
3D Surface Models by Geometric Constraints Propagation

M. Farenzena
LASMEA, UMR6602 CNRS

Université Blaise Pascal, Clermont, France
Michela.Farenzena@lasmea.univ-bpclermont.fr

A. Fusiello
Dipartimento di Informatica

University of Verona, Verona, Italy
andrea.fusiello@univr.it

Abstract

This paper proposes a technique for estimating piece-
wise planar models of objects from their images and geo-
metric constraints. First, assuming a bounded noise in the
localization of 2D points, the position of the 3D point is
estimated as a polyhedron containing all the possible solu-
tions of the triangulation. Then, given the topological struc-
ture of the 3D points cloud, geometric relationships among
facets, such as coplanarity, parallelism, orthogonality, and
angle equality, are automatically detected. A subset of them
that is sufficient to stabilize the 3D model estimation is se-
lected with a flow-network based algorithm. Finally a fea-
sible instance of the 3D model, i.e. one that satisfies the
selected geometric relationships and whose 3D points lie
within the associated polyhedral bounds, is computed by
solving a Constraint Satisfaction Problem.

1. Introduction
The problem of recovering 3D surface models from im-

ages and geometric clues has been widely studied in liter-
ature. The proposed methods can be mainly classified as
model-based and constraint-based.

In model-based methods [6, 13, 16, 20], the scene is de-
fined as in CAD systems: objects are the assemblage of
known primitive shapes. Reconstruction is carried out by
fitting a 3D model to image data, thus determining its di-
mension, its position and orientation. The fact that the scene
must be decomposable in primitive shapes is the main limi-
tation of such methods.

Constraint-based methods [1, 3, 7, 8, 10, 21] are more
flexible, as they do not rely on a-priori models but use sim-
ple primitives like points and lines. Geometric information,
such as orthogonality, parallelism, or planarity, is given in
the form of constraints on 3D points and reconstruction is
obtained as the solution of an optimization process.

In most of previous works, e.g. [1, 8, 10, 20], the con-
straints detection phase requires the user to provide a geo-
metrical description of the model, which can be very time-

consuming. In other cases [3, 7], geometric constraints are
detected automatically thanks to prior knowledge about the
model to reconstruct.

Besides, the analysis of constraints is usually over-
looked. In fact, datasets with many points and geometric
constraints do not necessarily define a consistent and unique
3D object. Parts of the scene may not be rigidly connected,
so that there exist various shapes that verify the geometric
constraints and project to identical image points. In addi-
tion, constraints may be redundant, making the optimiza-
tion uselessly harder or even unfeasible. [10] proposes an
algebraic method to check whether a configuration of points
and constraints leads to a unique reconstruction, but it does
not deal with redundancies. As far as we know, a principled
analysis of constraints has not been considered in literature
yet.

After detecting them, geometric constraints may be di-
rectly embedded into the minimization of the reprojection
error (or bundle adjustment) [3, 7], but this causes a sub-
stantial increase of computational costs and both conver-
gence and exact constraint satisfaction are not guaranteed.
An alternative is to make the geometric constraints implicit
in the parametrization of 3D points [1, 10, 21], so as they
are satisfied exactly at every optimization step. A different
approach [8] avoids altogether the non-linear least-squares
problem arising in the methods above, for it casts the prob-
lem as a Constraint Satisfaction (CSP), where the 3D point
positions are bounded by 3D boxes (obtained by triangula-
tion with Interval Analysis) and a feasible solution is one
that satisfies all selected geometric relationships and whose
3D points lie within the associated bounds.

This paper follows the same general approach to the
problem as in [8], but differently from that the bounds on
the 3D points are precisely estimated. It is known in fact
that Interval Analysis provides overestimations of the solu-
tion, and can explode quite unpredictably. Moreover, this
work is enriched by the automatic detection of constraints,
provided manually in [8], and by the consequent analysis
and pruning of these constraints. That permits to verify if
a unique solution can be provided, and at the same time to

1

prune redundancies.

