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Abstract. This paper introduces R-SMW, a new algorithm for stereo
matching. The main aspect is the introduction of a Markov Random
Field (MRF) model in the Symmetric Multiple Windows (SMW) stereo
algorithm in order to obtain a non-deterministic relaxation. The SMW
algorithm is an adaptive, multiple window scheme using left-right con-
sistency to compute disparity. The MRF approach allows to combine in
a single functional the disparity values coming from different windows,
the left-right consistency constraint and regularization hypotheses. The
optimal estimate of the disparity is obtained by minimizing an energy
functional with simulated annealing. Results with both synthetic and real
stereo pairs demonstrate the improvement over the original SMW algo-
rithm, which was already proven to perform better than state-of-the-art
algorithms.

1 Introduction

Three-dimensional (3D) reconstruction is a fundamental issue in Computer Vi-
sion, and in this context, structure from stereo algorithms play a major role.
The process of stereo reconstruction aims at recovering the 3D scene structure
from a pair of images by searching for conjugate points, i.e., points in the left
and right images that are projections of the same scene point. The difference
between the positions of conjugate points is called disparity.

Stereo is a well known issue in Computer Vision, to which many articles
have been devoted (see [4] for a survey). In particular, the search for conjugate
points in the two images is one of the main problem, and several techniques have
been proposed to make this task more reliable. The search is based on a matching
process that estimates the ”similarity” of points in the two images on the basis of
local or punctual information. Actually, feature-based methods try to associate
image features (e.g., corners) in the image pair, whereas area-based methods
try to find point correspondences by comparing local information. The main
difference lies in the fact the the former approach produces a sparse (i.e., only in
correspondence of features) disparity map, whereas, the latter generates a dense
disparity image. In particular, the area-based matching process is typically based
on a similarity measure computed between small windows in two images (left and
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right). The match is normally found in a deterministic way, in correspondence
of the highest similarity value.

In this paper, a novel probabilistic stereo method is proposed, which is based
on the Symmetric Multi-Window(SMW) algorithm presented in [7,8]. In this
algorithm, matching is performed by correlation between different kinds of win-
dows in the two images, and by enforcing the so-called left-right consistency
constraint. This imposes the uniqueness of the conjugate pair, i.e., each point on
one image can match at most one point on the other image. This algorithm is
fully deterministic and exhibits good performances, as compared with the state
of the art, namely [15,23]. Still, there is margin for improvement (as our re-
sults show) by implementing a probabilistic SMW using Markov Random Fields
(MRFs). To this end, SMW has been re-designed in a probabilistic framework
by defining a random field evolving according to a suitable energy function.

Literature about MRFs is large and covers many topics of image processing,
like restoration, segmentation, and image reconstruction considering both inten-
sity (video) [3] and range images [1]. In addition, different approaches, closer in
spirit to ours, were proposed aimed at integrating additional information in the
MRF model, like, for instance, edges to guide the line extraction process [10], or
confidence data to guide the the reconstruction of underwater acoustic images
[19].

More specifically, MRFs are also frequently used in computer vision applica-
tions in the context of stereo or motion. For example, in [14] the motion vector is
computed adopting a stochastic relaxation criterion, or, in [16], MRFs are used
to detect occlusions in image sequences. Stereo disparity estimation methods
using MRFs have been proposed in several papers. In [21], a stereo matching
algorithm is presented as a regularized optimization problem. Only a simple cor-
respondence between single pixels in the image pair is considered that leads to
an acceptable photometric error, without exploiting local information for dispar-
ity estimation. In [17], matching is based on a fixed single correlation window,
shifted along raster scan lines, and disparity is calculated by integrating gradi-
ent information in both left and right images. In this way, a mix between area-
and feature-based matching is obtained, but occlusions are not managed by the
algorithm. In [22], an MRF model was designed to take into account occlusions
defining a specific dual field, so that they can be estimated in a similar way as
in a classic line process similar to that presented in [12].

In our approach, for each pixel, different windows are (ideally) considered to
estimate the Sum of Squared Differences (SSD) values and related disparities.
When using area-based matching, the disparity is correct only if the area covered
by the matching window has constant depth. The idea is that a window yielding
a smaller SSD error is more likely to cover a constant depth region; in this way,
the disparity profile itself drives the selection of an appropriate window.

