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Abstract
In this paper, a novel approach to face clustering is proposed. The aim is the completely unsupervised extraction
of planes in a polygonal a mesh, obtained from a 3D reconstruction process. In this context, 3D coordinates points
are inevitably affected by error, therefore resiliency is a primal concern in the analysis. The method is based on
the Mean Shift clustering paradigm, devoted to separating modes of a multimodal non-parametric density, by
using a kernel-based technique. A critical parameter, the kernel bandwidth size, is here automatically detected by
following a well-accepted partition stability criterion. Experimental and comparative results on synthetic and real
data validate the approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-
ing]:

1. Introduction

Polygonal meshes remain a preferred representation for sur-
face data, because of their ability to efficiently approximate
complex shapes and their data-structural simplicity. In par-
ticular, triangular meshes are widely used in many engi-
neering, medical, and entertainment applications. Anyway,
in order to process a three-dimensional (3D) object in the
form of a triangular mesh for further and more sophisticated
analysis, extracting and opportunely organizing higher or-
der features represents a fundamental step. In this study, we
focus on face clustering: this operation is useful, for exam-
ple, in a Computer Graphic context, for shape simplification
[DCSD04, MGH01, KT96], shape modelling and retrieval
[TF04, DCSD04], or to accelerate the face culling process.

In the context of Computer Vision, instead, face clustering
strategies could be useful for image-based modelling appli-
cations. Here, an important operation is the automatic ex-
traction and division of a mesh object (acquired from real
images) into consistent sets of informative portions. In par-
ticular, planes can be extracted and organized into different
entities, depending on their orientation and position. This
operation should be considered as a first step for further re-
finements of the 3D structure as in [MFD06], and in general
for a higher level analysis and processing of the mesh object.
However, this context requires to see the problem from a
perspective slightly different from a pure Computer Graphic

problem: if a mesh derives from a 3D reconstruction process,
in fact, the location of the 3D points is inevitably affected by
error, and so error resiliency should be a leading factor for a
face clustering algorithm on these data.

In this paper, we propose a noise-resilient, fully auto-
matic method for face clustering, able to effectively parti-
tion meshes affected by noise. This approach relies on the
Mean Shift (MS) clustering paradigm [CM02], which is a
powerful general purpose procedure for non-parametric scat-
tered data. The main underlying idea of such approach is
that the data space is regarded as an empirical probability
density function to estimate. In short, the MS procedure op-
erates by shifting a fixed size estimation window, the kernel,
from each data point towards a local mode, characterized by
a high concentration of data points. The points converging to
the same mode are included in the same cluster.

MS has shown to be a powerful technique for several re-
search fields such as image and video segmentation, track-
ing, clustering and data mining [CM02, Col03, GSM03]. In
the context of face clustering, instead, MS clustering has
been applied to surface normals only as a pre-processing step
to mesh segmentation. In [HY05], for example, it has been
applied to perform a sort of local smoothing aimed at remov-
ing noise from data. Other state-of-the-art approaches to face
clustering [SWG∗03, CSAD04] mainly use region growing
methods, and the focus is not on noise resiliency but only
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on the visual quality of the results. Moreover, most methods
rely on manual tuning of several parameters.

This work, instead, builds on [MCV06], where a method
for automatic selection of kernel parameters in MS algo-
rithm is developed. [MCV06] Faces the problem of 3D seg-
mentation on unorganized 3D points; here, the method is ap-
plied to extract planes from noisy 3D mesh objects. In sum-
mary, our method firstly groups triangles’ normals, organiz-
ing together triangles with similar normals. Then, for each
cluster, a further clustering operation based on the distances
of the triangles from the origin is carried out, thus permitting
to separate triangles belonging to parallel planes.

In literature, approaches for automatic estimation of MS
parameters are present: a recent and important theoretical
framework has been proposed by Comaniciu in [Com03],
but it is based on the assumption that data are locally
distributed with a Gaussian distribution, and corrupted by
Gaussian noise. While commonly accepted and motivated
in a pure pattern recognition context, this assumption does
not hold in general for data characterizing rigid geometrical
data: for example, punctual information which characterize
corners and spikes, such as normals and spatial positions,
are far from being characterized by a local Gaussian con-
figuration. Therefore, we do not want to impose Gaussian
assumptions: we accept every data configuration, only as-
suming that the clutter affecting the data is bounded, with
a uniform distribution holding inside the bound. In order to
sensibly validate our assumptions, an extensive performance
comparison between our approach and [Com03] has been
performed, showing better performances of our method in
this context.

