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Abstract. This paper deals with the three-dimensional reconstruction
of an underwater environment from multiple acoustic range views ac-
quired by a remotely operated vehicle. The problem is made challenging
by the very noisy nature of the data, the low resolution and the narrow
field of view of the sensor. Our contribution is twofold: first, we introduce
a statistically sound thresholding (the X84 rejection rule) to improve ICP
robustness against noise and non-overlapping data. Second, we propose a
new global registration technique to distribute registration errors evenly
across all views. Our approach does not use data points after the first
pairwise registration, for it works only on the transformations. There-
fore, it is fast and occupies only a small memory. Experimental results
suggest that ICP with X84 performs better than Zhang’s ICP, and that
the global registration technique is effective in reducing and equalizing
the error.

1 Introduction

In this paper we address the problem of registration of many three-dimensional
(3D) point sets, coming from an acoustic range sensor. Typically, the term regis-
tration is used for the geometric alignment of a pair or more 3D data point sets,
while the term fusion indicates the recovery of a single surface representation
from registered 3D data sets.

The registration of two point sets is usually addressed by means of the It-
erated Closest Point (ICP) algorithm [2,5]. ICP is based on the search of pairs
of nearest points in the two sets, and estimating the rigid transformation which
align them. Then, the rigid transformation is applied to the points of one set,
and the procedure is iterated until convergence. ICP assumes that one point
set is a subset of the other. When this assumption is not verified, false matches
are created, that negatively influence the convergence of ICP to the solution.
In order to overcome this problem, many variants to ICP have been proposed,
including the use of closest points in the direction of the local surface normal [5],
the use of thresholds to limit the maximum distance between points [25], reject-
ing matching on the surface boundaries [23], Least Median of Squares estimation
[22].

In this paper we propose to use the X84 outlier rejection rule [10] to discard
false correspondences on the basis of their distance. This is an improvement over
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[25], because the threshold is set automatically, and a larger basin of attraction
is achieved.

A widely used approach to the registration of many views is to sequentially
apply pairwise registration until all the views are combined. Chen and Medioni
[5] proposed an incremental approach in which two views are registered and
merged building a metaview. The next view is then registered and merged with
the metaview and the process is repeated for all the views. This approach was
taken also by [21] and [12]; the latter proposed to incrementally build a surface
model, onto which new views can be registered and already registered views can
be adjusted. In [4], couples of images are incrementally registered together with a
final registration between the first and last view, by using the inverse calibration
procedure of the range-finder to relate a point in the 3D space corresponding to
a point in the range image.

These schemes do not use all the available information, and do not com-
pute the optimal solution, because of the accumulation of registration errors,
as pointed out by [19] and [1]. Multiview registration could exploit information
present in the unused overlapping view pairs, distributing the registration error
evenly between every pairwise registration. Bergevin et al. [1] registered multiple
range images simultaneously, using an extended ICP algorithm. They converted
the sequential registration relationship into a star-shaped relationship, and then
imposed the well-balanced network constraint. A network of range views is well-
balanced when the registration error is similar for all transformation matrices,
and the transformation matrix between any two views is uniquely defined re-
gardless of the path chosen to link the views. Pulli [18] proposed to use the
pairwise alignments as constraints that the multiview step enforces while evenly
diffusing the pairwise registration errors. In such a way, computational time is
reduced as well as memory storage. He introduces the concept of virtual mate
to enforce the pairwise alignments as constraints.

Some works focus on computing the global registration given the correspon-
dences among many views (this is called the N-view point set registration prob-
lem). To this end, in [20] and [8], a force-based optimisation approach is pro-
posed. Assuming the points’ correspondences among the data sets are known,
interconnections using springs between corresponding points is simulated. Pen-
nec [17] introduces an iterative algorithm based on the concept of mean shape.
Benjemaa and Shmitt [19] use a quaternion approach similar to [3]. In [9] a sta-
tistical model is introduced, and the problem is solved using the EM algorithm.
In a recent work, Williams and Bennamoun [24] proposed a new technique for
the simultaneous registration of multiple point sets, in which rotations are first
computed iteratively, and then translations are obtained as the solution of a
linear system. The method have been integrated in a generalized multiview ICP.
Three of these techniques, namely [20],[17], and [19], have been compared in [6],
and the result is that, not considering speed, Pennec’s method is the best one,
whereas [19] is the fastest.

