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Abstract to-frame displacements. Subsequently, Shi and Tomasi [11]

proposed aaffine modelwhich proved adequate for region
This paper addresses robust feature tracking. We extendmatching over longer time spans. Their system classified
the well-known Shi-Tomasi-Kanade tracker by introducing a tracked feature agood(reliable) orbad (unreliable) ac-
an automatic scheme for rejecting spurious features. Wecording to the residual of the match between the associated
employ a simple and efficient outlier rejection rule, called image region in the first and current frames; if the residual
X84, and prove that its theoretical assumptions are satisfie exceeded a user-defined threshold, the feature was rejected
in the feature tracking scenario. Experiments with real and Visual inspection of results demonstrated good discrimina
synthetic images confirm that our algorithm makes good tion between good and bad features, but the authors did not
features track better; we show a quantitative example of the specify how to reject bad featuragtomatically
benefits introduced by the algorithm for the case of funda- This is the problem that our paper solves. We extend
mental matrix estimation. The complete code of the robustthe Shi-Tomasi-Kanade tracker (Section 2) by introduc-
tracker is available via ftp. ing an automaticscheme for rejecting spurious features.
We employ a simple, efficient, model-free outlier rejection
rule, calledX84, and prove that its assumptions are satis-
1. Introduction fied in the feature tracking scenario (Section 3). Experi-
ments with real and synthetic images confirm that our al-
Feature tracking is an important issue in computer vision gorithm _makes good featur_es to track better, in the sense
that outliers are located reliably (Section 4). We illusdra

as many algorithms rely on the accuratg computation of uantitatively the benefits introduced by the algorithmhwit
correspondences through a sequence of images [9, 13, 17 ) S
he example of fundamental matrix estimation. he com-

When an image sequence is acquired and sampled at a . . . ]

- oS L plete code of the robust tracker is available via ftp from:
sufficiently high time frequency, frame-to-frame dispiast i o

. ; : ftp:/itaras.dimi.uniud.it/pub/sources/rtrack.tar.gz
are small enough to make optical-flow techniques viable
[1]. If frame-to-frame disparities are large (e.g., the ges . .
are taken from quite different viewpoints), stereo matghin 2. The Shi-Tomasi-Kanade tracker
technigques [3] are used instead, often in combination with . . _ _ _
Kalman filtering [7, 10, 16]. Robust trackingneans de- N this section the Shi-Tomasi-Kanade tracker [11, 12] will
tecting automatically unreliable matches, artliers over be briefly desgnbed. Consider an image sequéifget),
an image sequence (see [8] for a survey of robust method#vith x = [u,v] , the coordinates of an image point. If the
in computer vision). Recent examples of such robust algo-time sampling frequency is sufficiently high, we can assume
rithms include [15], which identifies tracking outliers whi  that small image regions are displaced but their interssitie
estimating the fundamental matrix, and [14], which adopts a remain unchanged:
RANSAC approach to eliminate outliers for estimating the
. - . I =1 1

trifocal tensor. Such approaches increase the compugtion (x.%) (8(x),t + ) (1)
cost of tracking significantly. whereé(-) is themotion field specifying thewarping that
This paper concentrates on the well-known Shi-Tomasi- is applied to image points. The fast-sampling hypothesis al
Kanade tracker, and proposes a robust version based on alows us to approximate the motion with a translation, that is
efficient outlier rejection scheme. Building on resultsfro  §(x) = x +d, whered is a displacement vector. The track-
[6], Tomasi and Kanade [12] introduced a feature tracker er’s task is to computd for a number of selected points for
based on SSD matching and assuming translational frameeach pair of successive frames in the sequence.
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As the image motion model is not perfect, and because ofBy plugging the first-order Taylor expansion &fAx +
image noise, Eq. (1) is not satisfied exactly. The problemisd,t + 7) into (5), and imposing that the derivatives with
then finding the displacemedtwhich minimizes the SSD  respect taD andd are zero, we obtain the linear system

residual: Tz — a (6)
9 t
€= Z [I(x+d,t+7) = I(x,1)] (2) in whichz = [diy diy do1 day di do]T contains the un-
w known motion parameters, and

whereW is a small image window centered on the point
g P a=—rS L [ul, ul, v, oI, I, I,]"

