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Abstract. As it has been noted several times in literature, the difficult
part of autocalibration efforts resides in the structural non-linearity of
the search for the plane at infinity. In this paper we present a robust and
versatile autocalibration method based on the enumeration of the inher-
ently bounded space of the intrinsic parameters of two cameras in order
to find the collineation of space that upgrades a given projective recon-
struction to Euclidean. Each sample of the search space (which reduces to
a finite subset of R2 under mild assumptions) defines a consistent plane
at infinity. This in turn produces a tentative, approximate Euclidean
upgrade of the whole reconstruction which is then scored according to
the expected intrinsic parameters of a Euclidean camera. This approach
has been compared with several other algorithms on both synthetic and
concrete cases, obtaining favourable results.
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1 Introduction

Autocalibration (a.k.a. self-calibration) has generated a lot of theoretical interest
since its introduction in the seminal paper by Maybank and Faugeras [1]. The
attention spawned by the problem however is inherently practical, since it elim-
inates the need for off-line calibration and enables the use of content acquired
in an uncontrolled environment. Modern computer vision has partly sidestepped
the issue using ancillary information, such as EXIF tags embedded in some im-
age formats. Such data unfortunately is not always guaranteed to be present
or consistent with its medium, and does not extinguish the need for reliable
autocalibration procedures.

Lots of published methods rely on equations involving the dual image of the
absolute quadric (DIAQ), introduced by Triggs in [2]. Earliest approaches for
variable focal lengths were based on linear, weighted systems [3, 4], solved directly
or iteratively [5]. Their reliability were improved by more recent algorithms, such
as [6], solving super-linear systems while forcing directly the positive definiteness
of the DIAQ. Such enhancements were necessary because of the structural non-
linearity of the task: for this reason the problem has also been approached using
branch and bound schemes, based either on the Kruppa equations [7], dual linear
autocalibration [8] or the modulus constraint [9].
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The algorithm described in [10] shares with the branch and bound approaches
the guarantee of convergence; the non-linear part, corresponding to the localiza-
tion of the plane at infinity, is solved exhaustively after having used the cheiral
inequalities to compute explicit bounds on its location.

The technique we are about to describe is closely related to the latter: first,
we derive the location of the plane at infinity given two perspective projection
matrices and a guess on their intrinsic parameters, and subsequently use this
procedure to iterate through the space of camera intrinsic parameters looking for
the best collineation that makes the reconstruction Euclidean. The search space
is inherently bounded by the finiteness of the acquisition devices; each sample
and the corresponding plane at infinity define a collineation of space whose
likelihood can be computed evaluating skew, aspect ratio, principal point and
related constraints for each transformed camera. The best solution is eventually
refined via non-linear least squares.

Such approach has several advantages: it’s fast, easy to implement and reli-
able, since a reasonable solution can always be found in non-degenerate config-
urations, even in extreme cases such as when autocalibrating just two cameras.

2 Method

As customary, we assume being given a projective reconstruction {Pi;Xj} i =
i . . . n; j = 1 . . .m. The purpose of autocalibration is therefore to find the colli-
neation of space H such that

{
PiH;H−1Xj

}
is a Euclidean reconstruction, i.e.,

it differs from the true one by a similarity.
The set of camera matrices can always be transformed to the following canon-

ical form by post-multiplying each Pi by the matrix [P1; 0 0 0 1]
−1

:

P1 = [I | 0] Pi = [Qi | qi] . (1)

In this situation, the collineation of space H performing the Euclidean upgrade
has the following structure:

H =

[
K1 0
v> λ

]
(2)

where K1 is the calibration matrix of the first camera, v a vector which deter-
mines the location of the plane at infinity and λ a scalar fixating the overall
scale of the reconstruction.

The technique we are about to describe is based on two stages:

1. Given a guess on the intrinsic parameters of two cameras compute a consis-
tent upgrading collineation. This yields an estimate of all cameras but the
first.

2. Score the intrinsic parameters of these n−1 cameras based on the likelihood
of skew, aspect ratio and principal point.