All the multi-alignment methods need to keep data of all – or at least some –
views in memory at the same time, reducing drastically performance, especially
when aligning large data set. Our global registration approach differs from all the
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others because we enforce the constraints arising from the pairwise registration
directly on the transformation matrices, without the need to process data points
again, after the initial pairwise registration between all the overlapping views.
The idea comes from [7] where it was applied to the construction of planar
mosaics from images. Here we propose to extend the technique to the registration
of multiple 3D point sets. In our case we end up with a non-linear system of
equations, because of the parametrization of the rotations. Following [16,3,19]
we used quaternions to represent rotations, because of their well-known good
properties [15].

In the field of 3D registration, the closest work to our approach is [18], because
both are based on the simultaneous satisfaction of constraints provided by the
pairwise registration, and both do not rely on the solution of the N-view point
set registration problem. Our work differs in the formulation of the constraints
(which do not use data points) and because we cope with overlapping between
any number of sets, not just pairs.

Our final goal is the reconstruction of a scene from a sequence of cluttered,
noisy, and low resolution 3D data, aimed at building a 3D model. Such model
is then displayed to a human operator of an underwater remotely operated ve-
hicle (ROV), in order to facilitate the navigation and the understanding of the
surrounding environment. Our data come from a high frequency acoustic cam-
era, called Echoscope [11] with a typical resolution of 3 cm. Moreover, speckle
noise affects data due to the coherent nature of the acoustic signals. With such
operative conditions, the registration problem is much more demanding, and,
although a large literature addresses this issue, no work dealt with this partic-
ular kind of 3D data. Further, due to lack of tight hypotheses about the sensor
motion and the direct manipulation of the transformation matrices instead of
3D points, our approach results particularly suitable to real-time applications.

The rest of the paper is structured as follows. In Section 2, the pairwise
registration stage is described outlining the X84 outlier rejections rule. Section
3 introduces the multiview registration focusing on the global transformation
adjustment. Results are shown in Section 4 for both synthetic and real images
and conclusions are drawn in Section 5.

2 Robust Pairwise Registration

Pairwise registration was addressed using the classical Iterated Closest Point
(ICP) algorithm [2] to which we added an outlier rejection rule (X84) [10] in
order to cater for non-overlapping areas between views.

2.1 Two View Point Set Registration

Let us suppose that we have two sets of 3-D points which correspond to a single
shape but are expressed in different reference frames. We will call one of these
sets the model set X, and the other the data set Y. Assuming that for each point
in the data set the corresponding point in the model set is known, the point set
registration problem consist in finding a 3-D transformation which, when applied
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to the data set Y, minimizes the distance between the two point sets. The goal
of this problem can be stated more formally as follows:

min
R,t

N∑
i=1

‖xi − (Ryi + t)‖2, (1)

where R is a 3 × 3 rotation matrix, t is a 3 × 1 translation vector, and the
subscript i refers to corresponding elements of the sets X and Y. Efficient, non-
iterative solutions to this problem were compared in [14], and the one based
on Singular Value Decomposition (SVD) was found to be the best, in terms of
accuracy and stability.

2.2 Iterated Closest Point

In general, when point correspondences are unknown, the Iterated Closest Point
(ICP) algorithm may be used. For each point yi from the set Y, there exists at
least one point on the surface of X which is closer to yi than all other points in
X. This is the closest point, xi. The basic idea behind the ICP algorithm is that,
under certain conditions, the point correspondence provided by sets of closest
points is a reasonable approximation to the true point correspondence. The ICP
algorithm can be summarized:

1. For each point in Y, compute the closest point in X;
2. With the correspondence from step 1, compute the incremental transforma-

tion (R, t);
3. Apply the incremental transformation from step 2 to the data Y;
4. If the change in total mean square error is less than a threshold, terminate.