2. System Overview
The approach, summarized in Fig. 1, is made of two

parts. The first part deals with triangulation, i.e., recon-
structing 3D points from their corresponding image points
(provided manually in this paper) and known camera ma-
trices (from a Structure-and-Motion pipeline). A statistical
optimal solution, under the assumption of Gaussian noise,
exists for two [11] and three views [19], but seems to be
unfeasible beyond that. We use instead as noise model,
a uniform distribution inside a rectangular region centered
around each image point. This enables us to compute the
correct solution for any number of views as a polyhedron
that contains all the possible 3D point positions. This poly-
hedron can be regarded as representing the probability dis-
tribution function over the 3D point positions, which is uni-
form inside the polyhedron, and zero outside.

Evaluating uncertainty is crucial when the results are to
be used as input for other processes. Albeit simple in con-
cept, this polyhedral triangulation is a principled and effi-
cient approach for evaluating 3D point positions and the as-
sociated uncertainty, and represents the counterpoise of the
ML approach using the Gaussian noise model.

The second part of the paper focuses on obtaining a com-
plete surface model. Given a set of reconstructed 3D points,
represented by the polyhedra provided by the above 3D tri-
angulation, and the connectivity of the points into triangular
facets (provided manually), the method consists in a three-
steps automatic process. First the geometric relationships,
such as coplanarity, parallelism, etc., are detected; then a
set of minimal relationships that allow a unique reconstruc-
tion is selected using the structural rigidity analysis; finally,
a feasible instance of the 3D model, i.e. one that satisfies all
selected geometric relationships and whose 3D points lie
within the associated polyhedral bounds, is computed using
a constrained optimization technique.

���������

�	�
��

�������

��������������
�

���������������

�����������

��������� �
��!��
��

�"�!�����

#�����
�
����������� �
��!��
��

�!�
�
$

 %&

'�!��	����

 �
��!��
�

�!���$����

()*+,-,.+/,

*01213456,0

#��78�����

9�����

�����������:��

������:�������

&�	;<�!�	

=!��
$�	����

#�����

Figure 1. Overview of the proposed method. External inputs are:
camera matrices, 2D point correspondences, 3D points connectiv-
ity.

3. Polyhedral triangulation

Once camera matrices are known, the first and most im-
portant stage of model reconstruction consists in recovering
the coordinates of points in 3D space given their images in
two or more views. It is usually assumed that the camera
matrices are known exactly, or at least with greater accu-
racy than point localization. In the absence of noise, i.e.
when correspondences are perfectly detected, the problem
is trivial, involving only finding the intersection of rays in
the space. If data are perturbed, however, the rays corre-
sponding to back-projections of image points do not inter-
sect, and obtaining the 3D coordinates of the reconstructed
points becomes far from trivial, as witnessed by the renewed
interest aroused by this issue [15, 19].

As in [8], the proposed method refrains from searching
for one optimal solution and compute instead a set of possi-
ble solutions (defined in terms of errors affecting the image
points) that contains the error-free solution. This permits to
bound the exact solution in the 3D space for any number of
views and to estimate, at the same time, the uncertainty of
the result.

Let P i, i = 1, . . . , n be a sequence of n known cam-
eras and mi be the image of some unknown point M in 3D
space, both expressed in homogeneous coordinates. It is
assumed that the localization error is bounded by a rectan-
gular region Bi centered around each image point (one can
imagine a uniform noise distribution inside Bi). Each re-
gion Bi bounds the possible locus of the 3D point inside a
semi-infinite pyramid Qi with its apex in the camera center
(see Fig. 2). The solution set is defined as the polyhedron
formed by the intersection of the n semi-infinite pyramids
generated by the intervals B1, . . . ,Bn. Analytically, this re-
gion is defined as the following set:

D = Q1 ∩Q2 · · · ∩ Qn =

={M: ∃mi ∈ Bi, i = 1 . . . n s.t. ∀i : mi ' P iM}. (1)

Figure 2. The semi-infinite pyramidQi is defined from the camera
centre Ci and the bound Bi.

