
ELSEVIER European Journal of Operational Research 96 (1997) 429-443

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

Invited Review

Rate-Monotonic scheduling for hard-real-time systems 1

Alan A. Bertossi *, Andrea Fusiello

Dipartimento di Matematica, Universit~ di Tremo, Via Sommarive 14, 38050 Povo (Trento), Italy

Received 1 June 1996; accepted 1 July 1996

Abstract

Hard-real-time computing systems are widely used in our society, for example, in nuclear and industrial plants,
telecommunications, avionics and robotics. In such systems, almost all tasks occur infinitely often and have time deadlines,
namely, their correcmess relies not only on their logical results, but also on the time at which the results are available. A
scheduling algorithm specifies an order in which all the tasks are to be executed, in a way that all the time deadlines are met.
This paper provides a review on deterministic scheduling algorithms for hard-real-time systems, focusing mainly on fixed
priority, preemptive scheduling of periodic tasks on a single processor and, in particular, on the Rate-Monotonic algorithm.
After presenting some basic results, several generalisations, aimed at relaxing some constraints and facing more realistic
cases, are described. Issues covered include uniprocessor and multiprocessor systems, periodic and non-periodic tasks,
restricted and arbitrary deadlines, fixed and dynamic priorities, independent and synchronised tasks, as well as fault-free and
fault-tolerant systems.

Keywords: Scheduling theory; Hard-real-time computing; Multiprocessor systems; Packing; Fault-tolerance

1. Introduction and terminology

Real-t ime computing systems are widely used for
monitoring and control functions in many industrial
applications. Examples of such systems include the
control of engines, traffic, nuclear power plants,
t ime-crit ical packet communications, aircraft avion-
ics and robotics. In this context, the term task is
used to denote either a computer process or a single
thread of control that has to be executed. In real-t ime
systems, tasks usually have timing requirements that
must be verified. Thus, the correctness of a task

* Corresponding author, e-mail: bertossi@science.unitn.it
~This work was supported by the Progetto Speciale 1995,

Dipartimento di Matematica, Universit~ di Trento, Italy.

computation depends not only on its logical result,
but also on when the result is available.

A common misconception about real-t ime com-
puting is to think that it is equivalent to fast comput-
ing. Of course, minimising the task response times is
helpful in satisfying the time requirements, but the
most important principle of real-t ime systems is pre-

dictability, namely, the abili ty to determine whether
the system is capable to meet all the time require-
ments of the tasks. In particular, since the tasks
compete for the usage of shared resources, careful
resource-management techniques must be used in
order to prevent long waits that can lead to the
violation of some time requirements. The measures
of merit used to evaluate real-time systems may
significantly differ from those typically used for
other systems. In particular, such measures include:

0377-2217/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved
PH S0377- 221 7(96)00220- 2

430 A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443

s c h e d u l a b i l i t y - t he degree of system loading below
which the task timing requirements can be ensured;
r e s p o n s i v e n e s s - t he latency of the system in re-
sponding to external events; and
s t a b i l i t y - t he capability of the system to guarantee
the time requirements of the most critical tasks in the
cases where it is impossible to guarantee the time
requirements of all the tasks (a typical case is the so
called t r a n s i e n t o v e r l o a d condition.)

Since tasks are used to perform control and moni-
toring functions, they often recur infinitely many
times. There are three kinds of real-time tasks, de-
pending upon their arrival pattern:
p e r i o d i c - t he task has a regular interarrival time,
called p e r i o d ;

s p o r a d i c - there is a lower bound on the task
interarrival time; and
i r r e g u l a r - the task can arrive at any time.

The time requirements of real-time tasks are called
d e a d l i n e s :

• if meeting a task deadline is critical for the
system functionality, then the deadline is said to be
h a r d ; missing a hard deadline is considered a system
failure, and can lead to catastrophic consequences;

• if it is desirable to meet a task deadline, but
occasionally missing it can also be tolerated, then the

deadline is said to be so f t ; a task with a soft deadline
is expected to be completed as early as possible, in
order to have a good responsiveness.

This paper will mainly deal with h a r d - r e a l - t i m e

s y s t e m s - the most common kind of real-time sys-
tems - where almost all the tasks are periodic and
have hard deadlines.

There are two ways to guarantee that all the task
deadlines are met in a hard-real-time system. One is
to use semantic models to describe the system and
prove its correctness, and the other is to use the
scheduling theory to give an order in which the tasks
have to be executed.

Although the theory of scheduling is born in the
operations research milieu, scheduling of hard-real-
time systems seldom appears in the operations re-
search literature. The reason of this can be two-fold.
First, queuing models and stochastic assumptions
may be useless since they cannot always guarantee
that hard deadlines are met. Second, deterministic
scheduling deals mostly with tasks that have to be
scheduled only once instead of infinitely many times.

The purpose of this paper is to provide a review
on deterministic scheduling algorithms for hard-
real-time systems which guarantee that all the peri-
odic occurrences of the tasks will meet their dead-

Start execution

Release~time @

Task x ~ I ~

Suspended

Completion time

R, + (k-1)T i

Di R~+ (k-1)Ti+ D i

Ti

Fig. 1. Periodic task timing.

R~+ kTi

A.A. Bertossi. A. Fusiello / European Journal of Operational Research 96 (1997) 429-443 431

lines. The rest of the paper is structured as follows.
The remaining part of this section is devoted to
introduce some additional notions, like preemptions
and priority-driven scheduling. Section 2 presents the
basic Rate-Monotonic analysis for preemptively
scheduling periodic independent tasks on a single
processor. The analysis is extended in Section 3 in
order to deal with task synchronisation and non-peri-
odic tasks. Section 4 considers multiprocessor sys-
tems. In particular, partitioning algorithms for as-
signing tasks to processors are presented. Section 5
considers the fault-tolerance issue for multiprocessor
systems, where hard deadlines of the tasks have to be
met even in the presence of a processor failure. Final
considerations terminate the paper in Section 6.

1.1. Periodic tasks

Periodic tasks are the most common in real-time
systems. They are usually invoked in order to moni-
tor a physical system with regularity.

