvable if and only if the available fundamental matrices
uniquely determine the remaining ones, i.e., the input graph
can be transformed into the complete graph.

The solvability is closely related to 3D reconstruction
(see Tab. 1), since viewing graphs are used by a class of
projective structure-from-motion methods [30, 16] that re-
cover the projective cameras starting from multiple funda-
mental matrices. The solvability of a viewing graph should
be assessed before addressing the reconstruction, since if a
problem is non-solvable, then no method based on funda-
mental matrices only will provide a useful reconstruction.

Considering calibrated cameras, i.e. using the essen-
tial matrices instead of the fundamental ones, the solvable
graphs are exactly those that are parallel rigid [24, 38]. The
topic of parallel rigidity (also known as bearing rigidity) has
been extensively studied in the literature (see [3] for a recent
survey). Here we focus on the uncalibrated scenario, which
has been much less understood.

Related Work. In [19], the solvability of graphs with at
most six vertices is characterized, and some insights about
how to analyze larger graphs are provided. A constructive
method to actually complete such view graphs is discussed
in [20]. Rudi et al. [27] studied conditions under which a
viewing graph can be solved using a linear method. Further
analysis is available in [36], where it is shown that some
solvable graphs can be constructed starting from a triangle
and adding vertices of degree two one at a time.

In a recent paper [37], some necessary conditions for
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calibrated uncalibrated

solvability [3] [19, 27, 37]`ours

reconstruction [25] [30, 16]

Table 1: Problems taxonomy. We address the uncalibrated case.
Surveys [3, 25] address the calibrated situation.

solvability are reported in addition to a new sufficient condi-
tion. Thanks to these results, graphs with at most seven ver-
tices can be completely characterized, but there exist some
graphs with eight or nine vertices that could not be classi-
fied into solvable or non solvable (see Fig. 1). Larger graphs
were not studied. The authors of [37] also show that – in
principle – it is possible to classify any viewing graph via a
system of polynomial equations. However, this observation
has only a theoretical value: solving such system is compu-
tationally expensive for it is nonlinear and it involves a large
number of unknowns. Thus, an effective test for solvability
is still missing, which motivates our work.

Another open issue has to do with the concept of finite
solvability, which is tightly related to the notion of solvabil-
ity. A viewing graph is called finite solvable if it determines
at most a finite number of projective configurations of cam-
eras. Obviously, if a graph is not finite solvable (i.e., it de-
termines an infinite number of camera configurations) then
it is not solvable. In other terms, solvability implies finite
solvability. The reverse implication – namely, does finite
solvability imply solvability? – was left as an open research
question by [37].

Contribution. We derive a new formulation of viewing
graph solvability that is much simpler than [37] thanks to a
substantial reduction of the number of unknowns involved.
Our formulation is based on the cycle consistency property
of a graph, namely that the composition of (invertible) trans-
formations along any cycle should be the identity.

This leads to a new algorithm, which is based on com-
putational algebraic geometry, that implements a character-
ization of solvability. Previous techniques could only test
either some sufficient or necessary conditions. Using this
algorithm, we provide a complete characterization of all the
minimal graphs up to nine nodes, including those that were
left undecided by [37].

As a matter of fact, we are able to decide the solvability
of minimal graphs with up to 90 nodes. In practice, our ap-
proach can be used to detect interesting solvable sub-graphs
of dense/large viewing graphs coming from real data sets.

Finally, thanks to our algorithm, it is possible to ex-
hibit concrete examples of graphs that are finite solvable but
not solvable, thereby answering the open research question
from [37]. In summary, we:

propose a new simpler formulation of the solvability;

build an effective algorithm for testing it;
classify previously undecided viewing graphs;
extend solvability testing up to graphs with 90 nodes;
prove that finite solvability does not imply solvability.

The paper is organized as follows. We define the view-
ing graph solvability in Sec. 2, present theoretical results in
Sec. 3, and describe our algorithm in Sec. 4. Sec. 5 shows
some examples and presents experiments on real data.

2. Background
Let us consider n uncalibrated cameras P1, . . . Pn P

R3ˆ4 with centres c1, . . . , cn P R4. Let G “ pV, Eq be an
undirected graph with vertex set V “ t1, . . . , nu and edge
set E Ď t1, . . . , nu ˆ t1, . . . , nu. Let m “ |E | be the num-
ber of edges. Recall that for each edge pi, jq P E we can
compute the fundamental matrix Fij relating cameras i and
j in a closed-form [15]. Conversely, the fundamental matrix
of edge pi, jq uniquely determines the cameras of vertices i
and j, up to a projective transformation [15].