Instead of approximating D using Interval Analysis as
in [8], it can be estimated efficiently using computational
geometry techniques.

The semi-infinite pyramidQi can be written as the inter-
section of the four negative half-spacesHi

1,Hi
2,Hi

3,Hi
4 de-

fined by its supporting planes. Thus, the solution set D can
be expressed as the intersection of 4n negative half-spaces:

D =
⋂

i=1...n
`=1...4

Hi
` (2)

The vertices and the faces of D can be enumerated in
O(n log n) time, being n the number of cameras [18].

As an example, Fig. 3 shows the polyhedral triangu-
lation result obtained from seven calibrated images of a
Lego object. Thirty-eight points are manually matched in
the sequence and a uniform error in the 2D point location
bounded by a 5-pixel wide square is assumed. The mean
volume of the polyhedra is (0.3cm)3, with respect to a vol-
ume of (18.5cm)3 of the object.

Figure 3. One of the seven images of the Lego sequence and the
polyhedral triangulation result. The small polyhedrons bounds the
vertices of the object.

4. Constraints detection
From the polyhedral triangulation a bounded estimation

of the position of reconstructed 3D points is obtained. Any
random choice of 3D points inside the bound is an approx-
imation of the exact 3D reconstruction. Considering one
of these approximations, its points are connected (manu-
ally) into a triangular mesh, obtaining a piecewise planar
surface model. This section describes how geometric con-
straints such as coplanarity, parallelism, orthogonality and
angles equality are automatically detected on the approxi-
mate model.

4.1. Planes detection

Planes in the model are extracted using a Mean Shift
clustering procedure [4] on the triangular facets. The pro-
posed technique is composed by a two-step, hierarchical
strategy.

1. First facets are clustered according to their normal,
thereby grouping together (approximately) coplanar
and (approximately) parallel facets.

2. Then, within each group, the clustering is refined by
taking into account also the distance to the origin of the
plane containing the facet. In this way facets belonging
to parallel planes are separated.

We adopted in both cases the uniform kernel, i.e., a mul-
tidimensional unite sphere, with bandwidth automatically
selected as described in [5].

Please note that the process clusters together facets be-
longing to the same plane, regardless of their distance.

4.2. Constraints extraction

Geometric constraints involving planes can now be auto-
matically inferred.

Facets belonging to the same group after the second clus-
tering step are related by coplanarity constraints. Each
plane is identified by one reference facet. As to parallelism
constraints, if two different reference facets belong to the
same group after the first clustering step, their respective
planes are parallel. Finally, angular constraints are deduced
from perceptual grouping heuristics: if two or more planes
nearly satisfy a constraint then they are forced to satisfy it.
Orthogonality is checked for every pair of reference facets:
whenever two of them are found to be approximately or-
thogonal (within 5 degrees), then they are linked by an
orthogonality constraint. Likewise, equality of angles is
checked for every quartet of reference facets.

The constraints form a hierarchy (Fig. 4): at the bottom
level there are facets, grouped into planes by coplanarity
constraints, then planes, grouped into equivalence classes
modulo parallelism, and, finally, these equivalence classes
related by angular constraints.

������

���	
���

����	�	��

����
�	��
�

������

���	
���

�	�	�������

����
�	��
�

�����������

�������������

 �!�����������	
��

�	�"#�	�

����
�	��
�

Figure 4. The hierarchy induced by constraints detection.

At the highest level the position of the planes does not
matter, as only the orientation is considered. This is con-
sistent with the fact that 3D point’s positions are not deter-
mined by the polyhedral triangulation.

Carrying on with the Lego model, the 38 polyhedra are
manually connected into triangular facets. Then, after tak-
ing the midpoint inside each polyhedron, 15 planes are au-
tomatically extracted by the algorithm, as depicted in Fig. 5.
This clustering process implies 12 constraints of parallelism

after the first clustering step (middle level of the hierarchy)
and 53 coplanarity constraints after the second step (bottom
level of the hierarchy). At the higher level of the constraints
hierarchy three equivalence classes modulo parallelism are
found, related be three orthogonality constraints.