A periodic task ~-~ is characterised by the
quadruple (C i, T i, Di, g i) , where:
C i is the (worst case) computation time of task ~'i.
T~ is the invocation (or arrival) period of task z i-
Di is the deadline of task ~-i.
Rg is first invocation (or arrival) time of task ~-~.
A periodic task leads to an infinite sequence of task
instances called jobs.

The k-th job of task ~-~ is ready for execution at
time R; + (k - I)T, and, in order to meet its dead-
line, its execution - that requires C~ time units -
must be completed no later than time R i + (k - 1)T~
+ O i.

The release time of a job is the time when it is
ready to be executed (usually, this coincides with the
beginning of a new period), its completion time is
the time when its execution is completed, while the
response time of the job is the difference between its
completion time and its release time. An example to
explain this terminology is provided in Fig. 1.

1.2. Preemptions

One dichotomy of scheduling algorithms is based
on whether a running job can be suspended or not.
Preemptive algorithms assume that any job can be
suspended at any time, and can be resumed later

from the point of suspension. The preemption of the
job does not effect the behaviour of the job and the
overhead due to the preemption can be considered
small. Clearly, non-preemptive scheduling saves the
overhead due to a context switch, but it is less
powerful. Indeed, there are task sets which can be
scheduled using preemptions but cannot be sched-
uled without preemptions. Moreover, there is no
exact analysis for non-preemptive scheduling, while
there is an exact analysis, which is reported in this
paper, for preemptive scheduling.

1.3. Priority-driven scheduling

The algorithms used in practice for scheduling in
hard-real-time systems are priority-driven preemp-
tive algorithms. These algorithms assign priorities to
jobs according to some policy. After priorities are
assigned, dispatching proceeds as follows. At each
instant of time, the processor is assigned to the
highest priority job which is ready to run preempting
- if necessary - a lower priority job.

For a given task set {r I ~-,}, a priority assign-
ment is feasible if all the deadlines of all the jobs
are met using such an assignment. In this case, the
task set is said to be schedulable by the algorithm
that produced the feasible priority assignment. A
scheduling algorithm is optimal if all the task sets
for which a feasible priority assignment exists are
schedulable by that algorithm. Since there is nothing
to optimise, this notion of optimality has a slight
strange flavour. However, do not mistake an optimal
scheduling algorithm for an optimisation scheduling
algorithm, the latter being an algorithm that finds a
feasible schedule having the best value of an objec-
tive function, e.g. see [l 8].

A priority-driven algorithm is characterised by the
kind of its priority assignment. A scheduling algo-
rithm is static if the priority of a task is fixed and
cannot change in the time (i.e., all the jobs of the
same task always have the same priority). A schedul-
ing algorithm is dynamic if the priority of a task
might change from invocation to invocation (i.e.,
different jobs of the same task may have different
priorities.)

For example, a static scheduling algorithm is the
Rate-Monotonic algorithm, where the task with
shortest period has the highest priority. In contrast, a

432 A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429--443

dynamic scheduling algorithm is the Earliest Dead-
line First algorithm, in which the ready job with the
nearest deadline has the highest priority. Liu and
Layland [28] proved that the Earliest Deadline First
algorithm is an optimal priority-driven scheduling
algorithm, and gave a necessary and sufficient condi-
tion for testing the schedulability of the tasks:

Theorem 1.1. Given a set {r] r,} of periodic
tasks, with D i = T i for all i, the Earliest Deadline
First algorithm yields a feasible priority assignment

iff
n

E Ci/Ti ~ 1.
i = l

For a discussion about properties of the Earliest
Deadline First algorithm see [28] and [12]. In the
present review, only static algorithms are considered.
In particular, the Rate-Monotonic algorithm will be
treated in detail in the following sections. Although
the Rate-Monotonic algorithm is not optimal (in fact,
it is optimal among all static scheduling algorithms
only) its predictability and stability under transient
overload are so appreciated that it is becoming an
industry standard.

1.4. Time complexity

Clearly, since tasks recur indefinitely in a hard-
real-time system, their execution requires infinite
time. However, deciding whether a feasible schedule
exists usually requires less time! A feasibility test is
an algorithm for checking conditions which are nec-
essary and /or sufficient for a task set to be schedu-
lable on a processor. In general, there are no polyno-
mial-time testable conditions which are both neces-
sary and sufficient for arbitrary task sets. Specifi-
cally, the problem of deciding whether an arbitrary
task system can be scheduled on one processor was
proven to be NP-complete [25]. The only known test
for the general case consists in simulating the sched-
ule over an interval equal to the least common
multiple of the task periods, and such a test can run
in exponential time. Anyway, for some particular
cases, more efficient tests are known (for example
Theorem 1.1 gives a polynomial time test when
D i = T~, Vi, while [5] gives a polynomial time test

for non priority-driven scheduling). Leung and
Whitehead [26] showed a pseudo-polynomial time
test for fixed priority scheduling. Later, the so called
Completion Time Test [20,3] was introduced. This
test works for fixed priority schedules and requires
pseudo-polynomial time, but behaves as it were
polynomial for many practical cases. The Comple-
tion Time Test is described in more detail in the next
section of the present paper. Other complexity results
for special cases can be found in [4].

2. Basic Rate-Monotonic analysis

This section focuses on some early basic results
concerning fixed priority, preemptive algorithms for
scheduling a task set {rl rn}. The following as-
sumptions are made:

• all tasks are periodic;
• C/~< D i ~< T,. for all i;
• tasks are independent, i.e., no inter-task com-

munication or synchronisation is permitted;
• there is a single processor.
In practice, realistic models require some of these

assumptions to be weakened, for example, by allow-
ing both periodic and non-periodic tasks, synchroni-
sations of tasks on shared resources, or more than
one processor, as will be considered in the following
sections.

From now on, for the sake of simplicity, tasks are
assumed to be indexed so that rl has a higher
priority than rj whenever i < j.

2.1. Basic results

Liu and Layland [28] proved the following impor-
tant results, assuming periodic independent preempt-
able tasks, with D i = T/ for all i, and fixed priorities.

Theorem 2.1. The longest response time for any job
of a task "I" i occurs when it is invocated simultane-
ously with all higher priority tasks (i.e. when R] =

R 2 gi) .