In the following, we shall use uppercase letters to de-
note matrices, lowercase bold letters to denote vectors and
lowercase letters to denote scalars1. Projective quantities
are represented as non-homogeneous variables and suitable
scales are introduced to handle the scale ambiguity.

Definition 1. Let G be a viewing graph and P “

tP1, . . . , Pnu be a set of cameras. The pair pG,Pq is called
solvable if all the camera configurations yielding the same
fundamental matrices as P are projectively equivalent, i.e.
they are related by the same projective transformation.

Proposition 1 ([37]). Let G be a viewing graph and P “

tP1, . . . , Pnu be a set of cameras with centres c1, . . . , cn P

R4. The solvability of the pair pG,Pq only depends on the
graph G and on the camera centres c1, . . . , cn.

According to the above result, if a problem is non-
solvable, then the cause can be either the topology of the
graph or the actual coordinates of the centres. For instance,
if the centres are all aligned, then the problem is not solv-
able (see [19] for more examples). The following concept –
which is the main focus of this paper – permits to predicate
the solvability of a problem based on the graph topology
only.

Definition 2. A graph G is called solvable if it is solvable
for a generic configuration of cameras.

Necessary conditions for viewing graph solvability [19,
37] allow to quickly prune the solvability candidates. For
instance, a solvable graph must satisfy:

it has at least p11n ´ 15q{7 edges [37];

1Observe that this notation is different from the one used in [37].
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it is biconnected [37];
all the vertices have degree at least two and no two
adjacent vertices have degree two (if n ą 3) [19].

Concerning sufficient conditions, it is known that any
chordal (or triangulated) graph is solvable [36]. Other con-
structive approaches are proposed in [27, 36, 37], where the
idea is to check if the input graph can be transformed into
a solvable one via suitable operations. The only condition
that is both necessary and sufficient is derived in [37], and
it will be reviewed next.

2.1. Algebraic characterization

Trager et al. [37] linked viewing graph solvability to the
characterization of the set of projective transformations that
can be applied to all cameras without affecting the funda-
mental matrices. First of all, they identify the family of
transformations that leave a camera matrix fixed.

Proposition 2 ([37]). Let P P R3ˆ4 be a camera with cen-
tre c P R4. All the solutions to PG “ aP for G P GLp4,Rq

and a P R‰0 are described by

G “ aI4`cvT @a P R‰0,v P R4 (1)

where I4 denotes the 4 ˆ 4 identity matrix and GLp4,Rq

denotes the group of real 4 ˆ 4 invertible matrices.

Let us consider a viewing graph G “ pV, Eq and let us
assign a projective transformation Gij P GLp4,Rq to every
edge pi, jq P E . It is understood that this transformation is to
be applied to the two adjacent cameras Pi and Pj . Clearly
this does not change the fundamental matrix Fij , for it is
invariant under projective transformations.

Pj

Ghi Gij 

Ph

Pi

Figure 2: Two adjacent edges in the viewing graph.

If we were dealing with a single edge (i.e., a pair of
cameras), we would be free to choose any Gij . How-
ever, when dealing with multiple edges (i.e., when consid-
ering the whole viewing graph), these matrices must satisfy
global compatibility constraints. Specifically, let us con-
sider two adjacent edges ph, iq P E and pi, jq P E that are
both incident to vertex i P V and to which the two trans-
formations Ghi and Gij are assigned (see Fig. 2). Such
transformations must leave the camera at the common ver-
tex fixed, resulting in the following compatibility constraint:

GhiG
´1
ij “ ahijI4 ` civ

T
hij (2)

where ahij P R‰0 and vhij P R4 are unknown.

Definition 3. Let G be a graph and let c1, . . . , cn P R4 be n
generic camera centres. Any assignment of transformations
Gij P GLp4,Rq to the edges of the graph, such that Eq. (2)
holds true for all adjacent edges, is called compatible.

Proposition 3 ([37]). Let G be a graph and let c1, . . . , cn P

R4 be n generic camera centres. G is solvable if and only if
any compatible assignment is of the form

Gij “ sijH @pi, jq P E (3)

where H P GLp4,Rq and sij P R‰0.

