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Abstract 

Hard-real-time computing systems are widely used in our society, for example, in nuclear and industrial plants, 
telecommunications, avionics and robotics. In such systems, almost all tasks occur infinitely often and have time deadlines, 
namely, their correcmess relies not only on their logical results, but also on the time at which the results are available. A 
scheduling algorithm specifies an order in which all the tasks are to be executed, in a way that all the time deadlines are met. 
This paper provides a review on deterministic scheduling algorithms for hard-real-time systems, focusing mainly on fixed 
priority, preemptive scheduling of periodic tasks on a single processor and, in particular, on the Rate-Monotonic algorithm. 
After presenting some basic results, several generalisations, aimed at relaxing some constraints and facing more realistic 
cases, are described. Issues covered include uniprocessor and multiprocessor systems, periodic and non-periodic tasks, 
restricted and arbitrary deadlines, fixed and dynamic priorities, independent and synchronised tasks, as well as fault-free and 
fault-tolerant systems. 

Keywords: Scheduling theory; Hard-real-time computing; Multiprocessor systems; Packing; Fault-tolerance 

1. Introduction and terminology 

Real-t ime computing systems are widely used for 
monitoring and control functions in many industrial 
applications. Examples  of  such systems include the 
control of  engines, traffic, nuclear power plants, 
t ime-crit ical  packet communications,  aircraft avion- 
ics and robotics. In this context, the term task is 
used to denote either a computer  process or a single 
thread of  control that has to be executed. In real-t ime 
systems, tasks usually have timing requirements that 
must be verified. Thus, the correctness of  a task 
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computation depends not only on its logical result, 
but also on when the result is available. 

A common misconception about real-t ime com- 
puting is to think that it is equivalent to fast comput- 
ing. Of  course, minimising the task response times is 
helpful in satisfying the time requirements, but the 
most important principle of  real-t ime systems is pre-  

dictability, namely,  the abili ty to determine whether 
the system is capable to meet all the time require- 
ments of  the tasks. In particular, since the tasks 
compete for the usage of  shared resources, careful 
resource-management techniques must be used in 
order to prevent long waits that can lead to the 
violation of  some time requirements. The measures 
of  merit  used to evaluate real-time systems may 
significantly differ from those typically used for 
other systems. In particular, such measures include: 
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s c h e d u l a b i l i t y  - t he  degree of system loading below 
which the task timing requirements can be ensured; 
r e s p o n s i v e n e s s  - t he  latency of the system in re- 
sponding to external events; and 
s t a b i l i t y  - t he  capability of the system to guarantee 
the time requirements of the most critical tasks in the 
cases where it is impossible to guarantee the time 
requirements of all the tasks (a typical case is the so 
called t r a n s i e n t  o v e r l o a d  condition.) 

Since tasks are used to perform control and moni- 
toring functions, they often recur infinitely many 
times. There are three kinds of real-time tasks, de- 
pending upon their arrival pattern: 
p e r i o d i c  - t he  task has a regular interarrival time, 
called p e r i o d ;  

s p o r a d i c  - there is a lower bound on the task 
interarrival time; and 
i r r e g u l a r  - the  task can arrive at any time. 

The time requirements of real-time tasks are called 
d e a d l i n e s :  

• if meeting a task deadline is critical for the 
system functionality, then the deadline is said to be 
h a r d ;  missing a hard deadline is considered a system 
failure, and can lead to catastrophic consequences; 

• if it is desirable to meet a task deadline, but 
occasionally missing it can also be tolerated, then the 

deadline is said to be so f t ;  a task with a soft deadline 
is expected to be completed as early as possible, in 
order to have a good responsiveness. 

This paper will mainly deal with h a r d - r e a l - t i m e  

s y s t e m s  - the  most common kind of real-time sys- 
tems - where almost all the tasks are periodic and 
have hard deadlines. 

There are two ways to guarantee that all the task 
deadlines are met in a hard-real-time system. One is 
to use semantic models to describe the system and 
prove its correctness, and the other is to use the 
scheduling theory to give an order in which the tasks 
have to be executed. 

Although the theory of scheduling is born in the 
operations research milieu, scheduling of hard-real- 
time systems seldom appears in the operations re- 
search literature. The reason of this can be two-fold. 
First, queuing models and stochastic assumptions 
may be useless since they cannot always guarantee 
that hard deadlines are met. Second, deterministic 
scheduling deals mostly with tasks that have to be 
scheduled only once instead of infinitely many times. 

The purpose of this paper is to provide a review 
on deterministic scheduling algorithms for hard- 
real-time systems which guarantee that all the peri- 
odic occurrences of the tasks will meet their dead- 

Start execution 

Release~time @ 

Task x ~ I ~ 

Suspended 

Completion time 

R, + (k-1)T i 

Di R~+ (k-1)Ti+ D i 

Ti 

Fig. 1. Periodic task timing. 
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lines. The rest of the paper is structured as follows. 
The remaining part of this section is devoted to 
introduce some additional notions, like preemptions 
and priority-driven scheduling. Section 2 presents the 
basic Rate-Monotonic analysis for preemptively 
scheduling periodic independent tasks on a single 
processor. The analysis is extended in Section 3 in 
order to deal with task synchronisation and non-peri- 
odic tasks. Section 4 considers multiprocessor sys- 
tems. In particular, partitioning algorithms for as- 
signing tasks to processors are presented. Section 5 
considers the fault-tolerance issue for multiprocessor 
systems, where hard deadlines of the tasks have to be 
met even in the presence of a processor failure. Final 
considerations terminate the paper in Section 6. 