The time when all the tasks are invoked simulta-
neously is called a critical instant. The important
result regarding the feasibility of a fixed priority

A.A. Bertossi, A. Fusiello / European Journal o f Operational Research 96 (1997) 429-443 433

Table 1
A task set with deadlines equal to periods

Task T/ D i C i

"r I 100 100 40

~'2 150 150 40
¢3 350 350 100

schedule of such a task set, obtained with the Rate-
Monotonic algorithm, is provided in Fig. 2.

2.2.1. Utilisation bound
Based on the notion of a critical instant, Liu and

Layland derived a sufficient (but not necessary)
schedulability test for the Rate-Monotonic algorithm:

assignment is that only the first deadline of each task
needs to be checked for feasibility.

Theorem 2.2. A fixed priority assignment is feasible
provided the deadline of the first job of each task
starting from a critical instant is met.

Due to the above results, all the first arrival times
of the tasks are assumed to be 0 hereafter, i.e.
R~ = R 2 R, = 0, since this assumption
takes care of the worst possible case. In this way,
only the first deadline of each task must be met,
when the task is scheduled together with all higher
priority tasks, in order for a fixed priority assignment
to be feasible.

2.2. Rate-Monotonic scheduling

Liu and Layland [28] proposed a fixed-priority
scheduling algorithm, called Rate-Monotonic, as-
suming that each task deadline coincides with the
end of the period, that is when D~ = T~ for all i. In
their algorithm, priorities are assigned inversely to
task periods - hence r i receives a higher priority
than ej if T/< Tj. They also proved that the Rate-
Monotonic algorithm is optimal among all static
scheduling algorithms (assuming D i = T/ for all i).
As an example, consider the task set of Table 1. The

Theorem 2.3. Given a periodic task set {z I ~-~},
with D i = T i for all i, the Rate-Monotonic algorithm
yields a feasible priority assignment if

n

E C,l , < n (2 ' / " - 1).
i = 1

In the theorem above, the ratio Ci/T~ represents
the utilisation factor of task z~, while the sum over
all i represents the total utilisation of the task set
(and hence of the processor). In practice, Theorem
2.3 states that there is a bound U on the total
utilisation of the task set, below which the Rate-
Monotonic policy always yields a feasible priority
assignment. The bound U depends only on the num-
ber of tasks and for large task sets it is about 0.693,
since

lim,_~=n(2 l /" - 1) = In 2 = 0.693.

A counterexample showing that the In 2 bound is
only sufficient is given by the task set of Table l,
where the processor utilisation is q-~ + iT6 + 3 ~ - 6 - - 4 ° 40 too_
0.95. A bound that in some cases can be higher than
In 2 is provided in [9].

2.2.2. Completion Time Test
Joseph and Pandya [20] derived an exact analysis

to find the worst-case response time for a given task,
assuming fixed priority, independent tasks and dead-

Task ~ 1 ~ ~ ~ ~ ~ ~

' 1
Task x 2 I ~ : ~ ~ . '] I ~:.:~!~1 ~.=:.'~..] L_ ~:.=~:~.'..~1

T 2

Executed
Preempted

Fig. 2. Example o f scheduling the task set o f Table 1 according to the Rate-Monotonic algori thm.

434 A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443

Cumulative processor time demand

300

260

220

180

]
I

s

," Taskx 3 meets its deadline

." (300 < 35o)

100 150 200 300 Time

Fig. 3. Cumulat ive processor t ime demand versus t ime for the task
set of Table 1. At t ime 50, the demand is 40[]-~]+40[t~6]+'° so

50 10013-r6] = 180. The worst case completion time W 3 of task ~'3 is

computed as follows: W 3 (l) = 100, W3(2)= 180, W3(3)=260 ,

14,'3(4) = W3(5) = 300. Since W 3 = 300 < 350 = D 3, "r 3 meets its

deadline.

lines less than periods (i.e., D i ~< T~ for all i). The
analysis considers a critical instant and makes use of
Theorem 2.2.

The following equation gives the worst case re-
sponse time W i of a task ri:

W i = C i + ~_~ , (1)
j~hp(i) /

where hp(i) is the set of all tasks with higher priority
than ~'r The right side of Eq. (1) represents the

cumulative processor time demand for tasks in hp(i)
U {ri}. Indeed, [t/T~] is the overall number of jobs
of 7j by time t and therefore Cj[t /Tj] represents the
processor time demand of task ~'i by time t. Thus, ~i
will complete its execution at time W i iff the cumula-
tive processor time demand of tasks in hp(i) U {~'i}
up to time W i is exactly equal to W i, i.e. when Eq.
(1) holds. As depicted in Fig. 3, the worst case
response time is the smallest W i that satisfies the
equation. This can be easily computed by iteration.
Starting with Wi(0)= 0, Wi(k) is computed for k =
1, 2 as follows:

Wi(k -I- l) = Ci Jr E Cj
l I

stopping the iteration as soon a s Wi(k -1- 1) = Wi(k) .

The convergence is guaranteed iff [41]

E Cilr, < 1.
i

A necessary and sufficient schedulability test can
be readily derived from Eq. (1):

T h e o r e m 2.4. A fixed priority assignment for a task
set {~-~ r,}, such that D i <~ T i for each i, is
feasible iff W i <~ D i, Vi .

This is referred to as the Completion Time Test.
It is worth to note that the condition W i ~< D i of

the above theorem must be verified for each i.
Indeed, a common mistake is to think that if the
lowest priority task will meet its deadline then all the
tasks will meet their deadlines. This is false, since
the schedulability of a task does not guarantee the
schedulability of higher priority tasks. Consider, for

T a s k x 1 I l l

T a s k x 2

i

fD,

T a s k t: 3 1 . i
I .

Fig. 4. The schedulabil i ty of the lowest priority task does not guarantee the schedulabil i ty of higher priority tasks.