Figure 5. Automatic extraction of planes for the Lego model. Each
plane is identified by a different colour.

5. Constraints Analysis
In this section we will discuss how the angular con-

straints, which – in general – will be redundant, can be
pruned while maintaining their capacity of stabilizing the
estimation of the 3D model.

The concept of rigidity (or constriction) for geometric
systems, has been studied in several scientific fields like
Computational Geometry and Structural Topology, with ap-
plication mainly in Computer-Aided Design (CAD). We are
applying here the notion of structural rigidity to systems
of planes (modulo parallelism) in order to remove redun-
dant constraints while keeping the “rigidity” of the system.
Some definitions, taken from [14], are in order here to in-
troduce notation and concepts.

Definition 1 (Geometric Constraint System) A Geomet-
ric Constraint System (GCS) is a pair S = (O,C), where
O is a set of geometric objects (represented by some vari-
ables), and C is a set of constraints.

Our geometric objects are equivalence classes of planes
modulo parallelism. They are identified by their direction
(the normal vector). The constraints are orthogonality and
angle equality.

Definition 2 Let S = (O, C) be a GCS. A solution to S
is an evaluation θO of the variables in O such that every
predicate in C is true. The set of solutions to S is denoted
by Sol(S).

Definition 3 (Constriction) 1 A GCS S is well-constrained
if Sol(S) is finite, over-constrained if Sol(S) = ∅ and
under-constrained if Sol(S) is infinite.

1In fact, this is the definition of global [2] or generic [12] constriction.

In practice, a GCS can be under-constrained, but its solu-
tions be identical modulo a geometric transformation (e.g.,
translation, rotation). Constriction modulo direct isome-
tries (also called rigidity) is the type of constriction usually
sought in CAD. In our case, translations are factorized out
by the parallelism equivalence, hence only rotations are left.
As a consequence, we consider constriction modulo orthog-
onal transformations.

Constriction depends on the number of solutions, but
computing all of them is intractable. Hence, approximate
characterizations that can be checked in polynomial time
are frequently used. A characterization known as structural
constriction is based on the degrees of freedom abstraction
of the geometric constraints and objects.

Definition 4 The number of degrees of freedom (DOFs) of
a geometric object is the number of independent parameters
used to represent it.

The number of DOFs of a geometric constraint is the
number of independent equations needed to represent it.

In the following, we denote by dof(·) the number of
DOFs of an object or a constraint.

In our case, geometric objects have 2 DOF, because nor-
mals are unit vectors, and angle constraints have 1 DOF.

Definition 5 (Structural G-constriction) Let S = (O, C)
be a GCS. Let G be an invariance group of dimension
D. The system S is structurally G-over-constrained if
there exists a subsystem S′ = (O′, C ′) of S such that∑

x∈O′ dof(x)−∑
c∈C′ dof(c) < D.

The system S is structurally G-well-constrained if it is
not structurally G-over-constrained and

∑
x∈O dof(x) −∑

c∈C dof(c) = D.
The system S is structurally G-under-constrained if it

is not structurally G-over-constrained and
∑

x∈O dof(x)−∑
c∈C′ dof(c) > D.

In our case, structural constriction modulo orthogonal
transformations can be checked using D = 3.

Definition 6 (Constraint graph) Let S = (O,C) be a
GCS. Its constraint graph, denoted by GS = (V, E), is a
bipartite undirected graph where V = O ∪ C (every object
in S and every constraint in C is a vertex in GS) and an
edge connects each constraint to each entity it constrains.

