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Abstract

We present a new, efficient stereo algorithm addressing
robust disparity estimation in the presence of occlusions.
The algorithm is an adaptive, multi-window scheme us-
ing left-right consistency to compute disparity and its as-
sociated uncertainty. We demonstrate and discuss perfor-
mances with both synthetic and real stereo pairs, and show
how our results improve on those of closely related tech-
niques for both robustness and efficiency.

1. Introduction

The aim of computational stereopsis is to reconstruct the
3-D geometry of a scene from two (or more) views, which
we call left andright, taken by pinhole cameras (for a com-
prehensive review on computational stereo, see [3]). A
well-known problem iscorrespondence, i.e., finding which
points in the left and right images are projections of the
same scene point(a conjugate pair). This is approached as
search: finding the element in the right image which is most
similar, according to a similarity metric, to a given element
in the left image (a point, region, or generic feature).

Area-based(or correlation-based) algorithms [6, 5, 10]
match small image windows centered at a given pixel, as-
suming that the grey levels are similar. They yield dense
depth maps, but fail within occluded areas and/or poorly
textured regions. Feature-basedalgorithms [13, 8, 16]
match local cues (e.g., edges, lines, corners) and can pro-
vide robust, but sparse, disparity maps requiring interpola-
tion. These algorithms rely on feature extraction.

Several factors make the correspondence problem diffi-
cult: (i) its inherentambiguityrequires the introduction of
physical and geometrical constraints; (ii)occlusions, i.e.,
points in one image with no corresponding point in the
other; (iii) photometric distortions[2] arising when the pix-
els, projection of a world point on the two images, have
different intensities; and (iv)projective distortion[11] that
makes the projected shapes different in the two images.

This paper presents a robust area-based algorithm, ad-
dressing all problems (i)-(iv) listed above. The basic area-
based method, SSD correlation, is sketched first (Section 2),
followed by our adaptive, multi-window scheme (Section
3), which contrasts distortions and yields accurate dispar-
ities. Robust disparity estimates in the presence of occlu-
sions are achieved thanks to theleft-right consistency con-
straint (Section 4); the associate uncertainty is estimated
too (Section 5). Our algorithm is presented in Section 6.
Experimental results, improved performance with respect to
Kanade and Okutomi’s adaptive-window scheme [11], and
a brief comparison with other methods are presented in Sec-
tions 7 and 8.

2. The SSD Correlation Algorithm

We assume that conjugate pairs lie along raster lines.
This implies no loss of generality, as general images can
be rectified after appropriate calibration to achieve epipo-
lar lines parallel and horizontal in each image [4] We also
assume that the image intensity of a 3D point is the same
on the two images. If this is not true, the images must be
normalised[2] to cure such distortion.

Similarity scores are computed, for each pixel in the
left image, by comparing a fixed small window centered
on the pixel to a window in the right image, shifting along
the raster line. As a similarity measure we adopt the well-
known (normalised) SSD (Sum of Squared Differences) er-
ror:C(x; y; d) = X(�;�)[Il(x+�; y+�) � Ir(x+� + d; y+�)]2sX(�;�) Il(x+�; y+�)2X(�;�) Ir(x+�+d; y+�)2 (1)

where� 2 [�n; n]; � 2 [�m;m]. The computed dis-
parity is the one that minimises the SSD error:dc(x; y) = argmind C(x; y; d): (2)
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Subpixel precisionis achieved by fitting a curve to the
errors in the neighbourhood of the minimum [1]:do(x; y) = dc+ 12 C(x; y; dc�1)� C(x; y; dc+1)C(x; y; dc�1)�2C(x; y; dc)+C(x; y; dc+1) (3)

A basic SSD correlation algorithm has an asymptotic
complexity ofO(N2nm), with N the image size. Follow-
ing [5], we implemented an optimised version making com-
putational complexity independent of the window size.