A.,4. Bertossi, A. Fusiello / European Journal o f Operational Research 96 (1997) 429-443 435

Table 2
A task set with deadlines less than or equal to periods

Task ~ D i C i

zl 100 100 10
T 2 200 180 170
z3 250 250 10

example, the task set of Table 2, where tasks are
indexed by decreasing priorities. The worst case
completion time of task ~'1 is trivially 10. Comput-
ing the worst case completion time of task ~'2 by
means of Eq. (1) yields: W2(1) = 170, and W2(2) =
W2(3) = 190. Thus the worst case completion time of
T 2 is 190 which is greater than its deadline, since
D E = 180. However, T 3, which is the lowest priority
task, will meet its deadline: W3(1) = 10, W3(2) = 190,
W3(3) = W3(4)= 200. Indeed, the worst case com-
pletion time of T 3 is 200, which is less than 250, the
deadline of ~'3- The schedule of 1" 1, ~'2, and ~'3 is
shown in Fig. 4.

task periods. In other words, the whole period of a
task represents the time window within which a job
must complete its execution. Liu and Layland proved
that giving higher priorities to tasks with narrower
windows is optimal among fixed-priority algorithms.

Relaxing the D i = T,. assumption into D i ~ T i
yields a time window narrower than the period.
Leung and Whitehead [26] proved that, when the
deadlines are less than or equal to the periods, the
Rate-Monotonic priority assignment is no longer op-
timal. However, assigning higher priorities to tasks
with narrower windows is still optimal among
fixed-priority algorithms. Leung and Whitehead refer
to this priority assignment policy as the Deadline-
Monotonic scheduling algorithm. With this algo-
rithm, the task having the smallest deadline is as-
signed the highest priority. In other words, ~'i has
a higher priority than ~'j whenever D i is smaller
than Dj.

2.3. Deadline-Monotonic scheduling 3. Generalised Rate-Monotonic analysis

In the Rate-Monotonic algorithm, the task dead-
lines are assumed to coincide with the end of the

Motivated by the need to face more general re-
quirements of actual systems, much work has been

Priori ty inversion

I (-I

Task x i

Task 1:2

Task 1; .-1

Task I: .

ll~iii~
/ P(r) (blocked) ready l

reempted
===========================

P(r) V(r)

Fig. 5. Example of priority inversion. Tasks not involved with the critical section become the dominant factor causing the delay.

436 A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443

done upon the basic Rate-Monotonic analysis. This
section deals with generalisations of the basic Rate-
Monotonic analysis, which have weakened some as-
sumptions and thus have widened its applicability.

3.1. Task synchronisation

In the previous section, independent tasks were
assumed. In practice tasks interact, for example, to
access a resource mutually exclusively. In this case,
the application of task synchronisation primitives
[40,37] may lead to the phenomenon of priority
inversion, which occurs when a higher priority task
is prevented from executing by a lower priority one.
The duration of a priority inversion is a function of
the task execution times and can be unbounded as
shown in the example of Fig. 5. This example con-
siders n tasks such that ~'l and ~-, share a common
resource r which must be accessed mutually exclu-
sively. % starts its execution, enters a critical section
by locking r (e.g. by a P primitive) and thus access-
ing r. Then the highest priority task zl preempts r, ,
attempts to lock r but remains blocked. Indeed, r is
already accessed by another task, and thus ~'] waits
for the release of r. Before % can complete its
critical section and release r (e.g. by a V primitive),
tasks z 2 %_], which do not use r, preempt %.
Thus task z] is blocked by a lower priority task for
an amount of time which is a priori unbounded. A
good solution to overcome the above drawback is the
so called priority ceiling protocol, which is briefly
described in the following (for a more comprehen-

sive review on resource control techniques for real-
time systems see [1]).

Priority ceiling protocol. Priority inversion can be
controlled by the priority ceiling protocol [34], which
uses the concept of priority inheritance - a task
executing a critical section and blocking a higher-
priority task inherits that task priority for the dura-
tion of the critical section. The priority ceiling of a
semaphore S is defined as the priority of the highest
priority task that may lock S. Let S*(i) be the
semaphore with the highest priority ceiling among
all the semaphores currently locked by tasks differ-
ent from 7 i. Task ~'i can lock a semaphore only if its
priority is strictly higher than the priority ceiling of
S* (i), otherwise it gets blocked on S* (i) (it will be
awakened when the above condition becomes true).

Sha et al. [34] proved the following result:

Theorem 3.1. (i) A task 7 i can be blocked (by
lower priority tasks) for at most B i time units, where
B i is the duration of the longest critical section
executed by a task of lower priority than %, guarded
by a semaphore whose priority ceiling is greater
than or equal to the priority of zi. (ii) The priority
ceiling protocol is deadlock free.

In order to take into account task synchronisation,
Eq. (1) can be updated as follows:

invocation

i -

i

t
i

release invocation = release invocation release

I
J

i -I

T, T,
Fig. 6. The task release jitter. Note that the task inter-release time may be shorter than the period.

A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443 437

where B~ is the longest time duration in which task
% is blocked by lower priority tasks.

3.2. Release fitters

with hard deadlines the goal is to guarantee that their
deadlines will be always met, while for tasks with
soft deadlines the goal is to provide low average
response times.

Until now each task was assumed to be released
as soon as it arrives. However, it may happen that a
task arrives but its release is delayed (for example
owning to a scheduler that periodically polls task
arrivals (t ick scheduling)).

Thus there is a distinction between the invocation
time - when a task is logically able to run - and the
release time - when it is placed into the ready
queue. The release fitter Ji is the worst case delay
between the invocation time and the release time of
z i, as shown in Fig. 6.

Response time with fitter. To take into account
task release jitters, the previous analysis can be
updated as follows [41]:

_[wi*

w,= w," + J,.

3.3. Arbitrary deadlines

Another relaxation of the basic assumptions is to
allow tasks to have arbitrary deadlines (i.e. deadlines
greater than periods). In such a case, Liu and Lay-
land's critical instant argument (Theorem 2.2) is no
more valid - a task meeting its first deadline is not
guaranteed to meet all its successive deadlines -
and neither the Rate-Monotonic nor the Deadline-
Monotonic algorithms are optimal anymore.
Lehoczky [24] generalised Liu and Layland's bound
for the case in which D i = kT i, with k = 1, 2 . . . (the
same constant k for all tasks) by introducing the
notion of busy period. Successively, Tindell and al.
[41] extended the Completion Time Test, providing
an exact test for tasks with arbitrary deadlines.