The main contribution of this paper lies in the definition of a MRF model for
a non-deterministic implementation of the SMW algorithm, in order to consider
in a probabilistic way the contributions associated to the several windows, also
introducing a local smoothness criterion. The initial disparity is computed for
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each window with SSD matching, then the Winner-Take-All approach of the
SMW algorithm is relaxed by exploiting the MRF optimization.

The rest of the paper is organized as follow. In Section 2, the stereo process
is described, and the MRF basic concepts are reported in Section 3. The actual
MRF model is detailed in Section 4, and results are presented in Section 5.
Finally, in Section 6, conclusions are drawn.

2 The Stereo Process

Many algorithms for disparity computation assume that conjugate pairs lie along
raster lines. In general this is not true, therefore stereo pairs need to be rectified
– after appropriate camera calibration – to achieve epipolar lines parallel and
horizontal in each image [9].

A customary assumption, moreover, is that the image intensity of a 3D point
is the same on the two images. If this is not true, the images must be normalized.
This can be done by a simple algorithm [2] which computes the parameters of
the gray-level transformation

Il(x, y) = αIr(x, y) + β ∀(x, y)

by fitting a straight line to the plot of the left cumulative histogram versus the
right cumulative histogram.

The matching process consist in finding the element (a point, region, or
generic feature) in the right image which is most similar, according to a similarity
metric, to a given element in the left image.

In the simple correlation stereo matching, similarity scores are computed,
for each pixel in the left image, by comparing a fixed window centered on the
pixel, with a window in the right image, shifting along the raster line. It is
customary to use the Euclidean distance, or Sum of Squared Differences (SSD),
as a (dis)similarity measure. The computed disparity is the one that minimizes
the SSD error.

Even under simplified conditions, it appears that the choice of the window size
is critical. A too small window is noise-sensitive, whereas an exceedingly large
one acts as a low-pass filter, and is likely to miss depth discontinuities. This
problem is addressed effectively – although not efficiently – by the Adaptive
Window algorithm [15], and by the simplified version of the multiple window
approach, introduced by [13,11].

Several factors make the correspondence problem difficult. A major source
of errors in computational stereo are occlusions, although they help the human
visual system in detecting object boundaries. Occlusions create points that do
not belong to any conjugate pairs (Figure 1). There are two key observations
to address the occlusions issue: (i) matching is not a symmetric process. When
searching for corresponding elements, only the visible points in the reference
image (usually, the left image) are matched; (ii) in many real cases a disparity
discontinuity in one image corresponds to an occlusion in the other image. Some
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A A’

B C C’

Left Image Right Image

Fig. 1. Left-right consistency in the case of the random-dot stereogram of Figure 3.
Point B is given C′ as a match, but C′ matches C �= B.

authors [6,5] use the observation (i) to validate matching (left-right consistency);
others [11,2] use (ii) to constrain the search space.

Recently, a new algorithm has been proposed [8] that computes disparity
by exploiting both the multiple window approach and the left-right consistency
constraint. For each pixel, SSD matching is performed with nine 7 × 7 windows
with different centers: the disparity with the smallest SSD error value is retained.

The idea is that a window yielding a smaller SSD error is more likely to
cover a constant depth region. Consider the case of a piecewise-constant surface:
points within a window covering a surface discontinuity come from two different
planes, therefore a single “average” disparity cannot be assigned to the whole
window without making a manifest error. The multiple windows approach can
be regarded as a robust technique able to fit a constant disparity model to data
consisting of piecewise-constant surface, that is, capable of discriminate between
two different populations. Occlusions are also detected, by checking the left-right
consistency and suppressing unfeasible matches accordingly.

In this work we introduce a relaxation of the SMW algorithm using MRF.
Both the multiple windows and the left-right consistency constraint features are
kept but, in some sense, they are relaxed.

As for the multiple windows, one may note that correlation needs to be
computed only once, because an off-centered window for a pixel is the on-centered
window for another pixel. Therefore, the multiple windows technique used by
the SMW reduces to assign a given pixel the disparity computed for one of its
neighbors with an on-centered window, namely, the neighbour with the smallest
SSD error. The nine 7×7 windows scheme gives forth to a sparse neighbourhood
of nine pixels. The idea is to relax this scheme, and consider the pixel with the
smallest SSD error in a full n × n neighbourhood (Figure 2).