The condition in Prop. 3 means that, for a solvable graph,
the only way to act on all the cameras (without affecting the
fixed fundamental matrices) is to apply a single projective
transformation. Note that the centres can be sampled at ran-
dom, in order to satisfy the assumption of generic cameras.

Finding a compatible assignment of matrices, i.e., solv-
ing Eq. (2) for all adjacent edges simultaneously, is very
challenging since it defines a non-linear algebraic system
with a large number of unknowns. For this reason, Prop. 3
is given as a theoretical result in [37], without leading to a
practical algorithm for checking viewing-graph solvability.
The next section explains how we alleviate this drawback.

3. Proposed Formulation
Given a graph G “ pV, Eq with n vertices and m edges,

our task is to establish whether such a graph is solvable ac-
cording to Def. 2. Throughout our discussion we assume
that G is connected and n ě 3. The proposed formula-
tion is inspired by the algebraic characterization detailed in
Sec. 2.1. Specifically, we show how to reduce the number
of unknowns in Eq. (2), thus providing a more practical way
for checking viewing graph solvability.

3.1. Solvability on the Line Graph

Our formulation involves the line graph associated with
G, which is constructed as in the following definition.

Definition 4. Given an undirected graph G, its line graph
(also called edge-to-vertex dual graph) is denoted by
LpGq “ psV, sEq and it is another undirected graph such that:

each vertex of LpGq represents an edge of G;
two vertices of LpGq are adjacent if and only if their
corresponding edges are adjacent in G, i.e, they are in-
cident to the same vertex.

Figure 3 shows an example. The number of vertices in the
line graph coincides with the number of edges in the origi-
nal graph, i.e., sn “ m, whereas the number of edges in the
line graph is given by the following formula [14]:

sm “
1

2

n
ÿ

i“1

d2i ´ m (4)

5542



12

23

34

42 41

1 2

34

Figure 3: Viewing graph with 4 vertices (left) and corresponding
line graph (right). Please note that a vertex of the original graph
(e.g., vertex 2) can appear multiple times as an edge of the line
graph, as clarified by colors.

where di denotes the degree of vertex i P V .
Let us rewrite Eq. (2) in terms of the line graph LpGq “

psV, sEq. Note that the edge ph, iq P E is a vertex τ P sV and
similarly pi, jq P E represents a vertex υ P sV . Such vertices
are connected by an edge pτ, υq P sE by construction (as
they share vertex i P V in the input graph). Hereafter we
use Greek letters to denote vertices/edges in the line graph.
Using this notation Eq. (2) becomes:

GτG
´1
υ “ Zτυ (5)

where:
Zτυ “ aτυI4 ` civ

T
τυ (6)

and the index i of the camera is defined as tiu“τXυ.

Definition 5. Let G be a graph and let c1, . . . , cn P R4 be n
generic camera centres. Any assignment of transformations
Gτ P GLp4,Rq to the vertices of the line graph LpGq such
that Eq. (5) holds for all the edges is called a consistent
labelling.

Remark 1. A consistent labelling of the line graph corre-
sponds to a compatible assignment on the original graph
(see Def. 3). We give this equivalent definition here to out-
line the link with the problem of synchronization [32, 10, 5]
(see [4] for a recent survey), where the task is finding a con-
sistent labelling (of vertices) starting from measured ratios
on the edges. Specifically, with reference to Eq. (5), the
task would be to compute Gτ , Gυ, . . . starting from known
Zτυ. In our case, however, the variables Zτυ P GLp4q are
unknown for all pτ, υq P sE . Nevertheless, the framework
of synchronization is useful to derive a new formulation of
solvability, as it will be clarified in the next subsection (see
the proof of Thm. 1).

Remark 2. The problem of finding a consistent labelling in-
volves an equation of the form (5) for each edge in the line
graph, which in turn spawns 16 equations when considered
entry-wise. Thus, using Eq. (4), the total number of equa-
tions is given by:

16sm “ 16
`1

2

n
ÿ

i“1

d2i ´ m
˘

. (7)

Observe that there are 16 unknowns for each node in the line
graph, representing a matrix Gτ P GLp4,Rq. In addition,
there are five unknowns for each edge in the line graph, rep-
resenting a vector vτυ P R4 and a scale aτυ P R‰0. Thus,
the total number of unknowns is given by:

16sn ` 5sm “
5

2

n
ÿ

i“1

d2i ` 11m (8)

where sn “ m by construction and sm is given by Eq. (4).
Recall that the camera centres are considered known as they
are sampled at random in practice (see [37]).