3.4. Scheduling non-periodic tasks

So far only periodic tasks with hard deadlines
have been considered. This subsection describes some
recent algorithms to schedule non-periodic tasks with
both hard and soft deadlines. For non-periodic tasks

3.4.1. Sporadic tasks
Sprunt et al. [39] showed how hard deadlines of

sporadic tasks can be guaranteed using the so called
Sporadic Server. This is a periodic task with an
execution budget that handles sporadic requests at its
assigned priority as long as the budget is available.
When the budget is depleted, requests will be exe-
cuted at background priority. The budget is pre-
served if no sporadic task is pending when the server
is released. As long as the sporadic task is not
released more frequently than the replenishment time
of the Sporadic Server, its hard deadline can be
guaranteed. Later, Audsley et al. [3] gave an exact
analysis of sporadic tasks, showing that hard dead-
lines of sporadic tasks can be guaranteed without the
overhead due to additional servers.

3.4.2. Sporadically periodic tasks
Some real-time systems have sporadically peri-

odic tasks, i.e. tasks that arrive at some time, periodi-
cally execute for a bounded number of times (called
inner period), and then do not re-arrive for a larger
time (called outer period), as shown in Fig. 7.
Tindell et al. [41] derived an exact analysis for tasks
with this behaviour, showing how hard deadlines can
be guaranteed. The schedulability analysis of the
previous section can be updated to determine worst-
case response times for sporadically periodic tasks.
The details can be found in [41].

~ task invocation

time
__~ ~_ t~ inner period

i(T, outerperiodj
- I

Fig. 7. The invocation pattern for a sporadically periodic task.

438 A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443

3.4.3. Irregular tasks
The invocation of an irregular task is essentially a

random event. Therefore, a worst case analysis can-
not be done and, as a result, hard deadlines of
irregular tasks cannot be guaranteed in any way.
Only soft deadlines for these tasks can be handled,
by means of algorithms such as the Sporadic Server
[39], the Extended Priority Exchange [38] or the
Dual Priority Scheduling [15]. The latter represents
the most elegant and efficient strategy to identify
spare time - e.g. due to tasks which sometimes
require less than their worst case computation times
- for executing tasks with soft deadlines. Priorities
are divided into three bands. Tasks with soft dead-
lines are assigned priorities in the middle band. Upon
its release, each task with a hard deadline is assigned
a priority in the lowest band. The priority of the task
is promoted to the highest band after a fixed time
from its release, which is the maximum delay that
allows the deadline to be met in the worst case
scenario. In [15], the authors also give an exact
schedulability analysis based on the Completion Time
Test.

3.5. Stability under transient overload

In many applications, the task execution times are
stochastic. Thus considering worst execution times
for the tasks can lower the processor utilisation,
since worst execution times can be significatively
larger than average execution times. On the other
hand, scheduling a task set using average execution
times may cause lower priority tasks to miss their
deadlines under worst case conditions (in such a
case, the system is said to be experiencing a tran-
sient overload). Since priorities are assigned accord-
ing to task periods (or deadlines), this means that a
critical task with a long period might miss its dead-
line. A technique to force critical tasks to have
higher priorities (so that they will meet their dead-
lines under transient overload) is the period trans-
formation technique [35], which consists in halving
the task periods so as to increase their priorities.

3.6. Further reading

The interested reader could consult the following
additional references:

• [2], whose authors provide an historical per-
spective on the development of fixed-priority pre-
emptive scheduling up to the end of 1993;

• [21], which is a very clear introduction to the
Rate-Monotonic analysis;

• [22], which is a book providing a comprehen-
sive description of the Rate-Monotonic analysis and
serves as a handbook for designing and analysing
real-time systems.

Before concluding this section, it is worth men-
tioning one paper which is based on different as-
sumptions and uses a different approach. In [43], Xu
and Parnas introduce a static preemptive scheduling
algorithm for hard-real-time systems with a single
processor dealing with exclusion relations, prece-
dence constraints, and time constraints. The algo-
rithm uses a branch & bound strategy based on the
Earliest Deadline First policy.

4. Mult iprocessor schedul ing

The Rate-Monotonic analysis, extended as out-
lined in the previous section to tackle more realistic
requirements, is widely used for scheduling hard-
real-time tasks on a single processor. How much of
this analysis can be applied to multi-processor sys-
tems?

A major difficulty in scheduling on many proces-
sors is that the algorithm must specify not only an
ordering of tasks on a single processor, but also an
assignment of jobs to processors so as to minimise
the number of processors.

There are two classes of priority-driven schedul-
ing algorithms for multi-processor systems:
non-partitioning - processors are considered collec-
tively as one entity and the dispatcher assigns the
first ready task to the first free processor; in this
way, different jobs of the same task may be executed
on different processors;
partitioning - tasks are partitioned into groups so
that each group of tasks can be feasibly scheduled on
a single processor according to a given scheduling
algorithm.

Since the Earliest Deadline First algorithm is
optimal in the single processor case, it is tempting to
think that it remains optimal also in the multi-
processor case. This is wrong: neither the Rate-

A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443 439

Table 3
Asymptotic worst-case performance ratio for task assignment heuristics. RMST requires that the maximum task utilisation factor is bounded
by ot

RMNF [16] RMFF [|6] NF-M [13] FFDUF [14] RRMFF [31] RMST [9] RMGT [9]
2.67 2.33 2.28 2.0 2.0 1/(1 - a) 1.75

Monotonic nor the Earliest Deadline First algorithms
are optimal for multiprocessors [16].

The most used approach for multiprocessor
scheduling is the partitioning one, since tasks are
allowed to be scheduled on each single processor
according to the Rate-Monotonic (or Deadline-
Monotonic) algorithm and partitioning of tasks
among processors can be done by means of well-
known heuristics.

4.1. Partitioning via Bin-Packing

The problem of assigning tasks to processors is
similar to the Bin-Packing problem, where each task
% is a package of size equal to its utilisation factor
Ci/T , and each processor is a bin of size equal to
one, if the Completion Time Test is used, or of size
equal to In 2, if Liu and Layland's utilisation bound
is used.

The above problem has been widely studied and
typical assignment schemes differ on the choice of
the Bin-Packing heuristic. The most studied task
model is Liu and Layland's one, where there are
only periodic independent tasks without release jit-
ters and with deadlines equal to periods. A schedula-
bility test based on a utilisation bound - often the
In 2 bound - is used to constraint the assignment of
tasks to processors.