1.1. Periodic tasks 

Periodic tasks are the most common in real-time 
systems. They are usually invoked in order to moni- 
tor a physical system with regularity. 

A periodic task ~-~ is characterised by the 
quadruple (C i, T i, Di,  g i ) ,  where: 
C i is the (worst case) computation time of task ~'i. 
T~ is the invocation (or arrival) period of task z i- 
Di is the deadline of task ~-i. 
Rg is first invocation (or arrival) time of task ~-~. 
A periodic task leads to an infinite sequence of task 
instances called jobs. 

The k-th job of task ~-~ is ready for execution at 
time R; + ( k -  I)T, and, in order to meet its dead- 
line, its execution - that requires C~ time units - 
must be completed no later than time R i + (k - 1)T~ 
+ O i. 

The release time of a job is the time when it is 
ready to be executed (usually, this coincides with the 
beginning of a new period), its completion time is 
the time when its execution is completed, while the 
response time of the job is the difference between its 
completion time and its release time. An example to 
explain this terminology is provided in Fig. 1. 

1.2. Preemptions 

One dichotomy of scheduling algorithms is based 
on whether a running job can be suspended or not. 
Preemptive algorithms assume that any job can be 
suspended at any time, and can be resumed later 

from the point of suspension. The preemption of the 
job does not effect the behaviour of the job and the 
overhead due to the preemption can be considered 
small. Clearly, non-preemptive scheduling saves the 
overhead due to a context switch, but it is less 
powerful. Indeed, there are task sets which can be 
scheduled using preemptions but cannot be sched- 
uled without preemptions. Moreover, there is no 
exact analysis for non-preemptive scheduling, while 
there is an exact analysis, which is reported in this 
paper, for preemptive scheduling. 

1.3. Priority-driven scheduling 

The algorithms used in practice for scheduling in 
hard-real-time systems are priority-driven preemp- 
tive algorithms. These algorithms assign priorities to 
jobs according to some policy. After priorities are 
assigned, dispatching proceeds as follows. At each 
instant of time, the processor is assigned to the 
highest priority job which is ready to run preempting 
- if necessary - a lower priority job. 

For a given task set {r I . . . . .  ~-,}, a priority assign- 
ment is feasible if all the deadlines of all the jobs 
are met using such an assignment. In this case, the 
task set is said to be schedulable by the algorithm 
that produced the feasible priority assignment. A 
scheduling algorithm is optimal if all the task sets 
for which a feasible priority assignment exists are 
schedulable by that algorithm. Since there is nothing 
to optimise, this notion of optimality has a slight 
strange flavour. However, do not mistake an optimal 
scheduling algorithm for an optimisation scheduling 
algorithm, the latter being an algorithm that finds a 
feasible schedule having the best value of an objec- 
tive function, e.g. see [l 8]. 

A priority-driven algorithm is characterised by the 
kind of its priority assignment. A scheduling algo- 
rithm is static if the priority of a task is fixed and 
cannot change in the time (i.e., all the jobs of the 
same task always have the same priority). A schedul- 
ing algorithm is dynamic if the priority of a task 
might change from invocation to invocation (i.e., 
different jobs of the same task may have different 
priorities.) 

For example, a static scheduling algorithm is the 
Rate-Monotonic algorithm, where the task with 
shortest period has the highest priority. In contrast, a 
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dynamic scheduling algorithm is the Earliest Dead- 
line First algorithm, in which the ready job with the 
nearest deadline has the highest priority. Liu and 
Layland [28] proved that the Earliest Deadline First 
algorithm is an optimal priority-driven scheduling 
algorithm, and gave a necessary and sufficient condi- 
tion for testing the schedulability of the tasks: 

Theorem 1.1. Given a set {r] . . . . .  r,} of periodic 
tasks, with D i = T i for all i, the Earliest Deadline 
First algorithm yields a feasible priority assignment 

iff 
n 

E Ci/Ti ~ 1. 
i = l  

For a discussion about properties of the Earliest 
Deadline First algorithm see [28] and [12]. In the 
present review, only static algorithms are considered. 
In particular, the Rate-Monotonic algorithm will be 
treated in detail in the following sections. Although 
the Rate-Monotonic algorithm is not optimal (in fact, 
it is optimal among all static scheduling algorithms 
only) its predictability and stability under transient 
overload are so appreciated that it is becoming an 
industry standard. 

1.4. Time complexity 

Clearly, since tasks recur indefinitely in a hard- 
real-time system, their execution requires infinite 
time. However, deciding whether a feasible schedule 
exists usually requires less time! A feasibility test is 
an algorithm for checking conditions which are nec- 
essary and /or  sufficient for a task set to be schedu- 
lable on a processor. In general, there are no polyno- 
mial-time testable conditions which are both neces- 
sary and sufficient for arbitrary task sets. Specifi- 
cally, the problem of deciding whether an arbitrary 
task system can be scheduled on one processor was 
proven to be NP-complete [25]. The only known test 
for the general case consists in simulating the sched- 
ule over an interval equal to the least common 
multiple of the task periods, and such a test can run 
in exponential time. Anyway, for some particular 
cases, more efficient tests are known (for example 
Theorem 1.1 gives a polynomial time test when 
D i = T~, Vi, while [5] gives a polynomial time test 

for non priority-driven scheduling). Leung and 
Whitehead [26] showed a pseudo-polynomial time 
test for fixed priority scheduling. Later, the so called 
Completion Time Test [20,3] was introduced. This 
test works for fixed priority schedules and requires 
pseudo-polynomial time, but behaves as it were 
polynomial for many practical cases. The Comple- 
tion Time Test is described in more detail in the next 
section of the present paper. Other complexity results 
for special cases can be found in [4]. 