Reasoning on the line graph, we are able to prove the fol-
lowing result, which gives a characterization of solvability
in terms of the variables vτυ P R4 only.

Proposition 4. Let G be a graph and let c1, . . . , cn P R4

be n generic camera centres. The graph G is solvable if and
only if any consistent labelling yields:

vτυ “ 0 @pτ, υq P sE . (9)

Proof. If G is solvable, then, due to Prop. 3, all the matrices
Gτ represent the same projective transformation, or equiva-
lently, they are all multiples of each other. Hence, the prod-
uct GτG

´1
υ is a multiple of the identity (which is denoted

by bτυI4 with bτυ P R‰0). Hence Eq. (6) becomes:

bτυI4 “ aτυI4`civ
T
τυ ô pbτυ´aτυqI4 “ civ

T
τυ. (10)

Since the right term in the above equation is a rank-1 matrix,
whereas I4 is full rank, the only way to let the equation true
is to set bτυ ´ aτυ “ 0 and vτυ “ 0, hence we get the
result. In the opposite direction, if vτυ “ 0 then Eq. (5)
rewrites GτG

´1
υ “ aτυI4 or, in other terms, Gτ “ aτυGυ .

Such an equation can be propagated through all vertices τ P
sV as soon as the line graph is connected (which is true if
the original graph is connected [7]). This means that all
matrices Gτ are multiples of each other, hence the graph is
solvable, thanks to Prop. 3.

Remark 3. Observe that Prop. 3 gives a formulation of solv-
ability in terms of the matrices Gτ whereas Prop. 4 consid-
ers the variables vτυ only. We will show in the next subsec-
tion that the problem of finding a consistent labelling can be
expressed via a system of equations not involving the ma-
trices Gτ (but involving the variables vτυ and aτυ only). In
this respect, a formulation of solvability in terms of vτυ (as
given by Prop. 4) is indeed essential.

3.2. Cycle Consistency

To derive the main result of our paper, we introduce the
notion of “consistent cycle”. A cycle is a non-empty path in
which the only repeated vertices are the first and last ones.
A consistent cycle is a cycle satisfying an algebraic con-
straint, as given in the following definition.
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Definition 6. Let G be a graph and let c1, . . . , cn P R4 be n
generic camera centres. Let C “ tτ1, τ2, τ3, . . . , τℓ, τ1u be
a cycle in the line graph LpGq. We say that C is a consistent
cycle (or a null cycle) if and only if the composition of the
edge labels along the cycle returns the identity, namely

Zτ1τ2Zτ2τ3 ¨ ¨ ¨ ¨ ¨ Zτℓτ1 “ I4. (11)

A cycle basis is a minimal set of cycles such that ev-
ery cycle can be written as a sum of the cycles in the basis,
where the sum of two cycles is a cycle where the common
edges vanish. There exist several types of cycle bases (see
[17] for a survey). We are interested here in a cycle consis-
tency basis for the line graph, that is a cycle basis such that:
if the cycles in the basis are consistent, then consistency
also holds on all the other cycles (see [12] for details).

Theorem 1. Let G be a graph and let c1, . . . , cn P R4 be
n generic camera centres. Let tC1, C2, . . . , Cfu be a cycle
consistency basis for the line graph LpGq. Let us collect in
a unique system the equations of the form (11) for all the
cycles in the basis. G is solvable if and only if the solution
to such system yields vτυ “ 0 for all pτ, υq P sE .

Proof. It is known that there exists a consistent labelling if
and only if all the cycles are null/consistent (see Lemma
8 in [13] and Corollary 1 in [4]). Clearly, if all cycles are
consistent, then – in particular – the cycles in a basis are
also consistent. The opposite does not hold in general [12].
However, if we consider a cycle consistency basis, then con-
sistency on the basis implies consistency on all cycles by
definition. Thus, there exists a consistent labelling if and
only if all cycles in a cycle consistency basis are consistent.
We now apply this general result to our problem: finding a
consistent labelling, i.e., an assignment of transformations
satisfying Eq. (5), is equivalent to imposing that all cycles
in a cycle consistency basis of the line graph are consistent.
In other terms, the system obtained by stacking equations
of the form (5) for all the edges in LpGq, is equivalent to the
system obtained by stacking equations of the form (11) for
all the cycles in a cycle consistency basis of LpGq. Accord-
ing to Prop. 4, a graph is solvable if and only if the solution
to the former yields vτυ “ 0 for all pτ, υq P sE , hence we
get the thesis.