As for the left-right consistency, we noticed that in presence of large amount
of noise or figural distortion, the left-right consistency could fail for true conju-
gate pairs, and points could be wrongly marked as occluded. In this respect, it
would be useful to relax the constraint, allowing for small errors.
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(47)                                                    (48)                                                   (49)

(1)                                                        (2)                                                      (3)                                                       (4)                             

Fig. 2. The 49 asymmetric correlation windows for a 7×7 neighbourhood. The pixel for
which disparity is computed is highlighted. The off-centered window for the highlighted
pixel is the on-centered window for another pixel.

All these requests can be cast in terms of cost functions to be minimized over
a disparity field, and this points strongly to Markov Random Fields.

3 Markov Random Fields

In this section will shall briefly review some basic concepts regarding MRF, in
order to introduce our notation.

A MRF is defined on a finite lattice field I of elements i called sites (in
our case, image pixels). Let us define a family of random variables D={D i=
d i, i∈ I }, and let us suppose that each variable may assume values taken from
a discrete and finite set (e.g., grey levels set). The image is interpreted as a
realization of the discrete stochastic process in which pixel i is associated to a
random variable D i (being d i its realization), and where, owing to the Markov
property, the conditional probability P

(
di | dI−{i}

)
depends only on the value

on the neighboring set of i, N i (see [12]).
The Hammersley-Clifford theorem establishes the Markov-Gibbs equivalence

between MRFs and Gibbs Random Fields [18], so the probability distribution
takes the following form:

P (d) = Z−1 · e−β·U(d) (1)

where Z is a normalization factor called partition function, β is a parameter
called temperature and U(d) is the energy function, which can be written as a
sum of local energy potentials dependent only on the cliques c∈C (local config-
urations) relative to the neighboring system [12]:

U (d) =
∑
c∈C

Vc (d) (2)

In general, given the observation g, the posterior probability P(d | g) can be
derived from the Bayes rule by using the a-priori probability P(d) and the con-
ditional probability P(g | d). The problem is solved computing the estimate d
according to a Maximum A-Posteriori (MAP) probability criterion. Since the
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posterior probability is still of the Gibbs type, we have to minimize U(d | g)
= U(g | d) + U(d), where U(g | d) is the observation model and U(d) is the
a-priori model [12]. Minimization of the functional U(d | g) is performed by a
simulated annealing algorithm with Metropolis sampler [20][18].

When the MRF model is applied to image processing the observation model
describes the noise that degrades the image and the a-priori model describes the
a-priori information independent from the observations, like, for instance, the
smoothness of the surfaces composing the scene objects.

4 Model Description

To deal with the stereo problem the scene is modeled as composed by a set
of planes located at different distances to the observer, so that each disparity
value corresponds to a plane in scene. Therefore, the a-priori model is piecewise
constant [18]. The observation model is harder to define because the disparity
map is not produced by a process for which a noise model can be devised.

Whilst the a-priori model imposes a smoothness constraint on the solution,
the observation model should describe how the observations are used to produce
the solution. In fact, it is the observation term that encodes the multiple win-
dows heuristic. For each site, we take into account all the disparity values in
the neighbourhood, favouring the ones with the smallest SSD.

First a disparity map is computed using the simple SSD matching algorithm
outlined in Sec. 2, taking in turn the left and the right images as the reference
one. This produces two disparity maps, which we will call left and right, respec-
tively. The left-right consistency constraint is implemented by coupling the
left disparity and the right disparity values.

In order to define the MRF model, we introduce two random fields Dl and
Dr to estimate the left and the right disparity map, two random fields Gl and
Gr to model the left and the right observed disparity map, and two random field
Sl and Sr to model the SSD error. The field Dl (or equivalently Dr) will yield
the output disparity.

In the following we shall describe the MRF functional, by defining the the
a-priori model, the observation model, and the left-right consistency constraint
term. In the next two subsections, will shall omit superscript l and r in the field
variables. It is understood that the a-priori model and the observation model
applies to both left and right fields.

4.1 A-priori Model

With the a-priori term we encode the hypothesis that the surfaces in the scene
are locally flat. Indeed, we employ a piecewise constant model, defined as:

U (d) =
∑
i∈I

∑
j∈Ni

[1 − δ (di, dj)] (3)
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where di and dj are the estimate disparities value (the realization of the field D)
and the function δ(x, y) is defined as:

δ (x, y) =
{
1 if x = y
0 otherwise

(4)

This term introduces a regularization constraint, imposing that all pixels
assume the same value in a region, thereby smoothing out isolated spikes.