2. Basic Rate-Monotonic analysis 

This section focuses on some early basic results 
concerning fixed priority, preemptive algorithms for 
scheduling a task set {rl . . . . .  rn}. The following as- 
sumptions are made: 

• all tasks are periodic; 
• C/~< D i ~< T,. for all i; 
• tasks are independent, i.e., no inter-task com- 

munication or synchronisation is permitted; 
• there is a single processor. 
In practice, realistic models require some of these 

assumptions to be weakened, for example, by allow- 
ing both periodic and non-periodic tasks, synchroni- 
sations of tasks on shared resources, or more than 
one processor, as will be considered in the following 
sections. 

From now on, for the sake of simplicity, tasks are 
assumed to be indexed so that rl has a higher 
priority than rj whenever i < j. 

2.1. Basic results 

Liu and Layland [28] proved the following impor- 
tant results, assuming periodic independent preempt- 
able tasks, with D i = T/ for all i, and fixed priorities. 

Theorem 2.1. The longest response time for  any job 
of a task "I" i occurs when it is invocated simultane- 
ously with all higher priority tasks (i.e. when R] = 

R 2 . . . . .  gi) .  

The time when all the tasks are invoked simulta- 
neously is called a critical instant. The important 
result regarding the feasibility of a fixed priority 
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Table 1 
A task set with deadlines equal to periods 

Task T/ D i C i 

"r I 100 100 40 

~'2 150 150 40 
¢3 350 350 100 

schedule of such a task set, obtained with the Rate- 
Monotonic algorithm, is provided in Fig. 2. 

2.2.1. Utilisation bound 
Based on the notion of a critical instant, Liu and 

Layland derived a sufficient (but not necessary) 
schedulability test for the Rate-Monotonic algorithm: 

assignment is that only the first deadline of each task 
needs to be checked for feasibility. 

Theorem 2.2. A fixed priority assignment is feasible 
provided the deadline of the first job of  each task 
starting from a critical instant is met. 

Due to the above results, all the first arrival times 
of the tasks are assumed to be 0 hereafter, i.e. 
R~ = R 2 . . . . .  R,  = 0, since this assumption 
takes care of the worst possible case. In this way, 
only the first deadline of each task must be met, 
when the task is scheduled together with all higher 
priority tasks, in order for a fixed priority assignment 
to be feasible. 

2.2. Rate-Monotonic scheduling 

Liu and Layland [28] proposed a fixed-priority 
scheduling algorithm, called Rate-Monotonic, as- 
suming that each task deadline coincides with the 
end of the period, that is when D~ = T~ for all i. In 
their algorithm, priorities are assigned inversely to 
task periods - hence r i receives a higher priority 
than ej if T/< Tj. They also proved that the Rate- 
Monotonic algorithm is optimal among all static 
scheduling algorithms (assuming D i = T/ for all i). 
As an example, consider the task set of Table 1. The 

Theorem 2.3. Given a periodic task set {z I . . . . .  ~-~}, 
with D i = T i for all i, the Rate-Monotonic algorithm 
yields a feasible priority assignment if  

n 

E C,l , < n ( 2 ' / "  - 1). 
i = 1  

In the theorem above, the ratio Ci/T~ represents 
the utilisation factor of task z~, while the sum over 
all i represents the total utilisation of the task set 
(and hence of the processor). In practice, Theorem 
2.3 states that there is a bound U on the total 
utilisation of the task set, below which the Rate- 
Monotonic policy always yields a feasible priority 
assignment. The bound U depends only on the num- 
ber of tasks and for large task sets it is about 0.693, 
since 

lim,_~=n(2 l /" - 1) = In 2 = 0.693. 

A counterexample showing that the In 2 bound is 
only sufficient is given by the task set of Table l, 
where the processor utilisation is q-~ + iT6 + 3 ~ - 6 - - 4 °  40 too_ 
0.95. A bound that in some cases can be higher than 
In 2 is provided in [9]. 

2.2.2. Completion Time Test 
Joseph and Pandya [20] derived an exact analysis 

to find the worst-case response time for a given task, 
assuming fixed priority, independent tasks and dead- 

Task ~ 1 ~ ~ ~ ~ ~ ~ 

' 1  
Task x 2 I ~ : ~  ~ . ' ]  I ~:.:~!~1 ~.=:.'~..] L_ ~:.=~:~.'..~1 

T 2 

Executed 
Preempted 

Fig. 2. Example o f  scheduling the task set o f  Table 1 according to the Rate-Monotonic  algori thm. 
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Cumulative processor time demand 

300 

260 

220 

180 

] 
I 

s 

," Taskx 3 meets its deadline 

." ( 300 < 35o ) 

100 150 200 300 Time 

Fig. 3. Cumulat ive processor t ime demand versus t ime for the task 
set of  Table 1. At  t ime 50, the demand is 40[]-~]+40[t~6]+'° so 

50 10013-r6] = 180. The worst  case completion time W 3 of task ~'3 is 

computed as follows: W 3 ( l ) =  100, W3(2)= 180, W3(3 )=260 ,  

14,'3(4) = W3(5) = 300. Since W 3 = 300 < 350 = D 3, "r 3 meets its 

deadline. 

lines less than periods (i.e., D i ~< T~ for all i). The 
analysis considers a critical instant and makes use of  
Theorem 2.2. 

