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Abstract. Planar patches are a very compact and stable intermedi-
ate representation of 3D scenes, as they are a good starting point for
a complete automatic reconstruction of surfaces. This paper presents a
novel method for extracting planar patches from an unstructured cloud
of points that is produced by a typical structure and motion pipeline.
The method integrates several constraints inside J-linkage, a robust al-
gorithm for multiple models fitting. It makes use of information coming
both from the 3D structure and the images. Several results show the
effectiveness of the proposed approach.

1 Introduction

While the current state of the art in architectural three-dimensional (3D) re-
construction has focused on the recovery of dense and accurate representations
of objects imaged through pictures or video, the sustained interest in accessi-
ble architectural modeling software is a strong evidence of an untapped general
need for compact, abstract representations of architectural objects. What sepa-
rates unstructured cloud of points from higher-level renditions of an architectural
model is a semantic gap, which should be bridged exploiting additional informa-
tion. This is one of the most challenging research area in Computer Vision. The
proposed methods can be divided in three main categories: interactive, top-down
and bottom-up.

Interactive approaches require user intervention to recognize higher level
structures, usually basing on the three-dimensional information previously ex-
tracted [1-4]. Top-down or model based approaches start from the prior knowl-
edge of the set of potential parametric models and try to infer the best fitting one
along with its parameters [5-9]. Potentially, only one image could be employed
if the prior knowledge is enough to derive the 3D model [10,11]. When no prior
knowledge is assumed or user intervention is not available, bottom-up methods
are employed. They start directly from raw three-dimensional data points trying
to aggregate them in progressively higher level structures, possibly using also
the information coming from the images. This paper falls in this category: The
aim is to leverage models from unorganized point clouds to an intermediate rep-
resentation, i.e. planar patches, that narrows the gap between acquisition and
manipulation of architectural models.
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Some methods try to optimize an initial triangulation using visibility [12]
or photo-consistency [13, 14] only, i.e., the fact that a patch corresponding to a
solid opaque surface has the same appearance in all the images (modulo some
geometric and photometric distortions). They work only with very simple con-
vex polyhedra objects, and they assume all points visible by at least one view.
A similar approach was proposed in [15]. A sequential MSAC [16] is employed
in order to detect the planes. Image-consistent triangulation is then used within
a simulated annealing algorithm to create an optimal surface mesh. In [17] an
automatic approach to segment a cloud of points into planes is proposed: It gener-
ates plane hypotheses by random sampling the 3D points (inspired by RANSAC)
and scores them using photo-consistency. The reported experiments involve ex-
tremely simple objects. More recently Moser et al. [18] presented a paper that
is able to perform out-of-core simplification of an high quality digital surface
model of a city using RANSAC. The density and good quality of the input data
are crucial here.

Very recent works proposed to run a Multiview Stereo on the output a SaM
pipeline[22, 23]. While the results are visually compelling, they do not point at
the problem of the semantic gap, since the output is a dense and less compact
representation of the scene.

Besides [12-14] which are very simple, all the above papers share a common
part since they extract the planes underlying the scenes using RANSAC (or
MSAC) with spatial or photo-consistency information. This seems to be a crucial
task, but the sequential application of an algorithm designed for single model
extraction, is not suitable, and this becomes clear as soon as one steps from
clean, structured data to real, noisy unstructured data, as those coming from
a structure and motion (SaM) pipeline[19, 20]. Techniques designed to extract
multiple instances of a model are required in this case, e.g. J-linkage, which has
recently been proposed [21] and proved to be very robust. It will be described
in details in section 2.

Our strategy reaps the benefits of most of the aforementioned methods: i) it
applies to unorganized large cloud of points, ii) employ a multiple model fitting
algorithm (J-linkage) and iii) seamlessly integrates both spatial, visibility and
photo-consistency information inside it.

The output of our algorithm are triangulated planar patches, which are a
very compact and stable intermediate representation of 3D scenes, as they are a
good starting point for a complete automatic reconstruction of surfaces.

2 Overview of the J-linkage algorithm

In this section the J-linkage algorithm will be briefly overviewed. More details
can be found in [21].