for whichd is computed. By plugging the first-order Taylor

expansion of (x +d, ¢t + 7) into (2), and imposing that the . w
derivatives with respect td are zero, we obtain the linear with
system Uu Vv
=% | Gl
Gd = e, 3) w
where w?l?2 WL, wI? wl,l,
2 2712 2
2 I.1 | LI, I wl,I, wvl
G=>" [ IS ] , e=—1Yy L[LL]", U=1 w2 whl, v LI |’
wo b w wl, I, wl? L1, v2I2

with [I, T,] = VI = [01/8u 81/dv] and ], = I /. i i
The tracker is based on Eq. (3): given a pair of successive vT o | wlh uldy oI, vl

frames,d is the solution of (3), that isd = G 'e, and ul, I, uly wlJI, vl

is used to predict a new (registered) frame. The procedureagain, Eq. (6) is solved foz using a Newton-Raphson it-

is iterated according to a Newton-Raphson scheme, untilerative scheme. If frame-to-frame affine deformations are

convergence of the displacement estimates. negligible, the pure translation model is preferable (tkee m
_ trix A is assumed to be the identity). The affine model is
2.1 Feature extraction used for comparing features between the first and the cur-

rent frame in order to monitor the quality of tracking.
In this framework, a feature can be tracked reliably if a nu-

merically stable solution to Eg. (3) can be found, whichre- 3 Ropyst Monitoring
quires thatG is well-conditioned and its entries are well

above the noise level. In practice, since the larger €igen-q montor the quality of the features tracked, the tracker
value is bounded by the maximum allowable pixel value, -pecks the residuals between the first and the current frame:
the requirement is that the smaller eigenvalue is suffityent g, resiguals indicate bad features which must be rejected
large. Calling\: and ), the eigenvalues ofr, we accept  ro|iowing [11], we adopt the affine model, as a pure trans-
the corresponding featureiifin(Ar, A2) > A, whereisa  |ational model would not work well with long sequences:
user-defined threshold.[11]. too many good features are likely to undergo significant ro-

i tation, scaling or shearing, and would be incorrectly dis-
2.2 Affine Model carded. Non-affine warping, which will yield high resid-
uals, is caused by occlusions, perspective distorsions and
strong intensity changes (e.g. specular reflections). This
section introduces our method for selecting a robust rejec-
tion thresholdautomatically

The translational model cannot account for certain transfo
mations of the feature window, for instance rotation, scal-
ing, and shear. Amffine motion fields a more accurate
model [11], that is,

5(x) = Ax +d, ) 3.1 Distribution of the residuals
whered is the displacement, and is a2 x 2 matrix ac- We begin by establishing which distribution is to be ex-
counting for affine warping, and can be written As= pected for the residuals when comparing good features,
1+ D, with D=[d;;] a deformation matrix antl the identity i.e, almost identical regions. We assume that the intensity
matrix. Similarly to the translational case, one estimétes  I(§(x), t) of each pixel in the current-frame region is equal
motion parameterd) andd, by minimising the residual to the intensity of the corresponding pixel in the first frame

I(x,0) plus some Gaussian noise-n(0, 1). Hence

€= ; [I(Ax +d,t+71) — I(x,t)]". (5) 15(x).£) — T(x,0) = n(0,1).
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Since the square of a Gaussian random variable has a chiresidual computation. This limits the effects of intensity
square distribution, we obtain changes between frames, by subtracting the average grey
9 level in each of the two regions considered:
[1(5(x),t) = I(x,0)]" = x*(1).

= =12
The sum ofn chi-square random variables with one degree €= Z [(J(Ax+d) =J) = (I(x) = D], (9)
of freedom is distributed as a chi-square witlilegrees of W
freedom (as it is easy to see by considering the moment-whereJ(-)=I(-,t + 1), I(-)=I(-,t), andJ, I are the aver-
generating functions). Therefore, the residual computed a age grey levels in the two regions considered. A more elab-
cording to (2) over av x N window W is distributed as a  orate normalization is described in [2]; [4] reports a modi-
chi-square withV? degrees of freedom: fication of the Shi-Tomasi-Kanade tracker based on explicit

e= > [1(6(x),1) — I(x,0)]" ~ x3(N?). () photometric models.