The following equation gives the worst case re- 
sponse time W i of  a task ri: 

W i = C i +  ~_~ , (1)  
j~hp(i) / 

where hp(i)  is the set of  all tasks with higher priority 
than ~'r The right side of  Eq. (1) represents the 

cumulative processor time demand for tasks in hp( i )  
U {ri}. Indeed, [t/T~] is the overall number of  jobs 
of  7j by time t and therefore Cj[ t /Tj] represents the 
processor time demand of task ~'i by time t. Thus, ~i 
will complete its execution at time W i iff the cumula- 
tive processor time demand of  tasks in hp(i)  U {~'i} 
up to time W i is exactly equal to W i, i.e. when Eq. 
(1) holds. As depicted in Fig. 3, the worst case 
response time is the smallest W i that satisfies the 
equation. This can be easily computed by iteration. 
Starting with Wi(0)= 0, Wi(k) is computed for k = 
1, 2 . . . .  as follows: 

Wi( k -I- l) = Ci Jr E Cj 
l I 

stopping the iteration as soon a s  Wi(k  -1- 1) = Wi(k) .  

The convergence is guaranteed iff [41] 

E Cilr,  < 1. 
i 

A necessary and sufficient schedulability test can 
be readily derived from Eq. (1): 

T h e o r e m  2.4. A fixed priority assignment for  a task 
set {~-~ . . . . .  r,}, such that D i <~ T i for  each i, is 
feasible iff W i <~ D i, Vi .  

This is referred to as the Completion Time Test. 
It is worth to note that the condition W i ~< D i of  

the above theorem must be verified for each i. 
Indeed, a common mistake is to think that if  the 
lowest priority task will meet its deadline then all the 
tasks will meet their deadlines. This is false, since 
the schedulability of  a task does not guarantee the 
schedulability of  higher priority tasks. Consider, for 

T a s k  x 1 I l l  

T a s k  x 2 

i 

fD, 

T a s k  t: 3 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 4. The schedulabil i ty of the lowest priority task does not guarantee the schedulabil i ty of  higher priority tasks. 
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Table 2 
A task set with deadlines less than or equal to periods 

Task ~ D i C i 

zl 100 100 10 
T 2 200 180 170 
z3 250 250 10 

example, the task set of Table 2, where tasks are 
indexed by decreasing priorities. The worst case 
completion time of task ~'1 is trivially 10. Comput- 
ing the worst case completion time of task ~'2 by 
means of Eq. (1) yields: W2(1) = 170, and W2(2) = 
W2(3) = 190. Thus the worst case completion time of 
T 2 is 190 which is greater than its deadline, since 
D E = 180. However, T 3, which is the lowest priority 
task, will meet its deadline: W3(1) = 10, W3(2) = 190, 
W3(3) = W3(4)= 200. Indeed, the worst case com- 
pletion time of T 3 is 200, which is less than 250, the 
deadline of ~'3- The schedule of 1" 1, ~'2, and ~'3 is 
shown in Fig. 4. 

task periods. In other words, the whole period of a 
task represents the time window within which a job 
must complete its execution. Liu and Layland proved 
that giving higher priorities to tasks with narrower 
windows is optimal among fixed-priority algorithms. 

Relaxing the D i = T,. assumption into D i ~ T i 
yields a time window narrower than the period. 
Leung and Whitehead [26] proved that, when the 
deadlines are less than or equal to the periods, the 
Rate-Monotonic priority assignment is no longer op- 
timal. However, assigning higher priorities to tasks 
with narrower windows is still optimal among 
fixed-priority algorithms. Leung and Whitehead refer 
to this priority assignment policy as the Deadline- 
Monotonic scheduling algorithm. With this algo- 
rithm, the task having the smallest deadline is as- 
signed the highest priority. In other words, ~'i has 
a higher priority than ~'j whenever D i is smaller 
than Dj. 

2.3. Deadline-Monotonic scheduling 3. Generalised Rate-Monotonic analysis 

In the Rate-Monotonic algorithm, the task dead- 
lines are assumed to coincide with the end of the 

Motivated by the need to face more general re- 
quirements of actual systems, much work has been 

Priori ty inversion 

I ( -I 

Task x i 

Task 1:2 

Task 1; .-1 

Task I: .  

ll~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii~ 
/ P(r) (blocked) ready l 

reempted 
=========================== 

P(r) V(r) 

Fig. 5. Example of priority inversion. Tasks not involved with the critical section become the dominant factor causing the delay. 
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done upon the basic Rate-Monotonic analysis. This 
section deals with generalisations of the basic Rate- 
Monotonic analysis, which have weakened some as- 
sumptions and thus have widened its applicability. 