The first assignment heuristics, called RMNF and
RMFF, were proposed in [16], where tasks are picked
by decreasing Rate-Monotonic priorities and as-
signed according to the Next-Fit and First-Fit Bin-
Packing heuristics, respectively. More refined heuris-
tics were successively introduced by Davari and
Dhall [14,13] and Oh, Son et al. [31,9].

The performance of the above assignment heuris-
tics is evaluated in terms of the asymptotic worst-case
ratio limso_,~N/N o, where N is the number of
processors required by a given heuristic, and N o is
the minimum number of processors needed. Table 3
summarises the performance of the most known
heuristics.

It is worth noting that, as in the uniprocessor case,
some of Liu and Layland's constraints on the task
model can be relaxed by using the Completion Time
Test instead of the utilisation bound. For example,
task synchronisations can be handled by the Multi-
processor Priority Ceiling Protocol [32].

4.2. Partitioning without Bin-Packing

Before concluding this section, some papers are
mentioned which are based on various task models
and consider task partitioning without using Bin-
Packing heuristics.

Tindell, Bums and Wellings [10] consider inde-
pendent tasks with deadlines less than periods. The
assignment of tasks to processors is obtained by
simulated annealing, and tasks are scheduled on
each processor according to the Deadline-Monotonic
policy. Cheng and Agrawala [11] deal with no pre-
emptable tasks with timing constraints on each job.
Simulated annealing is used to compute a schedule,
with length equal to the least common multiple of all
task periods, which yields both the assignment of
tasks to processors and the total order of job execu-
tions on all the processors. Fohler and Koza [17] and
Verhoosel and Hammer [42] consider periodic
fixed-priority tasks with resource requirements and
use heuristics based on backtracking and implicit
enumeration, respectively. Finally, Stankovic et al.
[44] introduce dynamic scheduling heuristics for
multiprocessors that take task resource requirements
into account. Conflicts over resources are avoided in
the scheduling phase, which allows mechanisms for
mutual exclusion to be ignored.

5. Fault-tolerance

The purpose of a hard-real-time system is to
provide time-critical services to its environment.
Since the violation of a hard deadline can have
catastrophic consequences, the system must be capa-

440 A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443

ble of providing a critical level of service even in the
presence of one or more faults. A system can be
designed to be fault-tolerant by incorporating addi-
tional components and algorithms which ensure that
occurrences of erroneous states do not result in a
failure of the whole system.

Fault-tolerant systems differ with respect to their
behaviour in the presence of a fault. In some cases
the aim is to continue to provide a full performance
and all the functional capabilities of the system. In
other cases, only a degraded performance or reduced
functional capabilities are provided until the fault is
removed [29].

Schemes for fault-tolerance also differ with re-
spect to the types of faults which are to be tolerated.
In particular, there are hardware faults, e.g. due to
the incorrect behaviour of a processor, and software
faults, e.g. due to an algorithmic error in a task
design. Moreover, there is also a distinction between
transient faults, which manifest themselves only
temporarily, and permanent faults, which manifest
themselves forever.

A variety of schemes have been proposed to
support fault-tolerant computing in multi-processor
systems. Such schemes can be partitioned into two
broad classes.

• The passive replication technique prescribes
that each task has one (or more) passive backup
copies, that are executed only in the case of a fault -
when a task fails, the passive copies of the task are
started [23,27,19,7]. This technique is also called
temporal redundancy, because it basically consists in
reserving spare time for the reexecution of the faulty
task (or of an alternate version of the task), and is
usually employed in uniprocessor systems to tolerate
software faults.

• The active replication technique prescribes that
each task is replicated in two (or more) copies which
are always executed on two (or more) processors - if
any task fails, its active copy will continue to be
executed [27,30]. This technique is also called physi-
cal redundancy, and is suited for multiprocessor
systems to tolerate both hardware and software faults.

Only a few fault-tolerant scheduling algorithms
for hard-real-time systems appeared in the literature,
and only a very few of these deal with the Rate-
Monotonic analysis. The most used approach for

multiprocessors uses active replication and simply
consists in duplicating on two sets of processors the
schedule obtained for the fault-free case (e.g. by
means of the Rate-Monotonic First-Fit policy [30]).
Using such an active duplication approach, however,
too many processors are required, since the number
of processors used in the fault-free schedule is dou-
bled. In the next subsections, an approach is de-
scribed which combines both the passive and active
task duplication in the same schedule and uses in
practice less than twice the number of processors of
the fault-free schedule [8].

5.1. Task duplication

For the sake of simplicity, only one permanent
hardware fault is considered hereafter, but the dupli-
cation scheme to be presented can be extended to
tolerate more than one (software or hardware) fault
[8]. The following characteristics of the tasks are
considered:

• C i <~ D i <<. T,. and Ji <~ Di - Ci for all i;
• all tasks are periodic;
• all tasks are independent.
The following standard failure characteristics of

the hardware are assumed:
• a processor is either non-faulty or ceases func-

tioning, and a faulty processor cannot cause an incor-
rect behaviour in a non-faulty processor;

• the fault of a processor is detected by the
remaining non-faulty processors after the fault, but
within the closest completion time of a job that
would have been scheduled on the faulty processor.

Two copies of the same task, the primary copy
and the backup copy, are used, which are denoted,
respectively,

~'i = (Ci , T,., D i, J i)

and

Tb(i) = (Cb(i)" Tb(i), Db<i), Jb(i))"

The primary and backup copies may have different
execution times (for example, since they may corre-
spond to different software implementations) and
cannot be assigned to the same processor. The
scheduling algorithm itself can determine whether a
backup copy ~'bti) must be active or can be passive,
as soon as the primary copy ~-i is assigned to a

A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443 441

processor and its worst-case completion time W i is
computed. If

D i - W i >t Cb(i),

then there is enough time to execute Tb(i) after ~'i
within the same period and without violating the
deadline, and thus rb(i) is scheduled as a passive
copy, otherwise, rb(;) is scheduled as an active copy.