The space of the intrinsic parameters of the two cameras is enumerated and the
best solution is eventually refined via non-linear least squares.
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2.1 Estimation of the plane at infinity

In this section we will show how to compute the plane at infinity given two
perspective projection matrices and their intrinsic parameters. This procedure
is, in a sense, the dual of the second step of the stratified autocalibration [11]
in which the intrinsic parameters are recovered given the plane at infinity. This
problem has been dealt with for the first time in [12] where it has been turned
into a linear least squares system. We shall derive here a closed form solution.

Given two projective cameras

P1 = [I | 0] P2 = [Q2 | q2] (3)

and their intrinsic parameters matrices K1 and K2 respectively, the upgraded,
Euclidean versions of the perspective projection matrices are equal to:

PE

1 = [K1 | 0] ' P1H (4)

PE

2 = K2 [R2|t2] ' P2H =
[
Q2K1 + q2v

>|λq2

]
(5)

with the symbol ' meaning “equality up to a scale”. The rotation R2 can there-
fore be equated to the following:

R2 ' K−1

2

(
Q2K1 + q2v

>) = K−1

2 Q2K1 + t2v
> (6)

in which it is expressed as the sum of a 3 by 3 matrix and a rank 1 term.
Using the constraints on orthogonality between rows or columns of a rotation

matrix, one can solve for v finding the value that makes the right hand side of (6)
equal up to a scale to a rotation. The solution can be obtained in closed form by
noting that there always exists a rotation matrix R∗ such as: R∗t2 = [‖t2‖ 0 0]

>
.

Left multiplying it to (6) yields:

R∗R2 '
W︷ ︸︸ ︷

R∗ K−1

2 Q2K1 + [‖t2‖ 0 0]
>

v> (7)

Calling the right hand side first term W and its rows w>i , we arrive at the
following:

R∗ R2 =

w1
> + ‖t2‖v>

w2
>

w3
>

 /‖w3‖ (8)

in which the last two rows are independent from the value of v and the correct
scale has been recovered normalizing to unit norm each side of the equation.

Since the rows of the right hand side form a orthonormal basis, we can recover
the first one taking the cross product of the other two. Vector v is therefore equal
to:

v = (w2 ×w3/‖w3‖ −w1) /‖t2‖ (9)

The upgrading collineation H can be computed using (2); the term λ can be
arbitrarily chosen, as it will just influence the overall scale of the reconstruction.
Its sign however will affect the cheirality of the reconstruction, so it must be
chosen positive if cheirality was previously adjusted.
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2.2 Estimation of the intrinsic parameters

In the preceding section we showed how to compute the location of the plane at
infinity given the calibration parameters of two of the cameras of the projective
reconstruction to upgrade. When these calibration parameters are known only
approximately, we are not guaranteed anymore that the right hand side of (8)
will be a rotation matrix because w2 and w3 will not be mutually orthogonal, nor
have equal, unit norm. However, (9) will still yield the value of v that makes the
right hand side of (8) closest to a rotation in Frobenius norm. Hence, the derived
upgrading collineation H will produce an approximate Euclidean reconstruction.

The autocalibration algorithm we propose consists in enumerating through
all possible matrices of intrinsics of two cameras K1 and K2 checking whether the
entire resulting reconstruction has the desired properties in terms of K2 . . .Kn.
The process is well-defined, since the search space is naturally bounded by the
finiteness of the acquisition devices.

In order to sample the space of calibration parameters we can safely assume,
as customary, null skew and unit aspect ratio: this leaves the focal length and the
principal point location as free parameters. However, as expected, the value of
the plane at infinity is in general far more sensitive to errors in the estimation of
focal length values rather than the image center. Thus, we can iterate just over
focal lengths f1 and f2 assuming the principal point to be centered on the image;
the error introduced with this approximation is normally well-within the radius
of convergence of the subsequent non-linear optimization. The search space is
therefore reduced to a bounded region of R2.