The rest of the paper is organized as follows. Sec. 2 de-
scribes an overview of the Mean Shift procedure, while
Sec. 3 illustrates the automatic estimation of the bandwidth
parameter. Sec. 4 depicts the proposed method and Sec. 5
shows the experimental results, on synthetic and real data.
Finally, the conclusions are in Sec. 6.

2. Mean Shift

The Mean Shift procedure is a non-parametric density es-
timation technique [Fuk90, CM02]. The theoretical frame-
work of the Mean Shift arises from the Parzen Windows
technique, that, in particular hypotheses of regularity of
the input space (such as indipendency among dimensions
[CM02]), estimates the density at point x as:
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where ck,m is a normalizing constant, n is the number of
points available, and k(·) is the kernel profile, that models
how strongly points are taken into account for the estima-
tion, according to the bandwith h, that establish a threshold
on their distance from x.

Mean Shift extends this “static” expression, by differenti-
ating (1) and obtaining the gradient of the density as:
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where g(x) is the gradient of k(x). In the above equation,
the first term in square brackets is proportional to the nor-
malized density gradient, and the second term is the Mean
Shift vector, that is guaranteed to point towards the direc-
tion of maximum increase in the density [CM02]. Therefore,
starting from a point xi in the feature space, the Mean Shift
iteratively produces a trajectory that converges in a station-
ary point yi, representing a mode of the whole feature space.

3. Bandwidth automatic estimation

The bandwidth parameter h defines the level of detail of the
analysis. Large bandwidth values lead to global but course
separation, whereas small bandwidth values better identify
local modes, but at the risk of over-partitioning the data
space. Good segmentation results could be obtained after an
accurate parameters tuning. In line with the concept of sta-
ble segmentation [Fuk90] we exploit the same strategy de-
veloped in [MCV06]. We single out extreme values hmin and
hmax for h and we uniformly divide the range [hmin,hmax].
Then, for each value of h we perform a Mean Shift cluster-
ing. After these trials, we consider the graph of the number
of clusters as a function of h and we choose as the best band-
width value the centre of the largest plateau (see Figure 1).

Figure 1: Example of automatic bandwidth selection: on the
graph of the number of clusters obtained from each trial with
a h value, the centre of the largest plateau is selected.

4. Proposed method

The proposed technique is composed by a two-step, hierar-
chical strategy. Firstly, normals of every mesh triangle are
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organized in separate clusters. Then, each cluster is further
partitioned, in order to separate parallel planes.

As a reminder, a plane is expressed by the equation

ax +by+ cz+d = 0 (3)

The parameters a, b and c are the coordinates of the plane’s
normal, while d represents the plane’s distance from the ori-
gin. Two triangles belonging to different parallel planes dif-
fer from d only, so after the first clustering operation these
triangles are in the same cluster. A second partitioning based
on the parameter d permits to separate them.

Specifically, for the former clustering operation, data are
the points xi = ni, where ni is the 3D normal of the i-th mesh
triangle.

The adopted kernel is [CM02]:

Khn(x) =
C
h3

n
k

(∣∣∣∣∣∣∣∣ x
hn
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)

(4)

where C is the normalization constant and hn the kernel
bandwidth. Assuming a bounded error on 3D points, and a
uniform distribution inside the bound (these assumptions are
appropriate for this kind of applications, see [AJ94]), the ap-
propriate k employed is the Epanechnikov kernel [CM02]:

k(x) =
{

1− x if 0≤ x≤ 1
0 otherwise

(5)

the function k, when differentiated, leads to the uniform ker-
nel g(·), i.e. a multi-dimensional unit sphere.

The latter clustering operation is performed on data xi =
dic, where dic is the plane’s distance from the origin (3) of
the i-th triangle in c cluster. The kernel used is the same of
the previous partition process, with bandwidth value hd .

Finally, in order to automatically select the parameters hn
and hd as described in Sec. 3, we need to single out their
range of variability. We fixed hn ∈ [0.05,0.2], whereas hd is
adaptively computed so as to reflect the intrinsic scale of the
problem. The lower bound of the range is min(di), whereas
the upper bound is 10% of the median of the maximum dis-
tances between every pair of 3D points.