Hoffmann et al. in [12] introduced the DENSE algo-
rithm that checks structural constriction in polynomial time,
considering a flow-network derived from the bipartite con-
straint graph. The source is linked to each constraint, and
each object is linked to the sink. The capacities correspond
to the DOFs of the constraints (edges from the source to
constraints) and to the DOFs of the objects (edges from ob-
jects to the sink). Edges from constraints to objects have

infinite capacity, instead. A maximum flow in this network
represents an optimal distribution of the constraints DOFs
onto the objects DOFs. To identify over-rigid subsystems,
the method adds an additional D capacity to one constraint
at a time. If a maximum flow distribution cannot saturate all
the edges from the sink to the constraints, this means that
some constraints DOFs cannot be absorbed by the objects.
Thus there exists a subsystem with less DOFs than D, and
the GCS is over-constrained (Fig. 6). Please note that, be-
ing structural constriction an abstraction, a GCS is deemed
over-constrained as soon a redundant number of constraints
is detected, regardless of the fact that they are consistent or
not.

We exploit over-rigidity in order to detect redundancies.
DENSE returns the over-constrained subsystem S′ if the
system is over-constrained, or an empty set otherwise. This
S′ is the subsystem induced by the objects traversed dur-
ing the last search for an augmenting path, in max flow
computation. Constraints binding the objects in S′ can be
removed until the system itself becomes structurally well-
constrained. This is implemented in the PRUNE procedure:

PRUNE
Input S = (O, C): GCS
Output So = (O,Co): GCS such that Co ⊆ C and
So is structurally well-constrained

S′ = (O′, C ′)← DENSE(S)
if isEmpty(S′)

Return S
else

select c ∈ C ′

S ← S(O, C\{c})
PRUNE(S)

end

The selection of c is random, provided that its removal
do not leave any object node with less inbounding arcs than
the object’s DOFs in the constraint graph. In that case in
fact the object would become under-constrained.

In the Lego model example, the constraints analysis cor-
rectly responds that the constraint system is already struc-
turally rigid. Consequently, no pruning occurs.

6. Finding a feasible solution
Finally, a feasible instance of the 3D model, i.e. one

that satisfies all selected geometric constraints and whose
3D points lie within the associated polyhedral bounds, is
computed using a constrained optimization technique. This
is formalized in the following Constraint Satisfaction Prob-
lem (CSP):

find X
subject to XL ≤ X ≤ XU

cL ≤ c(X) ≤ cU (3)

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

�

�

�

�

�

�

��

�	�

�

�

�

�

�

Figure 6. Example of constraint network (top) and an example of
flow distribution, when the first constraint edge is overloaded (bot-
tom). The symbol ⊥ stands for the orthogonality constraints. As
non all the arcs from the sink to the constraints are saturated, the
relative GCS is over-constrained. Removing the first or the third
constraint makes the system structurally rigid.

where X is the variables vector, i.e. the 3D points of
the model; XL and XU delimit the domain of each variable,
and they derive from polyhedral triangulation; c(X) are al-
gebraic equations containing the non linear constraints on
X, with bounds cL and cU .

The geometric constraints must then be translated into
constraints among points and formalized as algebraic equa-
tions.

For each equivalence class modulo parallelism a plane is
chosen as the reference one. Angular constraints are applied
among the reference planes. These are then linked to each
other plane in the same equivalence class by a parallelism
constraint. Each constraint among planes (i.e. parallelism
and angular constraints) is translated into a constraint on the
normals of the reference facets, as shown in Table 1. The
normal vector, in turn, is a function of the three vertices of
the facet. It is expressed in Cartesian coordinates. In or-
der to simplify the complexity of the algebraic equations, in
orthogonality and parallelism constraints the normal vector
obtained from the points is not normalized.

Constraint Algebraic equation
Orthogonal(f1, f2) n1 · n2 = 0
SameAngle(f1, f2, f3, f4) (n1 · n2)− (n3 · n4) = 0
Parallel(f1, f2) (n1 × n2) = 0

Table 1. Translation of constraints among facets {fi}i=1,...,n of
the model into algebraic equations among points.

The reference facets are linked to all the other facets be-
longing to the same plane by coplanarity constraints. Let
C = {M1, M2, . . . , Mn} be the vertices of a class of copla-

nar facets, then all these points must lie on the same plane.
This can be translated into a set of overlapping coplanarity
constraints among four points at a time:

Coplanar(M1,M2, M3,M4)∧
Coplanar(M2,M3, M4,M5) ∧ . . .