Remark 4. The formulation of Thm. 1 comprises five un-
knowns for each edge pτ, υq P sE in the line graph, repre-
senting a vector vτυ P R4 and a scale aτ P R‰0. Thus,
using Eq. (4), the total number of unknowns is given by

5sm “ 5
`1

2

n
ÿ

i“1

d2i ´ m
˘

. (12)

Observe also that each cycle originates an equation of the
form (11), which in turn spawns 16 equations when con-
sidered entry-wise. Considering the fact that the cardinality

of a cycle consistency basis is the number of edges minus
the number of vertices plus one (see [12]), we get the total
number of equations as

16p sm ´ sn ` 1q “ 16
`1

2

n
ÿ

i“1

d2i ´ 2m ` 1
˘

. (13)

Recall that the number of vertices in the line graph satisfies
sn “ m by construction, and the number of edges sm is given
by Eq. (4). Note that Eq. (11) is still nonlinear, but it has the
advantage of not involving the unknowns Gτ for τ P sV , thus
reducing the difficulty of the problem compared to Eq. (5),
where the amount of unknowns is given in Eq. (8).

Remark 5. Observe that the input graph G is an undirected
graph. Indeed, given a pair of cameras, or, equivalently,
an edge pi, jq P E , the projective transformation that fixes
the fundamental matrix of that camera pair is independent
of the order of the cameras. In other words, Gij “ Gji.
When considering the line graph, instead, we are concerned
with directed edges2. Indeed, Zτυ “ GτG

´1
υ “ GhiG

´1
ij

and Zυτ “ GυG
´1
τ “ GijG

´1
hi are different transforma-

tions (we are considering here τ “ ph, iq and υ “ pi, jq).
However, from the practical point of view, it is convenient
to reduce the number of unknowns. More precisely, for a
given oriented edge pτ, υq P sE we consider aτυ P R‰0 and
vτυ P R4 as unknowns, and we use the relation Zυτ “ Z´1

τυ

to handle the opposite edge pυ, τq P sE , where the inverse
can be easily computed3.

3.3. A Simplified Formulation

We now derive a simpler equivalent formulation by ex-
ploiting the change of variables.

Proposition 5. Let G be a graph and let c1, . . . , cn P R4 be
n generic camera centres. Let tC1, C2, . . . , Cfu be a cycle
consistency basis for the line graph LpGq. For each cycle
Ck “ pτ1, τ2, . . . , τℓ, τ1q in the basis, let us form the follow-
ing equation:

Wτ1τ2Wτ2τ3 ¨ ¨ ¨ ¨ ¨ Wτℓτ1 “ bkI4 (14)

where bk P R‰0 is an unknown scale and

Wτυ “ I4 ` ciu
J
τυ (15)

where uτυ P R4 is unknown and tiu “ τ X υ.
G is solvable if and only if the solution to the above system
yields uτυ “ 0 for all pτ, υq P sE .

2The line graph of an undirected graph is undirected by construction.
However, it can be easily transformed into a directed graph by orienting
the edges arbitrarily.

3The inverse of a matrix of the form I4 ` cvT is given by I4 ` cwT

where w “ ´ 1
1`cTv

v. Observe that w is a scalar multiple of v.
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#Eq. #Var. #Eq. #Var. #Eq. #Var. #Eq. #Var. #Eq. #Var. #Eq. #Var.

Our formulation 64 36 64 40 112 63 112 67 192 100 208 109

Trager et al. [37] 128 120 144 141 224 198 240 219 352 286 384 312

Table 2: The number of equations and variables are reported on some minimal examples for our formulation (see Eq. (13), (17)) and the
one proposed in [37] (see Eq. (7), (8)). Recall that the latter (described in Eq. (2) and (5)) is given as a theoretical result in [37] due to its
computational complexity, without giving rise to an effective algorithm. Our formulation is more practical as it involves fewer unknowns.

Proof. The thesis derives from the following change of
variables for each edge in the line graph:

uτυ “ vτυ{aτυ (16)

which is well defined since aτυ ‰ 0.