Else goto step 1.

Besl and McKay [2] proved that this algorithm is guaranteed to converge
monotonically to a local minimum of the Mean Square Error (MSE).

ICP can give very accurate results when a set is a subset of the other, but
results deteriorate with outliers, created by non-overlapping areas between the
two sets. In this case, the overlapping surface portions must start very close to
each other to ensure convergence, making the initial position a critical parameter.

Modifications to the original ICP have been proposed to achieve accurate
registration of partially overlapping point sets [25,23,22]. We implemented a
variation similar to the one proposed by Zhang [25], using robust statistics to
limit the maximum allowable distance between closest points.

2.3 Robust Outlier Rejection

As pointed out by Zhang, the distribution of the residuals for two fully over-
lapping sets approximates a Gaussian, when the registration is good. The non-
overlapped points skew this distribution: they are outliers. Therefore, good cor-
respondences can be discriminated by using an outlier rejection rule on the
distribution of closest point distances.
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To do this, we employ a simple but effective rejection rule, X84 [10], which
use robust estimates for location and scale of a corrupted Gaussian distribution
to set a rejection threshold. The median is a robust location estimator, and the
Median Absolute Deviation (MAD), defined as

MAD = med
i

{|εi − med
j

εj |} (2)

is a robust estimator of the scale (i.e., the spread of the distribution). It can
be seen that, for symmetric (and moderately skewed) distributions, the MAD
coincides with the interquartile range:

MAD =
ξ3/4 − ξ1/4

2
, (3)

where ξq is the qth quantile of the distribution (for example, the median is ξ1/2).
For normal distributions we infer the standard deviation from

MAD = Φ−1(3/4)σ ≈ 0.6745σ. (4)

The X84 rule prescribes to reject values that are more than k Median Abso-
lute Deviations away from the median. A value of k=5.2, under the hypothesis
of Gaussian distribution, is adequate in practice (as reported in [10]), since it
corresponds to about 3.5 standard deviations, and the range [µ − 3.5σ, µ+3.5σ]
contains more than the 99.9% of a Gaussian distribution. The rejection rule
X84 has a breakdown point of 50%: any majority of the data can overrule any
minority.

3 Multiview Registration

We now turn our attention to the simultaneous registration of several point sets.

3.1 Chaining Pairwise Transformations

Assume that there are M overlapping point sets (or views) V 1 . . . V M , each taken
from a different viewpoint. The objective is to find the best rigid transformations
G1 . . .GM to apply to each set, bringing them a common reference frame where
they are seamless aligned.

Let Gij be the rigid transformation matrix (in homogeneous coordinates)
that registers view j onto view i, i.e.,

V i = GijV j (5)

where the equality holds only for the overlapping portions of the two points sets
V i and GijV j .

If we choose (arbitrarily) view k as the reference one, then the unknown rigid
transformation G1 . . .GM are respectively Gk,1 . . .Gk,M . As customary, we will
take k = 1.
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These rigid transformations are not independent each other, being linked by
the composition relationship:

Gk,j = Gk,iGi,j . (6)

We can therefore estimate the alignment Gj of image V j on the reference
view (defined by the image V 1), by first registering V j onto any view V i and
then using Gi to map the result into the space of V 1

Gj = GiGi,j (7)

This relationship, can be used to compute Gi when all the matrices
Gi−1,i . . .G1,2 are known, by simply chaining them

Gi =
i∏

j=2

Gj−1,j (8)

The global registration matrix Gi will map V i into the space of V 1 (the reference
view).

As it is well known, the combination of pairwise registration does not yield
the optimal result. For example, if Gk,i and Gi,j are optimal on the sense that
they minimize the mean square error distance between the respective sets, then
Gk,j computed with Eq. (6) does not necessarily minimizes the mean square
error between views V j and V k. Small registration errors accumulate so that
images near the end of a sequence have a large cumulative error.

3.2 Global Transformations Adjustment

In order to improve the quality of global registration, let us suppose we have
locally registered all spatially overlapping image pairs, in addition to those that
are adjacent in the image sequence. Especially for underwater images, in which
the ROV moves back and forth we can find significant overlapping also between
distant views in the temporal sequence.