To score each sampled point (f1, f2), we consider the aspect ratio, skew and
principal point location of the resulting transformed camera matrices and aggre-
gate their respective value into a single cost function:

{f1, f2} = arg min
f1,f2

n∑
`=2

C2(K`) (10)

where K` is the intrinsic parameters matrix of the `-th camera after the Eu-
clidean upgrade determined by (f1, f2), and

C(K) =

skew︷ ︸︸ ︷
wsk|k1,2|+

aspect ratio︷ ︸︸ ︷
war|k1,1 − k2,2|+

principal point︷ ︸︸ ︷
wuo |k1,3|+ wvo |k2,3| (11)

where ki,j denotes the entry (i, j) of K and w are suitable weights, computed as
in [4]. The first term of (11) takes into account the skew, which is expected to be
0, the second one penalizes cameras with aspect ratio different from 1 and the
last two weigh down cameras where the principal point is away from the image
centre. If a sufficient (according to the autocalibration “counting argument” [13])
number of cameras is available, the terms related to the principal point can be
dropped, thereby leaving it free to move.

As an example, Fig. 1 shows the aggregated cost for a ten camera synthetic
dataset, obtained with the aforementioned method. More in detail, Fig. 2 depicts
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Fig. 1. A ten camera synthetic reconstruction and the resulting aggregated cost func-
tion. An asterisk marks the correct solution.

the profiles of each of the term of (11) for two sample cameras. As it can be seen,
the cost profiles have very clear valleys and collectively concur to identify the
correct solution, displayed in the graphs as an asterisk.

Even the aggregate cost from just a single camera can still identify a unam-
biguous minima. This situation is equivalent to the task of identifying the focal
lengths of two cameras from their fundamental matrix. This problem, studied
extensively in [12, 14, 15], was demonstrated to be essentially ill-conditioned. Our
approach is stabler since it structurally requires the solution to be in a valid re-
gion of the parameter space. The solution clearly improves as more and more
cameras are added.
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Fig. 2. Cost functions. The two rows refer to cost functions relative to different
cameras of a same dataset. From left to right, are shown the profiles of aspect ratio,
skew, principal point u0 and v0 coordinates and their aggregated value as function of
the focal lengths of the reference cameras. Cooler colors correspond to lower values of
the cost function. A asterisk marks the correct solution.
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Finally, the solution selected is refined by non-linear minimization; since it is
usually very close to a minima, just a few iterations of a Levemberg-Marquardt
solver are necessary for convergence. The employed cost function is the same
reported in (10).

Algorithm 1: Autocalibration pseudo-code

input : a set of PPMs P and their viewports V
output: their upgraded, euclidean counterparts

1 foreach P do P ← V −1P/‖P3,1:3‖ /* normalization */

2 foreach K1,K2 do /* iterate over focal pairs */

3 compute Π∞
4 build H from (2)
5 foreach P do /* compute cost profiles */

6 PE ← PH
7 K ← intrinsics of PE

8 compute C(K) from (11)

9 end

10 end

11 aggregate cost and select minimum
12 refine non-linearly

13 foreach P do P ← V PH /* de-normalization, upgrade */

The entire procedure is presented as pseudo-code in Algorithm 1. With the
perspective projection matrices the code presented takes as input also the view-
port matrices of the cameras, defined as:

V =
1

2

√w2 + h2 0 w

0
√
w2 + h2 h

0 0 2

 (12)

where w and h are respectively the width and height of each image. This piece
of data is used inside the algorithm to normalize camera matrices. While this is
not mandatory, we recommend it to improve the numerical conditioning of the
algorithm.

The algorithm shows remarkable convergence properties; it has been observed
to fail only when the sampling of the focal space was not sufficiently dense (in
practice, less than twenty focals in each direction), and therefore all the tested
infinity planes were not close enough to the correct one. Such problems are easy
to detect, since they usually bring the final, refined solution outside the legal
search space.
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3 Experimental evaluation

We report here several tests on synthetic and concrete datasets. For the experi-
ments, unless otherwise specified, we sampled the focal space using 50 logarith-
mically spaced divisions in the range [0.3 . . . 3]. Please note that, being cameras
normalized, a focal length of 1 unit correspond to the length of the image diag-
onal in pixels.