4.2 Observation Model

In order to mimic the behaviour of the SMW algorithm, the observation model
term introduces a local non-isotropic relaxation, favouring the neighbour obser-
vations with the lower SSD value:1

U (g, s | d) =
∑
i∈I

∑
j∈Ni∪{i}

[1 − δ (di, gj)] ·
(

1
sj

)
(5)

where g is the observation disparity map (the realization of the field G), s is
the observed SSD values (the realization of the field S), and d is the disparity
estimate (the realization of the field D). Following [18] the term 1 − δ(x, y)
represent a generalization of the sensor model for binary surface (derived by the
binary symmetric channel theory).

In this term, the estimate value at site i, di, is compared with all its observed
neighbours {gj}j∈Ni

and with gi. When di takes the disparity of one (or more)
of its neighbours, one (or more) term(s) in the sum vanishes. The lower is the
SSD error of the chosen disparity, the higher is the cost reduction.

Please note that we are not relating the SSD value to the matching likelihood:
the rationale behind this energy term is the multiple windows idea.

4.3 Left-Right Consistency Constraint Term

In our MRF model, besides an observation term and an a-priori term for both
left and right disparity fields, we define a coupling term that settles the left-right
constraint.

Let dl
i be the left disparity (i.e., the disparity computed taking the left image

as the reference) at site i, and dr
i the right disparity at site i. The left-right

consistency constraint states that:

dl
i = −dr

i+dl
i
. (6)

The corresponding energy term is:

V
(
dl, dr

)
=

∑
i∈I

θ
(
dl

i + dr
i+dl

i

)
(7)

1 Please note that SSD is an error measure, not a correlation or similarity measure.
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where θ(x) is define as:

θ (x) =
{
0 if x = 0
1 otherwise

(8)

In this way we introduces a payload when the left-right constraint is violated.

4.4 Final Model

The final MRF writes:

U
(
dl, dr | gl, sl, gr, sr

)
= k1 · [

U
(
gl, sl | dl

)
+ U (gr, sr | dr)

]
+

+ k2 · [
U

(
dl

)
+ U (dr)

]
+

+ k3 · V
(
dl, dr

)
(9)

where U
(
gl, sl | dl

)
and U (gr, sr | dr) are the observation model applied to the

left and right disparity reconstruction, U
(
dl

)
, U (dr) are the a-priori models and

V
(
dl, dr

)
is the left-right constraint term. Please note that these terms are all

weighted by the coefficients k1, k2, k3 heuristically chosen.
This model performs both simultaneously the left and right disparity recon-

struction and the two estimates influence each other in a cooperative way. We
call our algorithm Relaxed SMW (R-SMW).

5 Results

This section reports the main results of the experimental evaluation of our algo-
rithm. Numerical and visual comparison with other algorithms are shown.

We first performed experiments on noise-free random-dot stereograms (RDS),
shown in Figure 3. In the disparity maps, the gray level encodes the disparity,

(a) (b) (c) (d)

Fig. 3. Random-dot stereograms (RDS). The right image of stereogram (not shown
here) is computed by warping the left one (a), which is a random texture, according
to given disparity pattern: the square has disparity 10 pixel, the background 3 pixel.
Disparity map computed with SSD matching (b), SSD values (c) and R-SMW disparity
map.
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(a) (b)

Fig. 4. ”Head” stereo pairs from the Multiview Image Database, University of
Tsukuba.

(a) (b)

Fig. 5. R-SMW disparity map (a) and ground truth (b).

that is the depth (the brighter the closer). Images have been equalized to improve
readability.

Figure 3.b shows a disparity map computed by SSD matching with 7×7 fixed
window. The negative effect of disparity jumps (near the borders of the square
patch) is clearly visible. Accordingly, Figure 3.c shows that along the borders
the SSD error is higher. R-SMW yields the correct disparity map, shown in
Figure 3.d. This replicates exactly the result obtained by SMW [7]. We expect to
appreciate the improvement brought by the MRF when noise affects the images,
like in the real cases.

As a real example, we used the ”Head” stereo pair shown in Figure 4, for
which the disparity ground truth is given. The output of R-SMW is reported
in Figure 5. The error image (Figure 6.a) shows in black the pixels where the
disparity is different from the ground truth. For the others, the disparity value
is shown as a gray level (the brighter the closer).