The aim of our method is to optimize the information coming from every
pairwise registrations, obtained by the alignment of all overlapped range im-
ages. The original contribution consists in obtaining a global registration by
introducing algebraic constraints on the transformations, instead of data points.

We first perform pairwise registration between every view and each of its
overlapping views, thereby computing the Gij whenever it is possible. By con-
sidering many equations as (7), we can build a system of equations in which the
Gi,j are known quantities obtained by pairwise image registration, and the ma-
trices Gi1 = Gi (1 ≤ i ≤ N) are unknowns to be found. By decomposing the
homogeneous transformation matrices G into a rotation and translation, Eq. (7)
splits in two: {

Rj = RiRi,j

tj = Riti,j + ti (9)
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where R is a rotation matrix and t is a translation vector. Although this system
of equations is essentially linear, a number of problems arise when formulating
solutions that account for the non-linear constraints on the components of R.
In order to respect these constraints, the rotation matrices must be suitably
parametrized, ending up with a system of non-linear equations.

This non-linear least squares problem can be cast as the minimization of the
following objective function:

min
∑
i,j

((
angle(RiRi,j(Rj)�)

π

)2

+
( ||Riti,j + ti − tj ||

||ti||
)2
)

(10)

where angle(·) takes a rotation matrix and returns the angle of rotation around a
suitable axis. Starting from the global registration obtained by chaining pairwise
transformation (Eq. (8)), a solution is found using a Quasi-Newton method.

The estimated transformation G1 . . .GM are influenced by all the pairwise
observed transformations, and the registration error is distributed over all the
estimated transformations. In this sense, the network of the views after the final
registration is very close to be well balanced as defined in [1].

Moreover, the complexity of the proposed algorithm is independent from the
number of points involved. Because the objective function includes only the ma-
trix components, the complexity depends only on the number of (overlapping)
views.

3.3 Dealing With Rotations

A number of techniques have been developed to represent rotations. One of
the most convenient is the quaternions representation. They have a number of
mathematical properties that make them particularly well suited to requirements
of iterative gradient-based search for rotation and translation [15].

Rotations are represented by unit quaternions. Instead of requiring the
quaternion q = [u, v, w, s] to be a unit vector, we can enforce the constraint
that the rotation matrix is orthogonal by dividing the matrix by the squared
length of the quaternion [15]:

R(q) =
1

q · qRu(q) (11)

where Ru(q) is the rotation matrix given by

Ru(q) =


s2 + u2 − v2 − w2 2(uv − sw) 2(uw + sv)

2(uv + sw) s2 − u2 + v2 − w2 2(vw − su)
2(uw − sv) 2(vw + su) s2 − u2 − v2 + w2


 (12)

This constraint is necessary in general to ensure the gradient accurately re-
flect the differential properties of a change in the quaternion parameters.
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3.4 Summary of the Algorithm

Finally, the multiview registration algorithm is defined as:

Step 1. calculate pairwise registration for all the overlapped images using ICP
algorithm, with X84 rejection rule;

Step 2. if the pairwise registration is good, accept the registration matrix Gi,j ;
Step 3. compute a starting guess for the global registration by chaining pairwise

transformation (Eq. (8));
Step 4. minimize the objective function defined in Eq. (10) with the BFGS

Quasi-Newton method with a mixed quadratic and cubic line search proce-
dure1; At each step enforce orthogonality of rotation matrix with Eq. (11)

Step 5. apply the transform defined by Gi to the view V i, i = 1, ..., M .

Registered sets of points must be fused in order to get a single 3D model. Sur-
face reconstruction from multiple range images can be addressed as the problem
of surface reconstruction from a set of unorganized 3D points, disregarding the
original organization of the data. We used the public domain implementation of
Hoppe and De Rose algorithm [13].

4 Results Description

In this section we show results obtained on synthetic and real acoustic images.