» 4. Experimental results

As the number of degrees of freedom increases, the chi-

square distribution approaches a Gaussian, which is in facl;We evaluated our tracker in a series of experiments, of

used to approximate the chi-square with more than 30 de'which we report some.

grees of freedom. Therefore, since the winddwassoci- Platform (Fig. 1,256 x 256 pixels). A 20-frame synthetic
ated to. each fe_atur.e is at ledst 7 we can safely assume a sequence, created at the Heriot-Watt Computer Vision Lab-
Gaussian distribution of the residual for the good features oratory, simulating a camera rotating in space while ob-
e~ n(N?,2N?). serving a subsea platform sitting on the seabed (real seabed
texture-mapped onto a plane).

Hotel (Fig. 2,480 x 512 pixels). The well-known Hotel se-

When the t . hich te th id Iquence from the CMU VASC Image Database (59 frames).

en the wo reglons overwhich we compute the residual o static scene observed by a moving camera rotating and
are bad features (they are not warped by an affine trans'translating
Lqr;n%tlct).n), thfe res:jd?alss noF isample f:lc_)m tr:_? G""usﬁ']"’mStairs (Fig. 5,512 x 768 pixels). A 60-frame sequence of
dlstn tl.J 'Onf% ?ﬁo ¢ ca urej. ' 'St an ou t;fr. fenc;_, de a white staircase sitting on a metal base and translating in
N € fc ion r?. ha. cea _urels rtet ut(r:]es 0 zti)lpro ?mt(') OL:_ Ierth e'space, acquired by a static camera. The base is the platform
ection, which Is equivaient fo the proolem of esumatng M ¢ 5 yansjation stage operated by a step-by-step motorunde
mean and variance of the corrupted Gaussian distribution

To do thi | imple but effecti del-f ‘computer control.
0 do this, we employ a Simpie but €lIeCtive MOdel-Iree »pjqnoe (Fig. 6,480 x 512 pixels). A 99-frame sequence,
rejection rule, X84 [5], which achieves robustness by em-

; . . N the most complex one shown here (see later on). The cam-
ploying median and median deviation instead of the usual

o ! . .~ era s translating in front of the static scene. This segeenc
mean and standard deviation. This rule prescribes to reject, as used by [13]

values which are more thaMedian Absolute Deviations
(MADs) away from the median:

3.2 The X84 rejection rule

4.1 Experiment discussion

MAD = med{|e; — med €;}. (8) Platformis the only synthetic sequence shown here. No fea-
¢ J tures become occluded, but notice the strong effects of the
In our case.; are the tracking residuals between the  coarse spatial resolution on straight lines. We plotted the
th feature in the last frame and the same feature in theresiduals of all features against the frame number (Fig. 3).
first frame. A value ofk=5.2, under the hypothesis of All features stay under the threshold computed automati-
Gaussian distribution, is adequate in practice, as it cor-cally by X84, apart from one which is corrupted by the in-
responds to about 3.5 standard deviations, and the ranggerference of the background. $tairs some of the features
[u—3.50, u+3.50] contains more than the 99.9% of a Gaus- picked up in the first frame are specular reflections from the
sian distribution [5]. The rejection rule X84 has a break- metal platform, the intensity of which changes constantly
down point of 50%: any majority of the data can overrule during motion. The residuals for such features become

any minority. therefore very high (Fig. 7). All these features are rejgcte
correctly. Only one good feature is dropped erroneously
3.3 Photometric normalisation (the bottom left corner of the internal triangle), becauke o

the strong intensity change of the inside of the block. In the
Our robust implementation of the Shi-Tomasi-Kanade Hotel sequence (Fig. 4), all good features but one are pre-
tracker incorporates also mormalizel SSD matcher for  served. The one incorrect rejection (bottom centre, corner
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Fig. 1. First (left) and last frame of tHelatformsequence. In the last frame, filled windows indicate featoegected by the robust tracker.
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Fig. 3. Residuals magnitude against frame numbePfatform The

Fig. 4. Residuals magnitude against frame numbeotel The
arrows indicate the threshold set automatically by X8490189).

arrows indicate the threshold set automatically by X84428D6).
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Artichoke | Hotel | Stairs| Platform SOCRATES. Remarks made by anonymous referees
All 1.40 0.59 | 0.66 1.49 helped improving the paper.
X84 0.19 0.59 | 0.15 1.49
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arrows indicate the threshold set automatically by X84803563) . arrows indicate the threshold set automatically by X8430511).
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