3. The Need for Multiple Windows

As observed by Kanade and Okutomi [11], when the cor-
relation window covers a region with non-constant dispar-
ity, area-based matching is likely to fail, and the error in
the depth estimates grows with the window size. Reduc-
ing the latter, on the other hand, makes the computed dis-
parity more noise-sensitive. To overcome such difficulties,
Kanade and Okutomi proposed a statistically sound, adap-
tive technique which selects at each pixel the window size
that minimises the uncertainty in the disparity estimates.

In this work we take the multiple window approach in
the simplified version proposed by [7, 10]. For each pixel
we perform the correlation with nine different windows
(showed in Fig. 1), and retain the disparity with the small-
est SSD error value. The idea is that a window yielding a
smaller SSD error is more likely to cover a constant depth
region; in this way,the disparity profile itself drives the se-
lection of an appropriate window.

Figure 1. The nine asymmetric correlation
windows. The pixel for which disparity is
computed is highlighted.

4. Occlusions and Left-Right Consistency

Occlusions create points that do not belong to any con-
jugate pairs. In many cases, occlusions occur at depth dis-
continuities: indeed, one may observe [7] that occlusions
on one image correspond to disparity jumps on the other.
Although evidences have been reported [15] that occlusions

help the human visual system in detecting object bound-
aries, in computational stereo they are a major source of
errors.

A key observation to address the occlusion problem is
that matching is not a symmetric process: when searching
for conjugate pairs, only the visible points in one image are
matched. If the role of left and right images is reversed,
new conjugate pairs are found. The so-calledleft-right con-
sistency constraint[6, 5] states that feasible conjugate pairs
are those found with both direct and reverse matchings. It is
worthwhile noting that the latter is equivalent to theunique-
ness constraint, which states that each point on one image
can match at most one point on the other image. Consider
for instance an occluded point, e.g.,B, in the left image of
Fig. 2: although it has no corresponding point in the right
image, the SSD minimisation matches it to some point (C 0)
anyhow. One can see that the latter point, in turn, corre-
sponds to a different point in the left image, but this infor-
mation is available only by searching from right to left.

II l r

B C C’
A A’

Figure 2. Left-right consistency. Point B
which is occluded, is given C’ as a match,
but C’ matches C 6= B. The pair (B,C’) can be
suppressed.

In our approach, occlusions are detected by checking the
left-right consistency, and suppressing unfeasible matches
accordingly. For each point on the left image the dispar-
ity dl(x) is computed as described in Section 2. The pro-
cess is repeated after reversing the two images. Ifdl(x) =�dr(x + dl(x)) the point keeps its computed left dispar-
ity, otherwise it is marked as occluded and a disparity is
assigned heuristically: following [12], we assume that oc-
cluded areas, occurring between two planes at different
depth, take the disparity of the deeper plane.

5. Uncertainty Estimates

Area-based algorithms are likely to fail not only in oc-
cluded regions, but also in poorly-textured regions, which
make disparity estimates more uncertain. It is therefore
essential to compute confidence measures for disparities,
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which enables solutions to fill in gaps of the depth maps
(e.g., by fusing multiple views [14, 17]). Several techniques
are available to estimate uncertainty, most of them based on
the shape of the SSD error function [1, 14, 17].

In our approach we take advantage of the multiple win-
dows used for computing disparities. We define uncertainty
as the estimated variance of the disparity measures obtained
with the various windows (see algorithm below); occluded
points are assigned infinite variance.

6. The Algorithm

We now present our symmetric, multi-window algo-
rithm, henceforth SMW. The symbolw refers to the nine
windows used;C(x; y; d; Il; Ir; w) is the SSD error com-
puted fromIl to Ir according to Eq. 1 in the point(x; y),
with disparityd, windoww; subpixel refers to the subpixel
correction computed according to Eq. 3. They coordinate
will be omitted for sake of simplicity, since it does not vary.