The method is based on random sampling, like RANSAC. Each minimal
sample set (MSS) defines a tentative model. Imagine to build a N x M matrix
(Fig. 2) where entry (4, ) is 1 if point ¢ is closer to model j than a threshold e.
Each column of that matrix is the characteristic function of the consensus set of
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a model. Each row is the characteristic function of the preference set (PS) of a
given point, i.e., indicates which models a points has given consensus to. Points
belonging to the same structure will have similar PS, in other words, they will
cluster in the conceptual space {0,1}M.

CS of model j
Lo |1 | | oo
| [ I ) | 1o
o[ 1 | | | 1 oo
| 0 | | | 0 | |

PS ofpoine 1 —> NN AR

—|=|o]|-
—lo|-|e
o|-|-|o
—|=|-]e
o|-=|o|-
—lo|o|e
o|-|o|e

Fig. 1. An example of consensus/preference matrix. Columns are consensus sets (CS),
rows are preference sets (PS).

2.1 Random sampling

As in [24] it is assumed that the a-priori probability that two points belong
to the same structure is higher the smaller the distance between the points.
Hence minimal sample sets are constructed in a way that neighboring points are
selected with higher probability. If a point x; has already been selected, then x;
has the following probability of being drawn:

AQXP,M if x: 4 x;
P(xjlx;) = ¢ 2 7 L 7 (1)
0 if x5 =x;

where Z is a suitable normalization constant and o is chosen heuristically.

2.2 Agglomerative Clustering

Models are extracted by agglomerative clustering data points in the conceptual
space, where each point is represented by its PS. The distance between two
elements (point or cluster) is computed as the Jaccard distance between the
respective preference sets. The PS of a cluster is defined as the intersection of
the preference sets of its points. Given two sets A and B, the Jaccard distance
is
|AUB|— |AN B|

The Jaccard distance measures the degree of overlap of A and B and ranges
from 0 (A=B)to1l (ANB=0).

The algorithm proceeds by linking elements with distance smaller than 1 and
stops as soon as there are no such elements left. This can be performed efficiently
using an heap data structure. As a result, clusters have the following properties:
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— for each cluster there exists at least one model that is in the PS of all its
points;
— one model cannot be in the PS of all the points of two distinct clusters;

The final model parameters for each cluster of points is estimated by least squares
fitting.

3 Constraints integration

This paper is aimed at leveraging the J-linkage algorithm to fit planar patches to
a cloud of 3D point that are samples of surfaces in the observed scene. Extraction
of planar patches is not the same as fitting planes, because a patch is a region of
the plane, and the same plane may contain more patches (see Fig. 2). The planar
patch associated to a set of coplanar points is the convex hull of the projection
of the points onto the fitting plane. In order for a planar patch to represent an
actual surface, it must satisfy a number of constraints, beside coplanarity, that
will be described later. This section will concentrate on how these constraints
can be seamlessly integrated inside J-linkage.

Fig. 2. A single plane (yellow) contains several patches (blue and red).

J-linkage extracts models in an incremental way, by merging smaller struc-
tures at each step. In the case on planar patches, two patches can merge only if
the result is a set of coplanar points (to some extent). Coplanarity is the invari-
ant property, and any other constraint can be enforced as an invariant property,
so that two patches can be merged if and only if the resulting does not violate
the constraint.

More in detail, the constraints will be formulated and tested on triangles,
since any planar polygon can be triangulated. When two patches are being con-
sidered for possible merging, a new patch is computed as the convex hull of the
union of the points. By inductive hypothesis the two original patches satisfy the
constraints, whereas the new triangles that are created must be tested against
the constraints. If a single triangle fails the merging is rejected. A graphical
explanation of this incremental step is shown in the Fig. 3.
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Fig. 3. Incremental step. The constraints are assumed to be valid for each patch (top).
When two patches are merged (bottom) the constraints needs to be checked only for
the new triangles (yellow).

Three kind of constraints are enforced:

— Photo-Consistency Constraint: the projections of a triangle on the im-
ages where it is visible should be photo-consistent.

— Visibility Constraint: a triangle must not to occlude any visible point.

— Non Intersection Constraint: a triangle must not intersect any previously
defined surface.

3.1 Photo-Consistency Constraint

A patch in space is image-consistent if all its projections onto the images where
it is visible contain conjugate points. Image consistent patches are attached to
actual object surfaces in the scene (see Fig. 4). Image-consistency can be checked
through photo-consistency, the property that the projections of a patch are equal
up to a projective transformation and photometric nuances.