Fig. 1. 3D synthetic model representing pipes structure

In synthetic experiments we simulated the movement of an underwater ROV
around the external part of an offshore rig using the OpenGL library to to
generate synthetic range images. Given a 3D model of part of the rig (Fig. 1),
1 MATLAB lsqnonlin function
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(a) (b) (c)

Fig. 2. In Figure (a) the two point sets are in the start position, Figure (b) shows the
result of Zhang’s ICP algorithm and Figure (c) shows the result of ICP with X84

range images are obtained by moving a (virtual) camera and extracting the z-
buffer for each view. In order to asses the final registration, we made the last
view to coincide with the first one.

In real experiments the acoustic data are acquired by an underwater ROV
using the Echoscope acoustic camera, which outputs a 64× 64 range image [11].
The noise corrupts sensibly the acoustic signals and decreases the reliability
of the estimated 3D measures. Moreover, there is a trade off between range
resolution and field of view. Resolution depends on the frequency of the acoustic
signal (it is about 3 cm at 500 KHz): the higher the frequency, the higher the
resolution, the narrower field of view. Consequently, we are forced to operate
with a limited field of view.

4.1 Pairwise Registration

In Fig. 2, we show an example of two point sets that Zhang’s ICP fails to align.
Instead, our ICP algorithm with X84 rejection rule recovers the correct rigid
transformation.

4.2 Global Registration

In order to evaluate the performance of our global registration algorithm, we
computed the registration error as the closest points mean square distance be-
tween each view and the mosaic composed by all the already registered views
(outliers are discarded according to the X84 rule). The improvement over the
chained pairwise alignment is shown as an histogram depicting, for each view,
the difference between the registration errors of the two techniques (a positive
value means an improvement of our method).

In experiment n. 1 we generated a synthetic sequence, of 29 range images.
The benefit brought by the global registration can be appreciated in Fig. 3a-b.
The histogram in Fig. 3c shows that the global registration improves especially
in near the end of the sequence (as expected).

In experiment n. 2 we generated a sequence composed by 37 range images.
We wanted to test the performance of the global registration algorithm in the
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(a) (b) (c)

Fig. 3. Experiment n. 1. Alignment between view n. 1 and view n. 29 for chained
pairwise registration (a) and global registration (b). Histogram of the differences of the
registration error (c)

(a) (b) (c)

Fig. 4. Experiment n. 2. Alignment between view n. 1 and view n. 37 for chained
pairwise registration (a) and global registration (b). Histogram of the differences of the
registration error (c)

presence of an incorrect pairwise registration (n. 35). In this case the chaining
of pairwise transformations inevitably propagates the error. In our global mul-
tiview registration, thanks to the information coming from the other pairwise
transformations linking (indirectly) view n. 35 and n. 34, the correct registra-
tion is achieved, and the error is distributed over the whole sequence. Fig. 4c
shows the improvement obtained by optimal global registration, which is con-
centrated on matrix n. 35, as expected. The improvement brought by the global
registration is also clearly visible in the Fig. 4a-b and also in Fig. 5 where the
reconstructed surfaces are shown for both techniques.

In experiment n. 3 and n. 4 we introduced Gaussian white additive noise
with different standard deviation (σ = 0.02 and σ = 0.045, respectively) on
the synthetic images of experiment n. 1. The relative histograms are shown in
Fig. 6.

Experiment n. 5 uses a sequence of 15 real acoustic images (Fig. 7) that
are partial views of a tubular structure. The images are rather noisy and the
scene is quite difficult to understand from a single view. The histogram shown in
Fig. 8c confirms the improvement obtained by the global multiview registration.
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(a) (b)

Fig. 5. Surface reconstruction using Hoppe and De Rose algorithm. Chained pairwise
registration (a) and global multiview registration (b)

(a) (b)

Fig. 6. Histogram of the differences between the registration error for the chained
pairwise registration and the global registration, in experiment n. 3 (a) and n. 4 (b).
A positive value correspond to an improvement over chained pairwise registration.

The light worsening of the first views registration is compensated by the good
improvement of the last ones. A more accurate evaluation is not possible in real
case because true correspondences are not known (as in synthetic experiments).
Nevertheless, Fig. 8a-b visually confirm the effectiveness of the global multiview
registration in building the mosaic of the scene.