3.1. Task synchronisation 

In the previous section, independent tasks were 
assumed. In practice tasks interact, for example, to 
access a resource mutually exclusively. In this case, 
the application of task synchronisation primitives 
[40,37] may lead to the phenomenon of priority 
inversion, which occurs when a higher priority task 
is prevented from executing by a lower priority one. 
The duration of a priority inversion is a function of 
the task execution times and can be unbounded as 
shown in the example of Fig. 5. This example con- 
siders n tasks such that ~'l and ~-, share a common 
resource r which must be accessed mutually exclu- 
sively. % starts its execution, enters a critical section 
by locking r (e.g. by a P primitive) and thus access- 
ing r. Then the highest priority task zl preempts r, ,  
attempts to lock r but remains blocked. Indeed, r is 
already accessed by another task, and thus ~'] waits 
for the release of r. Before % can complete its 
critical section and release r (e.g. by a V primitive), 
tasks z 2 . . . . .  %_ ], which do not use r, preempt %. 
Thus task z] is blocked by a lower priority task for 
an amount of time which is a priori unbounded. A 
good solution to overcome the above drawback is the 
so called priority ceiling protocol, which is briefly 
described in the following (for a more comprehen- 

sive review on resource control techniques for real- 
time systems see [1]). 

Priority ceiling protocol. Priority inversion can be 
controlled by the priority ceiling protocol [34], which 
uses the concept of priority inheritance - a task 
executing a critical section and blocking a higher- 
priority task inherits that task priority for the dura- 
tion of the critical section. The priority ceiling of a 
semaphore S is defined as the priority of the highest 
priority task that may lock S. Let S*(i)  be the 
semaphore with the highest priority ceiling among 
all the semaphores currently locked by tasks differ- 
ent from 7 i. Task ~'i can lock a semaphore only if its 
priority is strictly higher than the priority ceiling of 
S* (i), otherwise it gets blocked on S* (i) (it will be 
awakened when the above condition becomes true). 

Sha et al. [34] proved the following result: 

Theorem 3.1. (i) A task 7 i can be blocked (by 
lower priority tasks) for at most B i time units, where 
B i is the duration of the longest critical section 
executed by a task of lower priority than %, guarded 
by a semaphore whose priority ceiling is greater 
than or equal to the priority of zi. (ii) The priority 
ceiling protocol is deadlock free. 

In order to take into account task synchronisation, 
Eq. (1) can be updated as follows: 

invocation 

i -  

i 

t 
i 

release invocation = release invocation release 

I 
J 

i -I 

T, T, 
Fig. 6. The task release jitter. Note that the task inter-release time may be shorter than the period. 
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where B~ is the longest time duration in which task 
% is blocked by lower priority tasks. 

3.2. Release fitters 

with hard deadlines the goal is to guarantee that their 
deadlines will be always met, while for tasks with 
soft deadlines the goal is to provide low average 
response times. 

Until now each task was assumed to be released 
as soon as it arrives. However, it may happen that a 
task arrives but its release is delayed (for example 
owning to a scheduler that periodically polls task 
arrivals (t ick scheduling)). 

Thus there is a distinction between the invocation 
time - when a task is logically able to run - and the 
release time - when it is placed into the ready 
queue. The release fitter Ji is the worst case delay 
between the invocation time and the release time of 
z i, as shown in Fig. 6. 

Response time with fitter. To take into account 
task release jitters, the previous analysis can be 
updated as follows [41]: 

_[wi* 

w,= w," + J,. 

3.3. Arbitrary deadlines 

Another relaxation of the basic assumptions is to 
allow tasks to have arbitrary deadlines (i.e. deadlines 
greater than periods). In such a case, Liu and Lay- 
land's critical instant argument (Theorem 2.2) is no 
more valid - a task meeting its first deadline is not 
guaranteed to meet all its successive deadlines - 
and neither the Rate-Monotonic nor the Deadline- 
Monotonic algorithms are optimal anymore. 
Lehoczky [24] generalised Liu and Layland's bound 
for the case in which D i = kT i, with k = 1, 2 . . .  (the 
same constant k for all tasks) by introducing the 
notion of busy period. Successively, Tindell and al. 
[41] extended the Completion Time Test, providing 
an exact test for tasks with arbitrary deadlines. 

3.4. Scheduling non-periodic tasks 

So far only periodic tasks with hard deadlines 
have been considered. This subsection describes some 
recent algorithms to schedule non-periodic tasks with 
both hard and soft deadlines. For non-periodic tasks 

3.4.1. Sporadic tasks 
Sprunt et al. [39] showed how hard deadlines of 

sporadic tasks can be guaranteed using the so called 
Sporadic Server. This is a periodic task with an 
execution budget that handles sporadic requests at its 
assigned priority as long as the budget is available. 
When the budget is depleted, requests will be exe- 
cuted at background priority. The budget is pre- 
served if no sporadic task is pending when the server 
is released. As long as the sporadic task is not 
released more frequently than the replenishment time 
of the Sporadic Server, its hard deadline can be 
guaranteed. Later, Audsley et al. [3] gave an exact 
analysis of sporadic tasks, showing that hard dead- 
lines of sporadic tasks can be guaranteed without the 
overhead due to additional servers. 

3.4.2. Sporadically periodic tasks 
Some real-time systems have sporadically peri- 

odic tasks, i.e. tasks that arrive at some time, periodi- 
cally execute for a bounded number of times (called 
inner period), and then do not re-arrive for a larger 
time (called outer period), as shown in Fig. 7. 
Tindell et al. [41] derived an exact analysis for tasks 
with this behaviour, showing how hard deadlines can 
be guaranteed. The schedulability analysis of the 
previous section can be updated to determine worst- 
case response times for sporadically periodic tasks. 
The details can be found in [41]. 