Coplanar(Mn−3,Mn−2,Mn−1, Mn) (4)

where Coplanar(M1,M2, M3,M4) is equivalent to:

[(M1 −M2)× (M1 −M3)]T · (M1 −M4) = 0. (5)

Once all constraints are translated into algebraic equa-
tions, a solution can be found using a constraint solver.
In our case we use SNOPT [17], a general-purpose sys-
tem for solving optimization problems involving many vari-
ables and constraints. It is suitable for large-scale linear and
quadratic programming and for linearly constrained opti-
mization, as well as for general nonlinear programs.

As to the Lego model, the formalization of the problem
into algebraic equations yields 93 non linear constraints.
The results are summarized in Tab. 2 and Fig. 7. As the
reader can notice, the whole pipeline described throughout
the paper leads to an accurate 3D model. The fact that the
constraints are not exactly satisfied is due to the optimizer,
that stops when it reaches a (local) minimum.

Figure 7. A top view of the Lego model before (left) and after
(right) constraints propagation.

⊥ ¤ ‖
Before [0.81, 2.67]◦ [0, 0.0001]◦ [0.05, 6.60]◦

After [0.61, 2.62]◦ [0, 0]◦ [0.05, 4.13]◦

Table 2. [Min,Max] deviation from the constraints in the Lego
model before and after propagation (in degrees). Legend: ⊥ is
orthogonality, ¤ is coplanarity and ‖ is parallelism.

7. Experimental results
Comparison between interval-based triangulation and

polyhedral triangulation was performed on synthetic data
consisting of 50 points randomly scattered in a sphere of
unit radius, centered at the origin, and generating cameras

placed at random positions, at a mean distance from the
centre of 2.5 units with a standard deviation of 0.25. The
image points were perturbed with a 1-pixel wide uniform
distribution, and the same width was used to bound (with a
square) the perturbed image points. The number of views
was varied, and the corresponding volumes are reported in
Tab. 3. Each entry is the mean of 50 independent trials. It
is clear that the polyhedral triangulation outperforms the in-
terval approach, both in terms of accuracy and of stability.

views Interval-based Polyhedral
2 26.35 3.68e-07
3 3.25e-04 1.01e-07
4 7.87e-04 5.76e-08
5 3.17e-05 3.88e-08

Table 3. Synthetic triangulation comparison experiment. Aver-
age volumes of the cubes obtained by Interval-based triangulation
compared with those of the polyhedra.

Constraints detection and analysis was tested on the syn-
thetic models shown in Fig. 8. The 3D points were per-
turbed with a uniform random noise. The with of the dis-
tribution varied from 0.5% to 3.0% of a “size gauge” com-
puted as the median over the model’s points of the farthest
point distance. For each value, 20 perturbed models were
generated and planes and constraints were automatically de-
tected by our algorithm. Then, the constraints were trimmed
using PRUNE and a feasible solution of the resulting CSP
was found using SNOPT. Uncertainty in the 3D location is
expressed creating a box around the exact 3D points of the
width of the noise distribution.

Figure 8. The four objects used for the synthetic experiments, here
referred as (from the left) Test, Boxwhole, Cutcube and House.

The number of planes correctly extracted is 22 for Test,
10 for Boxwhole, 7 for Cutcube, and 11 for House. Tab. 4
shows the constraints extracted, before and after the struc-
tural rigidity analysis. Please note that at each step PRUNE
chooses randomly which constraint to eliminate, so the final
set of constraints varies from time to time; here, the most
common case is reported. The solution of the CSP took
about 20 seconds for Cutcube and Boxwhole, 50 seconds
for House and 90 seconds for Test.

The overall method was tested on real images as well.
The Pozzoveggiani set is composed by 16 calibrated images
of a church (Fig. 9).