Remark 6. Thanks to Prop. 5, we have four unknowns for
each edge pτ, υq P sE in the line graph, representing a vector
uτυ P R4, plus one unknown scale for each cycle. Thus,
the total number of unknowns becomes

4sm ` 1p sm ´ sn ` 1q “ 5sm ´ m ` 1 (17)

which is lower than the formulation related to Thm. 1 where
the number of unknowns is 5sm (see Eq. (12)). The number
of equations remains unchanged and it is given by Eq. (13).
Table 2 reports a comparison between our simplified formu-
lation and the one in Eq. (5) for some examples.

Corollary 1. Let G be a graph and let c1, . . . , cn P R4 be
n generic camera centres. Let tC1, C2, . . . , Cfu be a cycle
consistency basis for the line graph LpGq. Let us collect in
a unique system the equations of the form (14) for all the
cycles in the basis. G is solvable if and only if such a system
admits exactly one solution.

Proof. In one direction. If G is solvable then uτυ “ 0
(thanks to Prop. 5), hence Eq. (14) gives bk “ 1 for each
cycle Ck in the basis, i.e., there is exactly one solution. In
the opposite direction. It is easy to see that if we set all the
scales bk “ 1 and all the vectors uτυ “ 0, then we always
get a solution to Eq. (14). If we assume that there is a unique
solution, then it must be equal to bk “ 1 and uτυ “ 0, i.e.,
the graph is solvable thanks to Prop. 5. If the graph is non-
solvable, there will be also other solutions.

Remark 7. Corollary 1 means that the formulation given in
Eq. (14) permits to fix all ambiguities, so that the solution
is exactly one (for a solvable graph). It also implies that
one does not need to explicitly compute the solution(s) in
practice, but it is enough to recover the number of solutions.
Note that the formulation in Eq. (11), instead, is subject to

scale ambiguity, for it involves an unknown scale aτυ for
each edge in LpGq: when considering a single cycle, for
instance, the product of such scales is fixed but all of them
are free. Concerning the global projective ambiguity (which
is inherent to the problem), observe that a global change
in the coordinate system affects the matrices Gτ only, but
it does not affect the product GτG

´1
υ “ Zτυ. Therefore,

projective ambiguity is not present in the formulations given
in Eq. (11) and (14) (that do not involve the matrices Gτ ).

4. Proposed Algorithm

Our algorithm (summarized in Alg. 1) is a direct conse-
quence of the theoretical results from Sec. 3; in particular,
we follow the simplified formulation derived in Sec. 3.3,
which is based on Eq. (14). Some steps require additional
explanations, which are given in the following remarks.

Algorithm 1 Viewing Graph Solvability

Input: undirected graph G “ pV, Eq

Output: solvable or not solvable
1. randomly sample the camera centres
2. compute the line graph LpGq

3. compute a cycle consistency basis for LpGq

4. set up equations of the form (14) and (20)
5. compute the number s of real solutions
6. if s “ 1 then solvable; else not solvable

Remark 8. Concerning Step 3, we focus on a particular
type of cycle consistency basis [12], namely, we consider
a fundamental cycle basis, due to its simplicity. In fact,
this basis can be constructed starting from a spanning tree,
which can be found in linear time by either depth-first
search or breadth-first search. Let T be a spanning tree
of LpGq “ psV, sEq, then adding any edge from sEzT to T
generates a cycle; the set of such cycles constitutes the fun-
damental cycle basis [17].

Remark 9. As for Step 4, recall that our unknowns comprise
one scale bk P R for each cycle and one vector uτυ P R4

for each edge in the line graph. Such variables must satisfy
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Nodes 3 4 5 6 7 8 9
Graphs 1 1 1 4 3 36 27
Method Alg. 1 [37] Alg. 1 [37] Alg. 1 [37] Alg. 1 [37] Alg. 1 [37] Alg. 1 [37] Alg. 1 [37]

Solvable 1 1 1 1 1 1 4 4 3 3 36 31 17 5
Not solvable 0 0 0 0 0 0 0 0 0 0 0 0 10 0
Unknown 0 0 0 0 0 0 0 0 0 0 0 5 0 22

Table 3: Solvability of minimal viewing graphs. Candidates are connected graphs which are finite solvable and satisfy necessary conditions.
Some cases were left undecided by [37], while our approach provides a complete characterization of all the minimal graphs up to 9 nodes.