~ task invocation 

time 
__~ ~_ t~ inner period 

i( T, outerperiodj 
- I  

Fig. 7. The invocation pattern for a sporadically periodic task. 
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3.4.3. Irregular tasks 
The invocation of an irregular task is essentially a 

random event. Therefore, a worst case analysis can- 
not be done and, as a result, hard deadlines of 
irregular tasks cannot be guaranteed in any way. 
Only soft deadlines for these tasks can be handled, 
by means of algorithms such as the Sporadic Server 
[39], the Extended Priority Exchange [38] or the 
Dual Priority Scheduling [15]. The latter represents 
the most elegant and efficient strategy to identify 
spare time - e.g. due to tasks which sometimes 
require less than their worst case computation times 
- for executing tasks with soft deadlines. Priorities 
are divided into three bands. Tasks with soft dead- 
lines are assigned priorities in the middle band. Upon 
its release, each task with a hard deadline is assigned 
a priority in the lowest band. The priority of the task 
is promoted to the highest band after a fixed time 
from its release, which is the maximum delay that 
allows the deadline to be met in the worst case 
scenario. In [15], the authors also give an exact 
schedulability analysis based on the Completion Time 
Test. 

3.5. Stability under transient overload 

In many applications, the task execution times are 
stochastic. Thus considering worst execution times 
for the tasks can lower the processor utilisation, 
since worst execution times can be significatively 
larger than average execution times. On the other 
hand, scheduling a task set using average execution 
times may cause lower priority tasks to miss their 
deadlines under worst case conditions (in such a 
case, the system is said to be experiencing a tran- 
sient overload). Since priorities are assigned accord- 
ing to task periods (or deadlines), this means that a 
critical task with a long period might miss its dead- 
line. A technique to force critical tasks to have 
higher priorities (so that they will meet their dead- 
lines under transient overload) is the period trans- 
formation technique [35], which consists in halving 
the task periods so as to increase their priorities. 

3.6. Further reading 

The interested reader could consult the following 
additional references: 

• [2], whose authors provide an historical per- 
spective on the development of fixed-priority pre- 
emptive scheduling up to the end of 1993; 

• [21], which is a very clear introduction to the 
Rate-Monotonic analysis; 

• [22], which is a book providing a comprehen- 
sive description of the Rate-Monotonic analysis and 
serves as a handbook for designing and analysing 
real-time systems. 

Before concluding this section, it is worth men- 
tioning one paper which is based on different as- 
sumptions and uses a different approach. In [43], Xu 
and Parnas introduce a static preemptive scheduling 
algorithm for hard-real-time systems with a single 
processor dealing with exclusion relations, prece- 
dence constraints, and time constraints. The algo- 
rithm uses a branch & bound strategy based on the 
Earliest Deadline First policy. 

4. Mult iprocessor  schedul ing  

The Rate-Monotonic analysis, extended as out- 
lined in the previous section to tackle more realistic 
requirements, is widely used for scheduling hard- 
real-time tasks on a single processor. How much of 
this analysis can be applied to multi-processor sys- 
tems? 

A major difficulty in scheduling on many proces- 
sors is that the algorithm must specify not only an 
ordering of tasks on a single processor, but also an 
assignment of jobs to processors so as to minimise 
the number of processors. 

There are two classes of priority-driven schedul- 
ing algorithms for multi-processor systems: 
non-partitioning - processors are considered collec- 
tively as one entity and the dispatcher assigns the 
first ready task to the first free processor; in this 
way, different jobs of the same task may be executed 
on different processors; 
partitioning - tasks are partitioned into groups so 
that each group of tasks can be feasibly scheduled on 
a single processor according to a given scheduling 
algorithm. 

Since the Earliest Deadline First algorithm is 
optimal in the single processor case, it is tempting to 
think that it remains optimal also in the multi- 
processor case. This is wrong: neither the Rate- 
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Table 3 
Asymptotic worst-case performance ratio for task assignment heuristics. RMST requires that the maximum task utilisation factor is bounded 
by ot 

RMNF [16] RMFF [|6] NF-M [13] FFDUF [14] RRMFF [31] RMST [9] RMGT [9] 
2.67 2.33 2.28 2.0 2.0 1/(  1 - a ) 1.75 

Monotonic nor the Earliest Deadline First algorithms 
are optimal for multiprocessors [16]. 

The most used approach for multiprocessor 
scheduling is the partitioning one, since tasks are 
allowed to be scheduled on each single processor 
according to the Rate-Monotonic (or Deadline- 
Monotonic) algorithm and partitioning of tasks 
among processors can be done by means of well- 
known heuristics. 

4.1. Partitioning via Bin-Packing 

The problem of assigning tasks to processors is 
similar to the Bin-Packing problem, where each task 
% is a package of size equal to its utilisation factor 
Ci/T , and each processor is a bin of size equal to 
one, if the Completion Time Test is used, or of size 
equal to In 2, if Liu and Layland's utilisation bound 
is used. 