3.1 Synthetic tests

For this series of tests, we generated several synthetic reconstructions with
twenty cameras looking at the unit sphere. Each camera was chosen having dif-
ferent parameters except for skew, which was set equal to zero for all perspective
projection matrices. The other characteristics were selected by a random process
inside the valid parameter space. The virtual viewport size for each camera was
[1024, 768] units, leading to focal lengths and principal points coordinates of com-
parable magnitude. We built projectively equivalent reconstructions multiplying
the Euclidean frame for a random collineation.

Sampling rate. The top two graphs of Fig. 3 shows the relationship between
the number divisions used in the focal search phase and the error of the resulting
autocalibration for focal length and skew respectively, averaged over 100 trials.
The focal length error has the form:

ε =
1

n

n∑
`=1

∆f (13)

where ∆f is defined in equation 14. The error function used for skew has a
similar formulation.

For too low rates of sampling, corresponding to the left side of the diagram,
the chance of picking a solution close to the correct one is very low. Most of the
time the subsequent minimization outputs parameters outside the valid range,
generally converging towards the trivial null focal solution. As soon as the focal
lengths are sampled with a sufficient degree of accuracy, the residual of the recov-
ered solution becomes and stay low. When this happens, the proposed solution
is usually very near to the correct one, and the following non-linear minimization
has no problem to converge to the correct, best calibration parameters.

The total elapsed time follows a quadratic law, as expected. At the far right
of the diagram, corresponding to fifty divisions for each focal, the total time
spent (search plus refinement) is roughly 3 seconds, implemented as a MATLAB
script. The omitted graphs for aspect ratio and principal point location show
equivalent behaviour.

Number of cameras. In this section we verify the stability of the algorithm
as the number of cameras varies from two to twenty. For uniformity all reported
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Fig. 3. Synthetic tests. Median autocalibration error ε as a function of: the number
of sampling divisions (top), the number of cameras (middle), the standard deviation
of noise for both focal length (left) and skew (right).

results were obtained with the full cost function described in (11), even for exper-
iments which, having a sufficient number of cameras, could use fewer constraints.
Results reported in the middle graphs of Fig. 3 are averaged over 100 runs of
the algorithm. As shown, the algorithm is able to converge to the correct cal-
ibration parameters for all but the two-cameras setup, in which it trades focal
length accuracy for a lower magnitude of skew. The resulting solution is still very
close to the ground truth. From three cameras onwards the method successfully
disambiguates the uncertainty.

Noise resilience. Our final synthetic test verifies the resilience to noise; several
reconstructions were built from the ground truth perturbing the point projec-
tions with Gaussian noise and recovering each camera by DLT based resection
[16]. The bottom plots of Fig. 3 shows the dependency of the error ε on the
standard deviation of the added noise. Again, the results were averaged over 100
runs of the algorithm. As it can be seen the method is fairly stable, degrading
quite gracefully as the standard deviation of noise increases.

Again, omitted graphs for aspect ratio and principal point location behave
similarly.

3.2 Comparative tests

We compare our approach to a classical, linear technique based on the DIAQ
constraints and a recent stratified method based on least squares minimization
of the modulus constraint embedded in a branch and bound framework.



Practical Autocalibration 9

The first algorithm is our implementation of the iterative dual linear auto-
calibration algorithm described in [5], modified to use the weights of [4] and to
enforce at every iteration the positive (negative) semi-definitess of the DIAQ. As
explained in [17], the closest semi-definite approximation of a matrix in Frobenius
norm can be obtained, assuming a single offending value, zeroing the eigenvalue
with sign different from the others. This can be easily done during the rank
3 approximation step of the original algorithm. Several informal tests, not re-
ported here, demonstrated this algorithm to have better convergence properties
of both its parents [5, 4]. We report also the results obtained by this method
when coupled with the preliminary quasi-affine upgrade step detailed in [18].