Backup copies are thus characterised as follows:
Active backup: An active copy is always executed

in the absence of faults and behaves as its primary
copy, i.e. 'Tb(i)= (Cb(i) , Ti, Di, Ji);

Passive backup: A passive copy is assigned to a
processor but is not executed until the primary copy
fails, and thus "rb(i) has the same period T~ of its
primary copy, but has a release jitter Jb(o equal to
the worst-case response time Wi of 7-~, as shown in
Fig. 8. This jitter takes into account the first delayed
release of ~'b(i), due to a failure of the processor
running T i, namely: ~'b(i) = (Cb(i), Ti, Di, Wi)"

5.2. Assignment and scheduling of tasks

Task copies are picked one at a time by decreas-
ing Deadline-Monotonic priority order (each passive
copy of a task immediately follows the primary copy
of the same task) and assigned to a processor in
which they fit, according to the partitioning policy
(e.g. First-Fit, Best-Fit, etc.) used (the primary and

backup copies of the same task are assigned to
different processors). In order to determine whether a
task copy can be assigned to a processor, the schedu-
lability of the copy must be checked - by means of
the Completion Time Test - together with all the
task copies already assigned to that processor, both
in the fault-free and faulty situations. All the copies
assigned to each single processor are scheduled ac-
cording to the Deadline-Monotonic algorithm.

In the absence of faults, the task set taking into
account the fault-free situation is scheduled on each
processor. This task set includes primary and active
backup copies only. As soon as a processor failure is
detected, the task set taking into account the faulty
situation can replace at run time the old schedule in
each non-faulty processor. This set includes primary
copies, as before, but only the (active and passive)
backup copies of primary tasks assigned to the failed
processor. A passive copy is released in the next
invocation period, if the execution of its primary
copy was successfully completed by the failed pro-
cessor before the fault was detected; it is released
immediately, so as to be executed within the same
invocation period, otherwise (see [8,6] for further
details).

It is worth noting that primary copies scheduled
on different processors can have their passive copies
to share the same time on the same processor. This

1; i

'~b(i)

i fault

I fault detection

J = W j. bO) ~ "I

I" -I- .I
r~ r~

Fig. 8. The passive copy zb(i) is viewed as a task with period T, (which is invocated together with its primary copy) that may experience a
release jitter of Wi time units (that occurs only once, when it is invocated for the first time, owning to a failure of the processor executing

7i).

442 A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443

allows the total number of processors to be consider-
ably reduced with respect to those needed by the
active duplication approach.

6. Conclusions

Hard-real-time systems are widely used in the
industrialised society of today, and are expected to
become larger and more complex in the society of
tomorrow, due to the rapid advances in the computer
hardware and communication networks. Since future
systems are expected to be used for more and more
critical applications, human, economical, and ecolog-
ical catastrophes could follow if task deadlines will
not be met.

In guaranteeing task deadlines, a predictability/
flexibility trade-off arises. Indeed, predictability im-
poses that worst-case execution times and arrival
rates are used to statically schedule the tasks, while
flexibility requires that stochastic execution times
and arrivals, hardware and software faults, as well as
other system changes, are taken into account to
dynamically make useful scheduling decisions. In
this context, the Rate-Monotonic analysis represents
a good compromise, since it guarantees predictability
while being sufficiently flexible. However, further
research should be focused on new scheduling ap-
proaches which could improve flexibility still guar-
anteeing predictability.

Future hard-real-time systems are expected to be
distributed. Clearly, scheduling in a distributed net-
work is different from scheduling in a centralised
system [33,36]. Since there is no centralised sched-
uler, some resource requests of a node could be
delayed or not satisfied at all, and scheduling deci-
sions should be made by a node without having a
complete knowledge of the decisions made by the
other nodes in the network. Nevertheless, predictabil-
ity should still be guaranteed in a distributed hard-
real-time system.

References

[1] Audsley, N.C., "Resource control for hard-real-time sys-
tems: A review' ', Technical Report YCS 159, Department of
Computer Science, University of York, August 1991.

[2] Audsley, N.C., Burns, A., Davies, R.I., Tindell, K.W., and
Wellings, A.J., "Fixed priority preemptive scheduling: An
historical perspective", Real-Time Systems 8 (1995) 173-
198.

[3] Audsley, N.C., Burns, A., Richardson, M.F., and Wellings,
A.J., "Hard-real-time scheduling: The deadline-monotonic
approach", in: Proceedings of the 8th Workshop on Real-
Time Operating Systems and Software, May 1991.

[4] Baruah, S.K., Rosier, L.E., and Howell, R.R., "Algorithms
and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor", Real-Time Sys-
tems 2 (1990) 301-324.

[5] Bertossi, A.A., and Bonuccelli, M.A., "A polynomial feasi-
bility test for preemptive periodic scheduling of unrelated
processors", Discrete Applied Mathematics 12 (1985) 195-
201.

[6] Bertossi, A.A., and Fusiello, A., "Fault-tolerant deadline-
monotonic algorithm for scheduling hard-real-time tasks",
Technical Report UTM 483, Department of Mathematics,
University of Trento, Italy, February 1996.

[7] Bertossi, A.A., and Mancini, L.V., "Scheduling algorithms
for fault-tolerance in hard-real-time systems", Real-Time
Systems 7 (1994) 229-245.

[8] Bertossi, A.A., Mancini, L.V., and Rossini, F., "A fault-
tolerant rate-monotonic algorithm combining passive and
active replication' ', Technical Report UTM 468, Department
of Mathematics, University of Trento, Italy, June 1995.

[9] Burchard, A., Liebeherr, J., Oh, Y., and Son, S.H., "'New
strategies for assigning real-time tasks to multiprocessor
systems", IEEE Transactions on Computers 44 (1995)
1429-1442.

[10] Burns, A., Tindell, K., and Wellings, A., "Allocating hard-
real-time tasks: An NP-hard problem made easy", Real-Time
Systems 4 (1992) 145-165.

[1 l] Cheng, S.T., and Agrawala, A.K., "Allocation and schedul-
ing of real-time periodic tasks with relative timing con-
straints", Technical Report CS-TR-3402, Department of
Computer Science, University of Maryland, College Park,
MD, January 1995.