Let us first define a set of compatible images as the ones where the vertices
of a given triangle are visible. Among them, the one where the projected triangle
exhibits the maximum area is chosen as the reference. All the triangles in the
compatible images are projectively warped onto the triangle in the reference
image and compared to it through normalized cross-correlation (NCC). The
final photo-consistency of the 3D triangle is obtained as the average of the NCC
scores of its projections (the value ranges from —1 to 1), and its is considered
photo-consistent if this value is below a fixed threshold.

3.2 Visibility Constraint

A Structure and Motion pipeline generally outputs the wvisibility of the points,
i.e. the cameras from which a point is visible. This information can be exploited
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Fig. 4. The green triangle is image-consistent, the red ones are not.

to formulate a simple yet powerful constraint: a surface patch must not occlude
a 3D point from the view where it is visible.

Mathematically, this translates into a segment-triangle intersection test. The
segment ranges from the optical center of the view to the 3D point that is being
examined. The intersection test can be performed efficiently at constant time.
However, in the worst case - i.e. when no intersections with the current triangle
were found - one need to run the test for each view and for each visible point
from that view. In order to speed up the process, we precompute the axis aligned
bounding box (AABB) for each view that contains every visible points and the
optical center. We also compute and update an AABB that contains every point
of a patch. A prior intersection test is made between the AABB of the patch and
the AABB of a view: if no intersection occurs we are assured that no triangle
of the patch will intersect a segment in that view. The intersection test between
two AABB also takes constant time.

3.3 Non Intersection Constraint

During the patch growing, it may happen that patches end up intersecting each
other in their interior. This is clearly an unwanted situation, as the customary
assumption holds that surfaces are manifolds. To avoid this, we embed the non
intersection constraint directly in the J-linkage.

When creating a new patch we check that it is not intersecting any previously
defined patch. This translates into a triangle-triangle intersection test among
all the triangles of two patches. The triangle-triangle intersection test can be
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computed in constant time. However, when dealing with surfaces composed by
many triangles, it may require many checks. We speed up the process taking
advantage of the AABB computed for every patch.

4 Filling the gaps

During the agglomerative clustering of J-linkage, it is sufficient that a single
triangle does not satisfy a constraint to discard the entire merge, because it
is inductively assumed that patches are convex. As a result, triangles that ful-
fill the constraints are discarded, thereby leaving gaps in the surfaces between
neighbouring patches (Fig. 5). This issue is solved a-posteriori, by a gap-filing
heuristics that relaxes the convexity assumption.

B B s o s e e e eeenseesenesaneees,

e 4

Fig. 5. Green regions are gaps between adjacent patches that are to be filled. Blue
regions are gaps between orthogonal patches.

Two patches are said to be adjacent if at least one of the points of one patch
contains a point of the other patch in his k-neighborhood. We can distinguish
two cases of adjacent patches: coplanar, when the angle between the respective
support planes is less than 30 degrees, and orthogonal, when the angle lays
between 60 and 120 degrees. A graph of connection between the patches can thus
be inferred. First, we fill the gaps between orthogonal patches. By construction,
a point can belong to only one patch. We identify the points compatible, by
means of the inlier threshold, to both the orthogonal patches. The points are
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then added to both patches if the constraints defined before are valid for the
newly computed patches.

Finally, we fill the gaps between coplanar patches by testing each one con-
necting triangles between the patches using the same methods and constraints
defined before. When two patches have been processed they are treated as a
single entity in this iterative procedure.

5 Results

We tested our method on real data coming from a completely automatic SaM
pipeline. The first test compares our approach to [13] and [21] on a simple object.
The second set of experiments demonstrate how our method can cope with real-
world examples.

5.1 Comparative test

In order to be able to tun a comparative test with [13] we had to choose a setup
where all the points projects in all the views. To this end we constructed the
“Duplo” object visible in Fig. 6 and manually selected 72 keypoints correspon-
dences in 5 views. The 3D structure have been recovered by a SaM pipeline. We
also considered for comparison the original J-Linkage without additional con-
straints and gap filling procedures. The results are shown in figure Fig. 6. It can
be noticed how [13] fails to extract a consistent triangulation. The reason is that
the simple subject of the scene is non-convex, and photo-consistency alone seems
to be sufficiently powerful in this case. J-Linkage without constraints is able to
correctly detect the supporting planes; yet, the final patches defined with a De-
launay triangulation contains gaps and fails to delineate the underlying object.
Our approach obtains best results, even if some triangles are missing.