5. Experimental Results

The proposed method has been tested on both synthetic and
real data.

As for the synthetic experiments, we used the four mesh
objects in Fig. 2. As previously said, we assume that the 3D
mesh points are affected by an uniform (bounded) error. So,
the 3D points had been perturbed varying the bound’s width
and uniformly generating their positions inside the bound.
For each object, we considered as bound’s width t values
from 0.5% up to 3.0% of the median among the maximum
distances between every pair of mesh points (see Figure 3).
This related t to the intrinsic scale of the object. For each t,

we performed 50 independent trials. The mean percentages
of mismatches wrt the ground truth are detailed in Table 1.
Examples of the detected planes are depicted in Figs. 4 and
5.

Figure 2: The four objects used for the synthetic exper-
iments, here referred as (from the left) test, boxwhole,
cutcube and foursix

Figure 3: Synthetic experiments for boxwhole, changing the
error bound’s width for different values of t. On the left,
t = 1, i.e. the cubes width is 1% of the median among the
maximum distances between every pair of mesh points; in
the center, t = 2; on the right, t = 3.

2 mismatches 0 mismatches

Figure 4: Examples of detected planes for t = 1.5, with the
number of mismatches. For the test object on the left, the
mismatches are the two highlighted triangles.

As the reader can notice, the algorithm works remarkably
well, with a very little percentage of mismatches.

In the experimental comparative evaluation, we applied
the same hierarchical clustering process, employing instead
the bandwidth selection theorem proposed by [Com03]. The
theorem implies a different MS formulation, giving to each
data point a particular bandwidth value, instead of choos-
ing a fixed bandwidth value for all the data space. Such
bandwidth value is the one that maximize the module of the
normalized MS vector, that from each location in the data
space points towards the nearest mode. As previously said,
the bandwidth selection theorem works well when the data
is locally distributed as a Gaussian distribution, corrupted by
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0 mismatches 0 mismatches

Figure 5: Examples of detected planes for t = 1.5, with zero
mismatches.

t 0.5 1.0 1.5 2.0 2.5 3.0
test 0 0.12 1.35 3.97 6.88 9.67
boxwhole 0 0 0 0.09 0.36 3.09
cutcube 0 0 0 0.02 0.23 0.78
foursix 0 0 0 0 0.02 0.08

Table 1: Synthetic experiments results: mean percentage of
mismatches wrt the number of mesh triangles vs the bound’s
width t.

Gaussian noise. The results are reported in Table 2. As ex-
pected, our algorithm shows up better performances.

t 0.5 1.0 1.5 2.0 2.5 3.0
test 1.53 2.63 4.60 6.07 6.97 8.33
boxwhole 0.06 0.44 1.19 2.19 2.88 3.00
cutcube 0.03 0.43 0.60 1.30 1.40 2.27
foursix 5.19 6.14 7.99 9.09 10.03 10.59

Table 2: Synthetic experiments results obtained with the au-
tomatic bandwidth selection developed in [Com03]: mean
percentage of mismatches wrt the number of mesh triangles
vs the bound’s width t.

We tested the approach on real cases as well, using mod-
els obtained from an image-based reconstruction process
[HZ00]. The church model is composed by 43 points and 93
triangles. The planes extracted by our algorithm are 38, with
6 triangles wrongly grouped, four of which derives from a
wrong normals classification, the others from a wrong paral-
lel planes separation (see Fig. 6).

The tribuna model is composed by 272 points and 364
triangles. The planes extracted are 52, showing an intuitive
planes-organization of the object. Only 20 triangles were er-
roneously clustered. In this case, the errors equally derive
from normals and parallel planes clustering.

6. Conclusions

In this paper, we propose a noise-resilient and fully auto-
matic approach to face clustering based on the Mean Shift

Figure 6: Two views of church model, with the planes ex-
tracted by our algorithm.

algorithm. The aim is the extraction of planes of a mesh ac-
quired from a 3D reconstruction process. Resiliency to noise
is proved by both synthetic and real experimental results.
Concerning the automatic choice of the bandwidth value,
in this paper we prove that, in case of rigid geometrical
structures described by punctual measurements such as face
normals, methods relying on Gaussian assumptions perform
poorly. Instead, methods of bandwidth selection based on
more general principles such as the stability of the partition,
gives better results.
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