the following constraints:

bk ‰ 0 (18)

Wτυ “ I4 ` ciu
J
τυ P GLp4,Rq. (19)

Instead of explicitly enforcing them, we add the following
equation

zτυ detpI4 ` ciu
J
τυq ` 1 “ 0 (20)

for each edge in the line graph, where zτυ P R is an aux-
iliary variable. Clearly, if detpI4 ` ciu

J
τυq “ 0 then the

above equation can not be satisfied over real numbers. In
other words, this additional equation has the effect of auto-
matically discarding non-invertible matrices. Observe also
that if all matrices Wτυ are invertible, then the product of a
subset of them is also invertible. In other terms, the left term
in Eq. (14) is invertible for each cycle and hence bk ‰ 0.
Thus equation (20) implies both (19) and (18).

Remark 10. Step 5 is based on computational algebraic ge-
ometry. In particular, we employ Gröbner basis computa-
tion [8], that is one of the main practical tools for solving
systems of polynomial equations with coefficients in a field.
A Gröbner basis can be viewed as a nonlinear generalization
of the Gaussian elimination for linear systems [18].

Remark 11. Although our problem is stated over R, for
the sake of efficiency [2] we perform computations over Zp

(i.e., the integers modulo a large prime number p), as cus-
tomary in applied algebraic geometry. This yields the same
number c of solutions as in C [31], which is greater or equal
to the sought number s of solutions in R. Recall that s ě 1,
since there always exists at least one trivial real solution
(given by uτυ “ 0, bk “ 1 and zτυ “ ´1). Several cases
are given: i) if c “ 8 then s “ 8 [37]; ii) if c “ 1 then
s “ 1; iii) if c ą 1 then s ě 1. Note that if c is even then
s ě 2 since the solutions must come in conjugated pairs.

5. Experiments
In this section, we show that our method can be prof-

itably used to check the viewing graph solvability on sev-
eral examples. See also the supplementary material. Our
algorithm is implemented in Macaulay2 [11] and the code
is publicly available4.

4https://github.com/federica-arrigoni/solvability

We follow the protocol used in [37] where graphs with
minimal number of edges (i.e., m “ rp11n´15q{7s) are an-
alyzed. As already pointed out, there exist cases with eight
and nine nodes that are left undecided in [37] (see Tab. 2 in
[37]), as they satisfy the necessary but not sufficient condi-
tions5. Our approach, instead, is an effective test for solv-
ability, being based on a characterization of the problem
(i.e., a condition, that is both necessary and sufficient); as
such, it is able to classify all those undecided cases, as sum-
marized in Tab. 3. In particular, the five cases with eight
nodes (shown in Fig. 1) were found to be all solvable.

Figure 4: Some solvable minimal viewing graphs with 9 nodes.

Figure 5: Some unsolvable minimal viewing graphs with 9 nodes.

As for the minimal graphs with nine nodes, there are
22 undecided graphs in [37], which, in particular, are fi-
nite solvable (i.e., they identify a finite number of camera
configurations). Finite solvability is a necessary condition
for solvability, but it was unknown whether it is also suffi-
cient, as all non-solvable graphs – studied so far – define an
infinite number of solutions. Our algorithm is able to prove
that a subset of those undecided cases are solvable graphs
(see Fig. 4 for some examples). Surprisingly, there exist
also some non-solvable graphs among those candidates (see
Fig. 5 for some examples), where our algorithm finds two
real solutions. Thus, it is possible for a graph to be finite
solvable without being solvable (i.e., to have a finite num-
ber of real solutions strictly greater than one). This answers
an open research question pointed out by Trager et al. [37].

Viewing graphs with more than nine nodes are not stud-
ied in [37]. Our approach, instead, is able to handle minimal
graphs with up to 90 nodes. For instance, we can prove that
the graphs reported in Fig. 6 are solvable.

5Actually, Trager et. al [37] manually worked out that one of those
graphs is solvable.
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Figure 6: Examples of solvable minimal viewing graphs with 20
nodes (left) and 90 nodes (right).