The above problem has been widely studied and 
typical assignment schemes differ on the choice of 
the Bin-Packing heuristic. The most studied task 
model is Liu and Layland's one, where there are 
only periodic independent tasks without release jit- 
ters and with deadlines equal to periods. A schedula- 
bility test based on a utilisation bound - often the 
In 2 bound - is used to constraint the assignment of 
tasks to processors. 

The first assignment heuristics, called RMNF and 
RMFF, were proposed in [16], where tasks are picked 
by decreasing Rate-Monotonic priorities and as- 
signed according to the Next-Fit and First-Fit Bin- 
Packing heuristics, respectively. More refined heuris- 
tics were successively introduced by Davari and 
Dhall [14,13] and Oh, Son et al. [31,9]. 

The performance of the above assignment heuris- 
tics is evaluated in terms of the asymptotic worst-case 
ratio limso_,~N/N o, where N is the number of 
processors required by a given heuristic, and N o is 
the minimum number of processors needed. Table 3 
summarises the performance of the most known 
heuristics. 

It is worth noting that, as in the uniprocessor case, 
some of Liu and Layland's constraints on the task 
model can be relaxed by using the Completion Time 
Test instead of the utilisation bound. For example, 
task synchronisations can be handled by the Multi- 
processor Priority Ceiling Protocol [32]. 

4.2. Partitioning without Bin-Packing 

Before concluding this section, some papers are 
mentioned which are based on various task models 
and consider task partitioning without using Bin- 
Packing heuristics. 

Tindell, Bums and Wellings [10] consider inde- 
pendent tasks with deadlines less than periods. The 
assignment of tasks to processors is obtained by 
simulated annealing, and tasks are scheduled on 
each processor according to the Deadline-Monotonic 
policy. Cheng and Agrawala [11] deal with no pre- 
emptable tasks with timing constraints on each job. 
Simulated annealing is used to compute a schedule, 
with length equal to the least common multiple of all 
task periods, which yields both the assignment of 
tasks to processors and the total order of job execu- 
tions on all the processors. Fohler and Koza [17] and 
Verhoosel and Hammer [42] consider periodic 
fixed-priority tasks with resource requirements and 
use heuristics based on backtracking and implicit 
enumeration, respectively. Finally, Stankovic et al. 
[44] introduce dynamic scheduling heuristics for 
multiprocessors that take task resource requirements 
into account. Conflicts over resources are avoided in 
the scheduling phase, which allows mechanisms for 
mutual exclusion to be ignored. 

5. Fault-tolerance 

The purpose of a hard-real-time system is to 
provide time-critical services to its environment. 
Since the violation of a hard deadline can have 
catastrophic consequences, the system must be capa- 
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ble of providing a critical level of service even in the 
presence of one or more faults. A system can be 
designed to be fault-tolerant by incorporating addi- 
tional components and algorithms which ensure that 
occurrences of erroneous states do not result in a 
failure of the whole system. 

Fault-tolerant systems differ with respect to their 
behaviour in the presence of a fault. In some cases 
the aim is to continue to provide a full performance 
and all the functional capabilities of the system. In 
other cases, only a degraded performance or reduced 
functional capabilities are provided until the fault is 
removed [29]. 

Schemes for fault-tolerance also differ with re- 
spect to the types of faults which are to be tolerated. 
In particular, there are hardware faults, e.g. due to 
the incorrect behaviour of  a processor, and software 
faults, e.g. due to an algorithmic error in a task 
design. Moreover, there is also a distinction between 
transient faults, which manifest themselves only 
temporarily, and permanent faults, which manifest 
themselves forever. 

A variety of schemes have been proposed to 
support fault-tolerant computing in multi-processor 
systems. Such schemes can be partitioned into two 
broad classes. 

• The passive replication technique prescribes 
that each task has one (or more) passive backup 
copies, that are executed only in the case of a fault - 
when a task fails, the passive copies of the task are 
started [23,27,19,7]. This technique is also called 
temporal redundancy, because it basically consists in 
reserving spare time for the reexecution of the faulty 
task (or of an alternate version of the task), and is 
usually employed in uniprocessor systems to tolerate 
software faults. 

• The active replication technique prescribes that 
each task is replicated in two (or more) copies which 
are always executed on two (or more) processors - if 
any task fails, its active copy will continue to be 
executed [27,30]. This technique is also called physi- 
cal redundancy, and is suited for multiprocessor 
systems to tolerate both hardware and software faults. 

Only a few fault-tolerant scheduling algorithms 
for hard-real-time systems appeared in the literature, 
and only a very few of these deal with the Rate- 
Monotonic analysis. The most used approach for 

multiprocessors uses active replication and simply 
consists in duplicating on two sets of processors the 
schedule obtained for the fault-free case (e.g. by 
means of the Rate-Monotonic First-Fit policy [30]). 
Using such an active duplication approach, however, 
too many processors are required, since the number 
of processors used in the fault-free schedule is dou- 
bled. In the next subsections, an approach is de- 
scribed which combines both the passive and active 
task duplication in the same schedule and uses in 
practice less than twice the number of processors of 
the fault-free schedule [8]. 

5.1. Task duplication 

For the sake of simplicity, only one permanent 
hardware fault is considered hereafter, but the dupli- 
cation scheme to be presented can be extended to 
tolerate more than one (software or hardware) fault 
[8]. The following characteristics of the tasks are 
considered: 

• C i <~ D i <<. T,. and Ji <~ Di - Ci for all i; 
• all tasks are periodic; 
• all tasks are independent. 
The following standard failure characteristics of 

the hardware are assumed: 
• a processor is either non-faulty or ceases func- 

tioning, and a faulty processor cannot cause an incor- 
rect behaviour in a non-faulty processor; 

• the fault of a processor is detected by the 
remaining non-faulty processors after the fault, but 
within the closest completion time of a job that 
would have been scheduled on the faulty processor. 