Tables 1 and 2 summarizes the numerical results obtained in all the experi-
ments. Table 1 reports the average (over the views) registration errors for both
algorithms. In Table 2 a more meaningful evaluation is obtained by calculating
the registration error (misalignment) between the first and the last view (which
should coincide). In this case we know exactly the corresponding points and error
evaluation is more accurate.
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Fig. 7. Experiment n. 5. Selected views from the real sequence.

(a) (b) (c)

Fig. 8. Experiment n. 5. First and last views of the mosaic. The images are aligned
using chained pairwise registration algorithm (a) and global registration algorithm (b).
Histogram of the differences of the registration error (c).

Table 1. Average registration error (cm).

Experiment Chained pairwise reg. Global registration % difference
exp 1 0.24095 0.19258 20,0740 %
exp 2 0.28960 0.19630 32,2168 %
exp 3 0.36328 0.32936 9,3371 %
exp 4 0.50290 0.47200 6,1443 %
exp 5 15.47955 15.01574 2,9963 %

Our global multiview registration algorithm always improves over pairwise
registration. When the noise level was increased in the experiments on synthetic
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Table 2. Misalignment between the last and the first view (cm).

Experiment Chained pairwise reg. Global registration % difference
exp 1 1.9584 0.1340 93,1577 %
exp 2 29.8662 0.1362 99,5440 %
exp 3 4.0279 2.1979 45,4331 %
exp 4 13.8420 11.1094 19,7413 %

data, our algorithm continued to perform better. Improvement was also seen in
the experiment involving real data.

In another set of experiments we reproduced those reported by [19] and [24].
We evaluate the error on the rotations by comparing the result of the global
registration with the ground truth. As a measure of the discrepancy between
two rotations R1 and R2 we take angle(R1(R2)�).

A set of six random transformations G2,1,G3,1,G4,1,G5,1,G6,1 are gener-
ated, as in [24]. By composing these transformations we simulate the output of
the pairwise registration of 12 overlapping views, namely 1-2, 2-3, 3-4, 4-1, 1-5,
2-5, 3-5, 4-5, 1-6, 2-6, 3-6, 4-6. The rotation components are perturbed by a
random rotation in the range [-5,5] deg., The pairwise transformations are com-
posed to obtain the perturbed Gi,1, and the error on the rotations is computed
as detailed above. Then we run our algorithm, and compare the average error
and its variance over the views. Results, shown in Table 3, demonstrate that our
global multiview registration technique is effective in reducing the variance of
the error on the rotations, and also it improves the average error.

Table 3. Rotation error.

Chained pairwise reg. Global registration % difference
average error 0.0463 0.0381 17.7%

average error variance 0.00243 0.00108 55.6%

5 Conclusions

In this paper we propose a technique for 3D object reconstruction from multiple
acoustic range views, acquired by an underwater ROV. As data coming from
the acoustic sensor is noisy, low resolution, and the field of view is narrow, we
want to provide the human operator(s) with a synthetic 3D model of the scene,
in order to facilitate the navigation and the understanding of the surrounding
environment. To this end, we address the problem of registering many 3D views,
starting from pairwise registration between all the overlapping views.
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Our contribution is twofold. First we modified Zhang’s ICP by introducing
the X84 rejection rule, which does not depend on user specified thresholds and
is more effective in achieving a larger convergence basin.

Moreover, we propose a new global multiview registration technique to dis-
tribute registration errors evenly across all views. Our approach differs from all
the others because we enforce the constraints arising from the pairwise regis-
tration directly on the transformations, and we do not rely on the solution of
the N-view point set registration problem. The complexity of our technique does
not depend on the number of points involved, but only on the number of views.
The drawback is that the error is only spread among the views, but does not
get reduced significantly. Consequently, this technique is well suited for all the
application where speed can be traded for accuracy.

Future work will be aimed at automatically detecting the degree of over-
lap between views and introducing a weight for each term of Equation (10),
depending on the amount of overlap.
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