Larger/denser graphs would require too much computa-
tional effort to be characterized with the computer used in
our experiments (2020 MacBook Pro with 1.4 GHz proces-
sor, 8 GB RAM). Nevertheless, we can use our approach as
a probe to study their local structure. Table 4 reports the
execution times of Alg. 1 on some minimal graphs with in-
creasing number of nodes. The computational complexity
is dominated by Gröbner basis computation, whose worst-
case complexity is doubly exponential in the number of
variables [8]. In our experiment, we randomly sample small
sub-graphs of large viewing graphs coming from real data
sets. More precisely, we proceed as follows: i) we select
at random one node of the graph; ii) we identify the first
neighborhood of the sampled node, (if the first neighbors
are not enough, we also consider the neighbors of neigh-
bors and so on); iii) we randomly select 8 nodes within the
neighborhood. This, in addition to the original node, yields
a nine-node subgraph. Following this procedure, we sample
200 subgraphs from each real graph, without replacement.
The results, reported in Tab. 5, tell us that most local sub-
graphs are solvable. This gives an indication about which
sub-graphs could be used in practice as a starting point for
an incremental pipeline for image-based 3D reconstruction.

Nodes 10 20 30 40 50 60 70 80 90
Time 1.6 s 9 s 93 s 3 min 15 min 35 min 1 h « 2 h ą 4 h

Table 4: Execution times of Alg. 1 on some minimal graphs.

6. Conclusions and future work
We investigated the solvability of viewing graphs, i.e.

whether they uniquely determine projective cameras, and
made several important advances in the theory and practical
use of viewing graphs. Building upon [37], we proposed a
new characterization that involves fewer unknowns by ex-
ploiting cycle consistency. The resulting algorithm is an
effective test (necessary and sufficient conditions) for solv-
ability, thanks to which we classified all the cases left un-
decided by [37], and proved that finite solvability does not
imply solvability, thereby answering an open research ques-
tion. Moreover, we were able to process minimal graphs
with up to 90 vertices, which sets the state-of-the-art in the

Solvable Unsolvable

Data set by suff. by Alg. 1 Tot. by nec. by Alg. 1 Tot.

Alcatraz Courtyard 200 0 200 0 0 0
Buddah Tooth 178 20 198 2 0 2
Pumpkin 169 22 191 8 1 9
Skansen Kronan 179 8 187 13 0 13
Tsar Nikolai I 196 0 196 4 0 4

Alamo 136 16 152 48 0 48
Ellis Island 136 30 166 34 0 34
Gendarmenmarkt 128 11 139 61 0 61
Madrid Metropolis 88 28 116 84 0 84
Montreal Notre Dame 140 12 152 48 0 48
Notre Dame 165 18 183 17 0 17
NYC Library 110 19 129 71 0 71
Piazza del Popolo 105 22 127 73 0 73
Piccadilly 109 23 132 68 0 68
Roman Forum 114 28 142 58 0 58
Tower of London 123 18 141 59 0 59
Trafalgar 86 16 102 98 0 98
Union Square 74 19 93 107 0 107
Vienna Cathedral 122 8 130 70 0 70
Yorkminster 116 14 130 70 0 70

Cornell Arts Quad 76 23 99 101 0 101

Table 5: Characterization of sub-graphs with nine nodes sampled
from some real viewing graphs [23, 6, 39]. Solvable by sufficiency
means that the graph satisfies a sufficient condition, namely being
chordal [36]. Unsolvable by necessity means that the graph fails
to satisfy some necessary conditions [37]. All the other cases are
resolved by our approach (Alg. 1).

uncalibrated case. Although this is still far from the level of
maturity of the calibrated case, a careful analysis of small
graphs is important as they are the building blocks of larger
graphs. The maximum size we can manage is a matter of de-
signing clever solvers and exploiting computational power:
we are working on pushing this limit forward. For exam-
ple, we plan to investigate numerical algebraic geometry
(e.g., [9]), which gives good grounds for expecting to make
the computation tractable for large-scale scenarios.

In this paper, we considered the concept of solvabil-
ity given in Def. 2, which is based solely on the topology
of the viewing graph. Using additional information (e.g.,
points) would give rise to a different solvability notion [21],
that would be interesting to explore in the future. Drawing
the connection to the calibrated case (parallel rigidity [3])
would also be an interesting topic of prospective research.

Besides being of theoretical interest, the solvability prob-
lem has a practical impact, for reconstruction methods such
as [30, 16] will benefit from knowing in advance whether
the graph at hand is solvable or not: if the problem is ill-
posed, then any method will fail to return a useful solution.
In this case, finding a maximal subgraph that is solvable
would be of great interest.
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