Two copies of the same task, the primary copy 
and the backup copy, are used, which are denoted, 
respectively, 

~'i = (Ci ,  T,., D i, J i )  

and 

Tb(i) = ( Cb(i)" Tb(i), Db<i), Jb(i))" 

The primary and backup copies may have different 
execution times (for example, since they may corre- 
spond to different software implementations) and 
cannot be assigned to the same processor. The 
scheduling algorithm itself can determine whether a 
backup copy ~'bti) must be active or can be passive, 
as soon as the primary copy ~-i is assigned to a 
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processor and its worst-case completion time W i is 
computed. If 

D i - W i >t Cb(i), 

then there is enough time to execute Tb(i) after ~'i 
within the same period and without violating the 
deadline, and thus rb(i) is scheduled as a passive 
copy, otherwise, rb(;) is scheduled as an active copy. 

Backup copies are thus characterised as follows: 
Active backup: An active copy is always executed 

in the absence of faults and behaves as its primary 
copy, i.e. 'Tb(i)= (Cb(i) , Ti, Di, Ji); 

Passive backup: A passive copy is assigned to a 
processor but is not executed until the primary copy 
fails, and thus "rb(i) has the same period T~ of its 
primary copy, but has a release jitter Jb(o equal to 
the worst-case response time Wi of 7-~, as shown in 
Fig. 8. This jitter takes into account the first delayed 
release of ~'b(i), due to a failure of the processor 
running T i, namely: ~'b(i) = (Cb(i), Ti, Di, Wi)" 

5.2. Assignment and scheduling of tasks 

Task copies are picked one at a time by decreas- 
ing Deadline-Monotonic priority order (each passive 
copy of a task immediately follows the primary copy 
of the same task) and assigned to a processor in 
which they fit, according to the partitioning policy 
(e.g. First-Fit, Best-Fit, etc.) used (the primary and 

backup copies of the same task are assigned to 
different processors). In order to determine whether a 
task copy can be assigned to a processor, the schedu- 
lability of the copy must be checked - by means of 
the Completion Time Test - together with all the 
task copies already assigned to that processor, both 
in the fault-free and faulty situations. All the copies 
assigned to each single processor are scheduled ac- 
cording to the Deadline-Monotonic algorithm. 

In the absence of faults, the task set taking into 
account the fault-free situation is scheduled on each 
processor. This task set includes primary and active 
backup copies only. As soon as a processor failure is 
detected, the task set taking into account the faulty 
situation can replace at run time the old schedule in 
each non-faulty processor. This set includes primary 
copies, as before, but only the (active and passive) 
backup copies of primary tasks assigned to the failed 
processor. A passive copy is released in the next 
invocation period, if the execution of its primary 
copy was successfully completed by the failed pro- 
cessor before the fault was detected; it is released 
immediately, so as to be executed within the same 
invocation period, otherwise (see [8,6] for further 
details). 

It is worth noting that primary copies scheduled 
on different processors can have their passive copies 
to share the same time on the same processor. This 

1; i 

'~b(i) 

i fault 

I fault detection 

J = W  j. bO) ~ "I 

I" -I- .I 
r~ r~ 

Fig. 8. The passive copy zb(i) is viewed as a task with period T, (which is invocated together with its primary copy) that may experience a 
release jitter of  Wi time units (that occurs only once, when it is invocated for the first time, owning to a failure of the processor executing 

7i). 



442 A.A. Bertossi, A. Fusiello / European Journal of Operational Research 96 (1997) 429-443 

allows the total number of processors to be consider- 
ably reduced with respect to those needed by the 
active duplication approach. 

6. Conclusions 

Hard-real-time systems are widely used in the 
industrialised society of today, and are expected to 
become larger and more complex in the society of 
tomorrow, due to the rapid advances in the computer 
hardware and communication networks. Since future 
systems are expected to be used for more and more 
critical applications, human, economical, and ecolog- 
ical catastrophes could follow if task deadlines will 
not be met. 

In guaranteeing task deadlines, a predictability/ 
flexibility trade-off arises. Indeed, predictability im- 
poses that worst-case execution times and arrival 
rates are used to statically schedule the tasks, while 
flexibility requires that stochastic execution times 
and arrivals, hardware and software faults, as well as 
other system changes, are taken into account to 
dynamically make useful scheduling decisions. In 
this context, the Rate-Monotonic analysis represents 
a good compromise, since it guarantees predictability 
while being sufficiently flexible. However, further 
research should be focused on new scheduling ap- 
proaches which could improve flexibility still guar- 
anteeing predictability. 

Future hard-real-time systems are expected to be 
distributed. Clearly, scheduling in a distributed net- 
work is different from scheduling in a centralised 
system [33,36]. Since there is no centralised sched- 
uler, some resource requests of a node could be 
delayed or not satisfied at all, and scheduling deci- 
sions should be made by a node without having a 
complete knowledge of the decisions made by the 
other nodes in the network. Nevertheless, predictabil- 
ity should still be guaranteed in a distributed hard- 
real-time system. 
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