The second method we compare to is the algorithm described in [9], a strat-
ified autocalibration approach based on a branch and bound framework using
convex relaxations minimizations. We tested the implementation of the authors
(available from http://vision.ucsd.edu/stratum/), coupled with the SeDuMi [19]
library version 1.1R3 which was used in the original article (the latest version
1.21 is not compatible with the code) under MATLAB R2009a.

The synthetic test dataset, the same used in [9], is composed of twenty pro-
jective cameras and points, with known ground truth and Gaussian noise of
standard deviation σ added to image coordinates. We report results obtained
by our and the aforementioned methods over a hundred trials in the case of
σ = 0.1% using the same metric defined in the original article:

∆f =

∣∣∣∣ fx + fy
fGT
x + fGT

y

− 1

∣∣∣∣ (14)

where fx and fy are the focal entries of the calibration matrix and fGT
x and fGT

y

the respective ground truth values. Results are reported in Tab. 1. The linear
algorithm, which we pick as baseline case, achieves good results in terms of ∆f
but shows poor convergence properties, especially for lower number of cameras.
Similar numerical results are unsurprisingly obtained coupling the method with
the quasi-affine upgrade of [18], with slightly higher percentages of success. Both
the algorithm described in [9] and our method never failed on this dataset, with
a slight numerical advantage of our proposal.

3.3 Real world example

We finally tested our algorithm on two real reconstructions, Pozzoveggiani and
Duomo, composed respectively of 52 and 333 cameras (data available from
http://profs.sci.univr.it/˜fusiello/demo/samantha/). These reconstructions, re-
fined through bundle adjustment, have relatively low noise levels and were used
as ground truth for the subsequent tests. Again, a total of a hundred trials were
conducted for each set, multiplying the projective reconstructions for a random
collineation while discarding the ones with very low condition number. In our
method we also picked at random the reference views to be used for the estima-
tion of the plane at infinity.

Results are reported in Tab. 2. With respect to the synthetic case, we can
note a substantial decrease of the success rate of both linear algorithms which
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Table 1. Comparison of results obtained on the dataset from [6].

Algorithm Cameras ∆f Success rate Time

5 5.4012e-2 57% 0.39
Dual linear 10 2.6522e-3 84 % 0.45

20 1.5433e-3 90 % 0.78

5 2.7420e-2 63 % 0.41
DL + QA upgrade 10 1.8943e-3 83 % 0.43

20 1.1295e-3 92 % 0.68

5 9.9611e-3 100 % 584.12
Chandraker et al [9] 10 4.7925e-3 100 % 560.56

20 1.0461e-3 100 % 602.32

5 2.7546e-3 100 % 0.35
Our method 10 1.3005e-3 100 % 0.72

20 8.2266e-4 100 % 1.62

Table 2. Comparison of results obtained on real reconstructions.

Algorithm Pozzoveggiani Duomo
∆f Succ. rate ∆f Succ. rate

Dual linear 3.0815e-2 19 % 9.3255e-2 8 %

DL + QA upgrade 8.9261e-3 22 % 7.6403e-2 13 %

Our method 3.9733e-3 100 % 2.9293e-3 100 %

was instead expected to increase with the number of cameras. An informal audit
of the code showed the effect to be caused both by noise and by the larger
number of iterations required for convergence, which in turn increase the chance
of encountering a failure case.

Algorithm [9] is missing from Tab. 2 because we were not able to obtain
valid solutions on these data, even by varying the tolerance ε and the maximal
number of iterations for both the affine and metric upgrade steps.

Our approach achieves on both datasets flawless success rate. Instances of
the upgraded reconstructions can be qualitatively evaluated in Fig. 4.

4 Conclusions

We presented a practical autocalibration algorithm showing results comparable
to the state of the art. Our approach is fast, easy to implement and shows
remarkable convergence properties.

Future research will be aimed at developing sub-linear search strategies in
the space of calibration parameters, which is made possible by the structure of
the cost profiles.
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Fig. 4. Pozzoveggiani (left) and Duomo (right) reconstruction after the upgrade found
by our method.
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