for all (x; y) in Il do
for all w dodl;w(x) = argmindC(x; y; d; Il; Ir; w)dr;w(x) = argmind C(x; y; d; Ir ; Il; w)
end for�2d(x) = 1N�1PNw=1(dl;w(x)� �dl;w(x))2:dl(x) = argminwC(x; y; dl;w ; Il; Ir ; w)dr(x) = argminwC(x; y; dr;w ; Ir; Il; w)d(x) = dl(x) + subpixel

end for
for all (x; y) in Il do

if (dl(x) 6= �dr(x+ dl(x)) then�2d(x) = +1
end if

end for

To facilitate reimplementations and experi-
mentations with our algorithm, the C code of
the algorithm is available via anonymous ftp at
taras.dimi.uniud.it/pub/sources/smw.tar.gz

7. Experiments with Synthetic Data

We first performed experiments on uncorrupted random-
dot stereograms, generated with the disparity pattern of
Fig. 3, in order to verify the correct behaviour in the ab-
sence of noise. Fig. 4 shows the output of SMW; the es-
timated mean absolute error (MAE) is 0.019 pixel and the
maximum absolute error is 0.107 pixel. We conclude that
the computed depth map is accurate, and the errors may
be ascribed to the subpixel accuracy only. The occluded
points, shown in white in the variance map, are recovered
with 100% accuracy, in this case. Further experiments with
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Figure 3. Disparity pattern used to generate
the right images: the central square has dis-
parity 5 pixel, the background 2 pixel.

noisy random-dot stereograms (not included for reason of
space) also showed very good performances.
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Figure 4. Computed disparity map (left) for
the random-dot stereogram and its variance
(right).

In order to perform a quantitative comparison between
SMW and our implementation of the Adaptive Window
(AW) algorithm [11], possibly the closest method to SMW
in the literature, we created the same pattern used by [11],
an input stereo pair of a ramp in the horizontal direction, de-
formed according to the disparity pattern in Fig. 3. The left
disparity jump creates a “disocclusion” area which is filled
with a random texture. Gaussian noise with zero mean and
unit variance (gray level) was added independently to both
images.

Fig. 5 illustrates a comparison of four different algo-
rithms using this stereo pair. It shows the isometric plots
of the disparity maps computed by simple SSD correlation
and fixed windows of3�3 and7�7 pixels; by our imple-
mentation of the AW (after three iterations), which refines
the initial estimates obtained with a3�3 window; and by
our SMW algorithm with7�7 windows.

The results of the fixed-window SSD confirm that a win-
dow too small (3�3) is noise-sensitive, whereas a large one
(7�7) acts as a low-pass filter, and is likely to miss depth
discontinuities. The AW algorithm is more accurate, since
it simultaneously reduces both the random errors and the
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Figure 5. Isometric plots of the disparity maps
computed with: SSD correlation 3 �3 window
(top left) and 7 �7 window (top right), AW (bot-
tom left) and SMW 7 �7 algorithms (bottom
right), with �2 = 1:0.

systematic ones, along the disparity edges. However, it
performs poorly within occluded areas. Subpixel correc-
tions are smooth, since this algorithm is essentially a com-
plex, iterative subpixel adjustment. The SMW algorithm
addresses the occlusion problem explicitly, and therefore
yields a depth map that is even more accurate. The slight
amount of noise across the disparity surface is a product of
the simple subpixel-accuracy method adopted (see the con-
clusions). Fig. 6 compares qualitatively the isometric plots
of the absolute errors (difference between true and recon-
structed surface) for the AW and SMW algorithms.

Further comparisons are illustrated in Table 1, which
summarises the results of our comparison of the MAE for
the three algorithms (SSD, AW, SMW), using input pairs
with different noise levels and different window sizes. The
table shows that SMW algorithm performs better than the
others. In fact, the AW algorithm is not effective in de-
tecting occlusions, since neither symmetry nor uniqueness
constraints are exploited. SMW is effective thanks to the
left-right consistency check applied: the occluded pointsare
detected with 100% accuracy. The main source of error for
AW are the occluded points, leading to large local errors;
for SMW, the errors are mainly due to the inaccuracy of the
subpixel method used, which results only in small errors
throughout the disparity map.

Further experiments with larger disparities show that the
improvement in accuracy achieved by SMW with respect to
AW increases with disparity, owing to the larger occluded
regions.