[12] Chetto, H., and Chetto, M., "Some results of the earliest
deadline scheduling algorithm", IEEE Transactions on Soft-
ware Engineering 15 (1989) 1261-1269.

[13] Davari, S., and Dhall, S., "On a periodic real-time task
allocation problem", in: Proceedings of the 19th Annual
International Conference on System Sciences, 1986, 133-141.

[14] Davari, S., and Dhall, S., "An on line algorithm for real-time
task allocation", in: Proceedings IEEE Real-Time Systems
Symposium, 1986, 194-200.

[15] Davies, R., and Wellings, A., "Dual priority scheduling",
in: Proceedings IEEE Real-Time Systems Symposium, Pisa,
Italy, December 1995.

[16] Dhall, S., and Liu, C.L., "On a real-time scheduling prob-
lem", Operations Research 26, (1978) 127-141.

[17] Fohler, G., and Koza, C., "Heuristic scheduling for dis-
tributed hard-real-time systems", Technical Report 12/1990,
lnstitut fiir Technische Informatik, Technische Universit~it
Wien, 1990.

A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443 443

[18] Garey, M.R., Graham, R.L., and Johnson, D.S., "Perfor-
mance guarantees for scheduling algorithms", Operations
Research 26 (1978) 3-21.

[19] Gosh, S., Melhem, R., and Mosse, D., "Enhancing real-time
schedules to tolerate transient faults", in: Proceedings IEEE
Real-Time Systems Symposium, Pisa, Italy, December 1995.

[20] Joseph, M., and Pandya, P., "'Finding response times in a
real-time system", The Computer Journal 29 (1986) 390-
395.

[21] Klein, M.H., Lehoczky, J.P., and Rajkumar, R., "Rate-
monotonic analysis for real-time industrial computing", IEEE
Computer 27 (1994) 24-33.

[22] Klein, M.H., Ralya, T., Pollak, B., Obenza, R., and Harbour,
M.G., A Practitioner's Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis for Real-Time Systems,
Kluwer Academic Publishers, Dordrecht, 1993.

[23] Krishna, C.M., and Shin, K.G., "On scheduling tasks with a
quick recovery from failure", IEEE Transactions on Com-
puters 35 (1986) 448-454.

[24] Lehoczky, J.P., "Real-time resource management tech-
niques", in: J.J. Marciniak (ed.), Encyclopedia of Software
Engineering, Wiley, New York, 1994, 1011-1020.

[25] Leung, J.Y.-T., and Merril, M.L., "A note on preemptive
scheduling of periodic real-time tasks", Information Pro-
cessing Letters 11 (1980) 115-118.

[26] Leung, J.Y.-T., and Whitehead, J., "On the complexity of
fixed-priority scheduling of periodic real-time tasks", Per-
fi~rmance Evaluation 2 (1982) 237-250.

[27] Levi, S.-T., Moss6, D., and Agrawala, A.K., "Allocation of
real-time computations under fault tolerant constraints", in:
Proceedings IEEE Real-Time Systems Symposium, 1988,
161-170.

[28] Liu, C.L., and Layland, J.W., "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Jour-
nal of the ACM 20 (1973) 46-61.

[29] Liu, J.W.S., Shih, W.-K., Lin, K.-J., Bettati, R., and Chung,
J.-Y., "Imprecise computations", Proceedings of the IEEE
82 (1994) 83-93.

[30] Oh, Y., and Son, S.H., "Enhancing fanlt-tolerance in rate-
monotonic scheduling", Real-Time Systems 7 (1994) 315-
329.

[31] Oh, Y., and Son, S.H., "Allocating fixed-priority periodic

tasks on multiprocessor systems", Real-Time Systems 9
(1995) 207-239.

[32] Rajkumar, R., Sha, L., and Lehoczky, J.P., "Real-time syn-
chronization protocols for multiprocessors", in: Proceedings
IEEE Real-Time Systems Symposium, 1988, 259-269.

[33] Ramamritham, K., Stankovic, J., and Zhao, W., "Distributed
scheduling of tasks with deadlines and resource require-
ments", IEEE Transactions on Computers 38 (1989).

[34] Sha, L., Rajkumar, R., and Lehoczky, J.P., "'Priority inheri-
tance protocols: An approach to real-time synchronization",
IEEE Transactions on Computers 39 (1990) 1175-1185.

[35] Sha, L., Rajkumar, R., and Sathaye, S.S., "'Generalized
rate-monotonic scheduling theory: A framework for develop-
ing real-time systems", Proceedings of the IEEE 82 (1994)
68-82.

[36] Sha, L., and Sathaye, S.S., "Distributed real-time systems
design: Theoretical concepts and applications", Technical
Report CMU/SEI-93-TR-2, Camagie Mellon University,
1993.

[37] Silberschatz, A., and Galvin, P.B., Operating System Con-
cepts', Addison-Wesley, Reading, MA, 1994.

[38] Sprunt, B., Lehoczky, J.P., and Sha, L., "Exploiting unused
periodic time for aperiodic service using the extended prior-
ity exchange algorithm", in: Proceedings IEEE Real-Time
Systems Symposium, 1988, 251-258.

[39] Sprunt, B., Sha, L., and Lehoczky, J.P., "Aperiodic task
scheduling for hard-real-time systems", The Journal of
Real-Time Systems l (1989) 27-60.

[40] Tanenhanm, A.S., Modern Operating Systems, Prentice-Hall,
Englewood Cliffs, 1992.

[41] Tindell, K., Bums, A., and Wellings, A.J., "An extendible
approach for analysing fixed-priority hard-real-time tasks",
Real-Time Systems 6 (1994) 133-151.

[42] Verhoosel, J.P.C., Luit, E.J., Hammer, D.K., and Jansen, E.,
"A static scheduling algorithm for distributed hard-real-time
systems", Real-Time Systems 3 0991) 227-246.

[43] Xu, J., and Pamas, D.L., "Scheduling processes with release
times, deadlines, precedence, and exclusion relations", IEEE
Transactions on Software Engineering 16 (1990) 360-369.

[44] Zhao, W., Ramamritham, K., and Stankovic, J.A., "Preemp-
tive scheduling under time and resource constraints," IEEE
Transactions on Computers" 36 (1987) 949-960.