Polyhedral triangulation was performed, assuming a uni-
form error in the 2D point location bounded by a 7-pixel

Automatic constraints Pruning
⊥ ./ ¤ ‖ ⊥ ./ Total

Test 22 61 60 8 9 16 93
Boxwhole 12 1 24 4 9 0 37
Cutcube 0 3 40 5 0 3 48
House 9 6 25 4 7 4 40
Pozzoveggiani 59 2043 100 5 1 58 164
Tribuna 29 799 478 34 2 51 565

Table 4. Number of constraints automatically detected and number
of remaining constraints after the structural rigidity analysis for the
3D models. The rightmost column reports the total number final
of constraints. Legend: ⊥, ¤ and ‖ as defined in Tab. 2, ./ is angle
equality.

Figure 9. Three of the 16 images of the Pozzoveggiani set.

wide square (Fig. 10). The mean volume of the result-
ing polyhedra is (13cm)3, with respect to a volume of
(16.88m)3. Then, starting from the approximate solution
obtained by randomly choosing one point inside each poly-
hedron, and connecting them manually, 36 planes were au-
tomatically extracted. Results from constraints detection
and analysis are outlined in Tab. 4. As the reader can no-
tice, in this case constraints pruning is essential to simplify
the problem. The CSP solver (SNOPT) produced, after less
than one minute, the result shown in Fig. 11, with the errors
reported in Tab. 5.

Figure 10. Polyhedral triangulation for Pozzoveggiani (left) and
Tribuna (right). The magnifying glass highlights the polyhedra.

The Tribuna set consists of 10 calibrated images of an
apse (Fig. 12).

Polyhedral triangulation was performed, assuming a uni-
form error in the 2D point location bounded by a 2-pixel
wide square (Fig. 10). The mean volume of the resulting
polyhedra is (2cm)3, with respect to a volume of (4.05m)3.
Then, starting from the approximate solution obtained by

Figure 11. Final geometric reconstruction of Pozzoveggiani after
the constraints propagation. Each plane is identified by a different
colour.

⊥ ./ ¤ ‖
Pozzoveggiani

Before [2.05, 2.05]◦ [0, 0.04]◦ [0, 0.19]◦ [1.2, 6.8]◦

After [1.73, 1.73]◦ [0, 0.03]◦ [0, 0.13]◦ [1.2, 4.7]◦

Tribuna
Before [0.03, 3.3]◦ [0, 0.03]◦ [0, 0.15]◦ [0.9, 10.4]◦

After [0.03, 0.3]◦ [0, 0.17]◦ [0, 0]◦ [0.9, 7.9]◦

Table 5. [Min,Max] deviation from the constraints in the initial and
final model (in degrees).

Figure 12. Three of the 10 images of the Tribuna set.

randomly selecting one point inside each polyhedron, and
connecting them manually, 62 planes were automatically
extracted. Constraints detection and analysis results are
summarized in Tab. 4. The CSP solver (SNOPT) produced,
after a few minutes, the result shown in Fig. 13, with the
errors reported in Tab. 5.

Acknowledgments

We are grateful to P. Sturm for valuable comments and
to L. Corazza for contributing to the implementation of the
software. Some of the 3D models shown in Fig. 4 are cour-
tesy of Mountaz Hascoët2. The SNOPT solver is available
inside TOMLAB.

2http://www.lirmm.fr/ mountaz/Ens/DessTni/OpenGL/Exemples/tutors/data/

Figure 13. Final geometric reconstruction of Tribuna after the con-
straints propagation. Each plane is identified by a different colour.

8. Conclusions and future work

In this paper we presented a new approach to constrained
surface modeling from many calibrated views. We demon-
strated how polyhedral triangulation and a suitable con-
straint analysis and propagation can be used to obtain an
accurate geometric model of a scene.

Given the 3D points connectivity information, our
method automatically detect planes in the model using
Mean Shift clustering, and geometric angular constraints
among such planes, using perceptual grouping techniques.
The constraints are then processed in order to eliminate re-
dundancies using the structural rigidity analysis. After that,
the final 3D model is obtained by solving a CSP. Experi-
ments show the effectiveness and the accuracy of the ap-
proach.