Another advantage of SMW with respect to AW is the
efficiency. Running on a SUN SparcStation 4 with SunOS
5.5, 110MHz, our implementation of the SMW takes 8 sec-
onds, on the average, to compute the depth maps in Fig. 5
(128�128 input images), while AW takes 32 minutes on the
average.
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Figure 6. Isometric plots of estimated errors,
as differences between computed and true
disparities for the AW (left) and SMW algo-
rithm (right). Note the different vertical scale.

Algorithm MAE�2 = 1:0 �2 = 3:0 �2 = 10:0
SSD 7x7 0.182 0.468 1.235

SSD 15x15 0.284 0.392 0.988
AW 0.101 0.244 1.045

SMW 7x7 0.082 0.318 0.979
SMW 15x15 0.059 0.235 0.819

Table 1. Comparison of estimated errors:
mean absolute (MAE) for different noise vari-
ances. Notice that 15 �15 is the maximum
window size allowed for AW.

8. Experiments with Real Data

We report the results of the application of the SMW
algorithm on standard image pairs from the JISCT (JPL-
INRIA-SRI-CMU-TELEOS) stereo test set, and from the
CMU-CIL (Carnegie-Mellon University—Calibrated Imag-
ing Laboratory) in Figures 7, 8, 9, 10. In the disparity maps,
the gray level encodes the disparity, that is the depth (the
brighter the closer). Images have been equalised to improve
readability. Subpixel-accuracy values have been rounded
to integer values for display. We also report the estimated
variance maps (the darker the lower). Small values cannot
be appreciated in spite of histogram equalisation, due to the
large difference between high-uncertainty occlusion points
and the rest of the image. Although a quantitative com-
parison was not possible with real images, the quality of
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Figure 7. The “Castle” stereo pair; the disparity (left) and variance maps (right).

Figure 8. The “Parking meter” stereo pair; the disparity (le ft) and variance maps (right).

Figure 9. The “Shrub” stereo pair; the disparity (left) and v ariance maps (right).

Figure 10. The “Trees” stereo pair; the disparity (left) and variance maps (right).
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SMW results seems perfectly comparable to that of results
reported, for example, in [7, 2, 9].

Running on the same hw/sw platform, our current im-
plementation takes 50 seconds, on the average, to compute
depth maps from256�256 pairs, and a disparity range of
10 pixels.

9. Conclusions

We have introduced a new, efficient algorithm for stereo
reconstruction, SMW, based on a multi-window approach,
and taking advantage of left-right consistency. Our tests
have shown the advantages offered by SMW. The adaptive,
multi-window scheme yields robust disparity estimates in
the presence of occlusions, and clearly outperforms fixed-
window schemes. Notice that the slight amount of noise
resulting from the simple subpixel interpolation used may
be made to correspond to small depth errors by increasing
the baseline, thanks to the robust treatment of occlusions.
This is an advantage over several stereo matching schemes,
often limited by the assumption of small baselines.

The left-right consistency check proves very effective in
eliminating false matches and identifying occluded regions
(notice that this can be regarded as a segmentation method
in itself). In addition, disparity is assigned to occluded
points heuristically, thereby achieving reasonable depth
maps even in occluded areas. Uncertainty maps are also
computed, allowing the use of SMW as a module within
more complex data fusion frameworks (e.g., [14, 17]).

The efficiency of SMW is clearly superior to that of sim-
ilar adaptive-window methods, and direct comparisons with
[11] have been reported. This is due to the fact that SMW
performs a one-step single-scale matching, with no need for
interpolation and optimisation.

The main disadvantage is that the window size remains
a free parameter; notice, however, that adaptive-windows
schemes are much slower, and the quality of our results is
good anyway. There are also problems with poorly-textured
regions, but these are typical of any area-based approach,
and cannot be regarded as a disadvantage of SMW. More-
over, our uncertainty treatment marks consistently areas of
low texture with high uncertainty [17].

Work is in progress to embed the SMW module in a dy-
namic stereo fusion system.
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