5.2 Real world examples

Three tests were performed on publicly available data' produced by the Struc-
ture and Motion pipeline described in [20]. Results show the fitting planes to the
cloud of points, and the associated patches, projected over the images.

The first set - “Dante” - is composed of 39 images and 2971 points. The
results are shown in Fig. 7. In the second test the subject is a church. The
images involved are 54 and the cloud of points is composed of 11094 points.
The results are shown in Fig. 8. The last test is computationally more challeng-
ing. The subject is “Piazza Bra” (Verona). The images are 380 and the points
52024 (obtained by subsampling the original 104047 points). The final extracted
patches with our approach, visible in Fig. 9, are 302. It can be appraised from
the examples shown as the patches are always covering planar regions of actual
surfaces, whereas planes found by J-linkage not always correspond to a physical

! http://profs.sci.univr.it /" fusiello/demo/samantha/
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(a) Triangulation produced (b) Triangulation produced (c) Final surface produced
by [13]. by [13]. by [13].

(d) Triangulation produced (e) Triangulation produced (f) Final surface produced
by J-Linkage. by J-Linkage. by J-Linkage.

(g) Triangulation produced (h) Triangulation produced (i) Final surface produced
by our approach. by our approach. by our approach.

Fig. 6. “Duplo” example. The top row depicts the results produced by [13], the middle
row the results produced by J-linkage followed by a Delaunay triangulation and the
bottom row shows the results of our approach.



10 R. Toldo, A. Fusiello

plane (see for example the triangle in the sky of Fig. 8(a)). Please note that the
boundaries of the patches seldom do not coincide with the actual edges of the
facades, because points were detected by SIFT, which tends to keep away from
corners. However, these planar patches must be considered only as a initial step
toward the extraction of an high-level model. Several heuristics can be deployed
to expand the regions up to their natural boundaries.

The code is entirely written in C++ and it is written upon J-Linkage 2.
The computing time on an entry level PC with a single core 2.4Ghz cpu, is
about , 20 seconds for the “Duplo” example, 15 minutes for “Dante”, 1 hour for
“Pozzoveggiani” and 14 hours for “Piazza Bra”.

(a) J-linkage. (b) J-linkage. (¢) Our approach.  (d) Our approach.

(e) J-linkage. (f) Our approach.

Fig. 7. “Dante” dataset. The top row (a-c) depicts the patches superimposed onto the
images. The bottom row (e,f) shows the supporting planes from an azimuth view.

For visualization purposes only we produced a textured version of our results
shown in Fig. 10. The procedure we followed is straightforward: For every patch
we have defined an alpha blended textured quad. The quad coordinates are

2 http://profs.sci.univr.it/fusiello - http://www.toldo.info/roberto
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(a) J-linkage. (b) J-linkage. (¢) Our approach. (d) Our approach.

. N
N

(e) J-linkage. (f) Our approach.

Fig. 8. “Pozzoveggiani” dataset. The top row (a-c) depicts the patches superimposed
onto the images. The bottom row (e,f) shows the supporting planes from an azimuth
view.
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(c) Our approach. (d) Our approach.

(e) J-linkage. (f) Our approach.

Fig. 9. “Piazza Bra” dataset. The top row (a-c) depicts the patches superimposed onto
the images. The bottom row (e,f) shows the supporting planes from an azimuth view.

settled in order to include all the points of the patch projected on the supporting
plane.

(a) “Dante”. (b) “Pozzoveggiani”. (c) “Piazza Bra”.

Fig. 10. Textured examples.

6 Discussion

In this work we proposed a novel method for extracting planar photo-consistent
patches that can cope with fairly large and noisy datasets coming from a standard
SaM pipeline.
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The spatial information has been seamlessly combined with the information

coming from the images and the SaM pipeline. The final result is a very compact
and stable intermediate representation, and can be regarded as a starting point
for a complete automatic reconstruction of scene surfaces. Future work will aim
at bridging further the semantic gap.
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