Future work will aim at removing the need for manually
entering points and connectivity, thereby making the system
fully automatic. Preliminary results in this direction are re-
ported in [9].

References
[1] A. Bartoli and P. Sturm. Constrained structure and mo-

tion from multiple uncalibrated views of a piecewise planar
scene. International Journal of Computer Vision, 52(1):45–
64, 2003.

[2] B. N. C. Jermann and G. Trombettoni. A new structural rigid-
ity for geometric constraint systems. In Fifth International
Workshop on Automated Deduction in Geometry, Linz (Ha-
genberg), 2002.

[3] H. Cantzler, R. B. Fisher, and M. Devy. Improving archi-
tectural 3d reconstruction by plane and edge constraining.
In British Machine Vision Conference, pages 43–52, Cardiff
(UK), 2002.

[4] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(5):603–619, 2002.

[5] M. Cristani, U. Castellani, and V. Murino. Adaptive feature
integration for segmentation of 3d data by unsupervised den-
sity estimation. In Proceedings of the International Confer-

ence on Pattern Recognition, volume 4, pages 21–24, August
2006.

[6] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry-
and image-based approach. In H. Rushmeier, editor, SIG-
GRAPH: International Conference on Computer Graphics
and Interactive Techniques, pages 11–20, New Orleans,
Louisiana, August 1996.

[7] A. R. Dick, P. H. S. Torr, S. J. Ruffle, and R. Cipolla. Com-
bining single view recognition and multiple view stereo for
architectural scenes. In Proceedings of the International
Conference on Computer Vision, volume 01, page 268, 2001.

[8] M. Farenzena, A. Fusiello, and A. Dovier. Reconstruction
with interval constraints propagation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1185–1190, 2006.

[9] M. Farenzena, A. Fusiello, R. Gherardi, and R. Toldo. To-
wards fully automated architectural sketching. Submitted to
3DPVT 2008.

[10] E. Grossman and J. Santos-Victor. Least-square 3d recon-
struction from one or more views and geometric clues. Com-
puter Vision and Image Understanding, 99:151–174, 2005.

[11] R. I. Hartley and P. Sturm. Triangulation. Computer Vision
and Image Understanding, 68(2):146–157, November 1997.

[12] C. M. Hoffmann, A. Lomonosov, and M. Sitharam. Find-
ing solvable subsets of constraint graphs. In Constraint Pro-
gramming, pages 463–477, 1997.

[13] D. Jelinek and C. J. Taylor. Reconstruction of linearly
parametrized models from single images with camera of
known focal length. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 23(7):767–774, 2001.

[14] C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. De-
composition of geometric constraint systems: a survey. In-
ternation Journal of Computational Geometry and Applica-
tions, 16(5-6):379–414, 2006.

[15] F. Kahl. Multiple view geometry and the l∞-norm. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 510–517, Beijing, China, 2005.

[16] D. Lowe. Fitting parameterized three-dimensional models to
images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(5):441–450, May 1991.

[17] W. M. P. E. Gill and M. A. Sauders. Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM J. Optimiza-
tion, 12:979–1006, 2002.

[18] F. P. Preparata and M. I. Shamos. Computational Geometry.
An Introduction, chapter 2, pages 72–77. Springer-Verlag,
first edition, 1985.

[19] H. Stewenius, F. Schaffalitzky, and D. Nister. How hard is
3-view triagulation really? In Proceedings of the Interna-
tional Conference on Computer Vision, pages 510–517, Bei-
jing, China, 2005.

[20] M. Wilczkowiak, P. Sturm, and E. Boyer. Using geomet-
ric constraints through parallelepipeds for calibration and 3d
modeling. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 27(2):194–207, 2005.

[21] M. Wilczkowiak, G. Trombettoni, C. Jermann, P. Sturm, and
E. Boyer. Scene modelling based on constraint system de-
composition techniques. In Proceedings of the International

Conference on Computer Vision, volume II, pages 1004–
1010. IEEE, IEEE, October 2003.