The R-SMW algorithms outputs two optimal disparity maps, the left and
the right. By checking the left-right consistency against these two maps, one can
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(a) (b)

Fig. 6. Error map (a): the wrong pixels are black, the other take the right disparity
value. Occlusions map (b).

(a) (b)

Fig. 7. Disparity map calculated by Zabih and Woodfill algorithm (a) and through
SMW algorithm (b).

detect occluded points. Figure 6 shows the occlusions map. It is worth noting
that most of the wrong pixels of Figure 6.a comes from occlusions.

We compared R-SMW with SMW and our implementation of the Zabih and
Woodfill algorithm (Figure 7). In the R-SMW result, the regions are more ho-
mogeneous and the edge are better defined. Moreover a lot of spurious points are
cleared. Please note that there is a large wrong area, corresponding to a box on
the shelf (top right). The ground truth disparity for that box is the same as the
background, but all the stereo algorithms we tested agree in detecting a different
disparity for the box. We suspect that the ground truth could be incorrect for
that area.

For quantitative comparison, two error measures have been used: the Mean
Absolute Error (MAE), i.e, the mean of absolute differences between estimated
and ground true disparities, and the Percentage Error (PE), i.e., the percentage
of pixel labeled with a wrong disparity. Table 1 reports the MAE and PE errors
obtained on the “Head” stereo pair by SSD matching, Zabih and Woodfill algo-
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(a) (b) (c)

Fig. 8. ”Castle” left image (a), SMW disparity (b), and R-SMW disparity (c).

(a) (b) (c)

Fig. 9. ”Parking meter” left image (a), SMW disparity (b), and R-SMW disparity (c).

rithm, SMW, and by R-SMW. Results are ordered by decreasing errors: R-SMW
exhibit the best performance, improving over the SMW. The Zabih and Woodfill
algorithm is very fast (it reaches 30 frames per second on dedicated hardware),
but results suggest that accuracy is not its best feature. We did not compared
R-SMW with the Adaptive Windows (AW) algorithm by Okutomi and Kanade
[15], but in [7] SMW was already proven to be more accurate than AW.

Table 1. Error values obtained by the different disparity reconstruction algorithm.

Algorithm MAE PE
SSD with fixed window 0.8569 30.73%

Zabih and Woodfill 0.8012 31.56%
SMW 0.6194 24.98%

R-SMW 0.5498 21.33%
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(a) (b) (c)

Fig. 10. ”Shrub” left image (a), SMW disparity (b), and R-SMW disparity (c).

(a) (b) (c)

Fig. 11. ”Trees” left image (a), SMW disparity (b), and R-SMW disparity (c).

We also report in Figures 8, 9, 10,and 12 the results of our algorithm on stan-
dard image pairs from the JISCT (JPL-INRIA-SRI-CMU-TELEOS) stereo test
set, and from the CMU-CIL (Carnegie-Mellon University—Calibrated Imaging
Laboratory). Although a quantitative evaluation was not possible on this im-
age, the quality of our results seems to improve over SMW, especially because
spurious points and artifacts are smoothed out.

6 Conclusions

We have introduced a relaxation of the SMW algorithm by designing a Markov
Random Field where both the multiple windows scheme and the left-right con-
sistency are embedded. Moreover, a regularization constraint is introduced, as
customary, to bias the solution toward piecewise constant disparities. Thanks to
the MRF versatility, all these constraints are easily expressed in terms of energy,
and the final solution benefits from the trade off between a-priori model and
observations. Indeed, results showed that R-SMW performs better than state-
of-the-art algorithms, namely SMW, Zabih and Woodfill and (indirectly) AW.
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(a) (b) (c)

Fig. 12. ”Trees” left image (a), SMW disparity (b), and R-SMW disparity (c).

A sequential implementation of a MRF is computational intensive, of course:
our algorithm took several minutes to converge to a solution, on the examples
shown in the previous section. On the other hand, it reaches a high accuracy, and
in some applications (eg. model acquisition), one might want to trade accuracy
for time.

A drawback of R-SMW is that coefficients in the energy functional need to
be adjusted heuristically, and their value is fairly critical for the overall quality
of the result. Work is in progress to implement a procedure for selecting the best
coefficients automatically.
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G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real-time correlation-based stereo:
algorithm, implementation and applications. Technical Report 2013, Unité de
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