
Reconstruction with Interval Constraints Propagation

Michela Farenzena, Andrea Fusiello
Univ. of Verona (IT), Dip. di Informatica

farenzena@sci.univr.it,andrea.fusiello@univr.it

Agostino Dovier
Univ. of Udine (IT), DIMI.

dovier@dimi.uniud.it

Abstract

In this paper we demonstrate how Interval Analysis and
Constraint Logic Programming can be used to obtain an ac-
curate geometric model of a scene that rigorously takes into
account the propagation of data errors and roundoff. Image
points are represented as small rectangles: As a result, the
output of then-views triangulation is not a single point in
space, but a polyhedron that contains all the possible so-
lutions. Interval Analysis is used to bound this polyhedron
with a box. Geometrical constraints such as orthogonal-
ity, parallelism, and coplanarity are subsequently enforced
in order to reduce the size of those boxes, using Constraint
Logic Programming. Experiments with real calibrated im-
ages illustrate the approach.

1. Introduction

The first and most important stage of model reconstruc-
tion consists in recovering the coordinates of points in three-
dimensional (3D) space given their images in two or more
cameras. In the absence of errors, this problem is trivial,
involving only finding the intersection of rays in the space
(hereby it is calledtriangulation). If data are perturbed,
however, the rays corresponding to back-projections of im-
age points will not intersect, and obtaining the 3D coordi-
nates of the reconstructed point becomes not trivial at all,
as witnessed by the renewed interest aroused by this issue
[7, 10, 16].

In [8] the problem is solved for the case of two views,
taking advantage of the epipolar constraint and involving
the solution of a sixth-degree polynomial. However, the
method is not generalizable to more than two views. Re-
cently, an optimal solution is found even for the case of
three views [16], but again the method is not generalizable.
For the genericn views case, a simple algebraic method
exists [5], but the value being minimized has no geometric
meaning, so the method is not reliable: a minimization of a
suitable (non-linear) cost function, like the re-projection er-
ror in the image plane, should be performed to achieve bet-
ter accuracy [5, 19]. An alternative approach is to find the

closest point in 3D space to the rays back-projected from
the image points. In the case of two views, this is the mid-
point of the common perpendicular to the two rays. How-
ever, it is known that this method fails badly in the case
where the rays are almost parallel, corresponding to a point
near infinity, since in this case the computed point will be
close to the point half-way between the two camera centers.
In [7] a L∞ minimization of the re-projection error is ex-
plored. Using theL∞ cost function is significantly simpler,
and computationally faster, than theL2 cost, but the method
is extremely not robust. A further development of this work
is [10, 12], where the idea of usingL∞ norm is generalized
to a class of 3D reconstruction problems, and an efficient
algorithm based on standard optimization techniques is pre-
sented. Despite these improvements, however, the problem
of robustness remains unsolved.

In our approach, instead of aiming at one “best” solu-
tion, as customary, we describe the set ofall the possible
solutions, given a bounded error affecting the image points.
In practice, image points are modeled as 2D intervals, and
thesolution setis defined as the set of all the 3D points that
can be obtained as the intersection of two conjugate points
contained in the 2D intervals. This solution set is a 3D poly-
hedron representing the best piece of information about the
localization of the error-free 3D point one can deduce from
the bounded image correspondences. Interval Analysis (IA)
is used to obtain a box that rigorously encloses the polyhe-
dron.

According to the IA paradigm, we do not model a prob-
ability distribution inside the intervals, therefore there is
not a preferred solution in the solution set. Nevertheless,
a pointwise solution is needed to make the 3D model usable
for other applications. For want of more information, one
could choose at random a point inside the intervals. Yet,
in many cases, geometric constraints such as orthogonality,
parallelism and coplanarity can be imposed on the recon-
structed structure. The idea is to formalize this as a Con-
straint Satisfaction Problem, to use Constraint Logic Pro-
gramming (CLP) to narrow the intervals as much as possi-
ble and then to pick one solution, i.e., to select a point inside
each interval such that it satisfies all constraints.

This work builds on [4], where interval-based triangula-

tion is described. The novel contribution of this paper is the
use of CLP(Intervals) to impose geometrical constraints on
an interval reconstruction. The closest work we are aware of
is [17], where IA is applied to the 3D reconstruction prob-
lem as well. The focus of the paper, however, is on model-
ing the interval width that has to be associated to a pixel.
Triangulation is cast as the solution of an interval linear
system of equations (which usually cause a gross overes-
timation) and epipolar constraint is taken into account by
formulating a Constraints Satisfaction Problem. The two
views case only is considered there (our method is for the
genericn views case) and there is no attempt to shrink the
interval-triangulation solution to arrive at a pointwise solu-
tion.

2. Problem formulation

Let Pi, i = 1, . . . , n be a sequence ofn known cam-
eras andmi be the image of some unknown pointM in 3D
space, both expressed in homogeneous coordinates. Thus,
we write mi ' PiM , where' denotes equality up to a
scale factor. The problem of computing the pointM given
the camera matricesPi and the image pointsmi is known
as thetriangulationproblem. In the absence of errors, this
problem is trivial, involving only finding the intersection
point of rays in the space. When data are perturbed by er-
rors, however, the rays corresponding to back-projections of
the image points do not intersect in a common point, there-
fore only an approximate solution can be obtained. This
approximation can be circumvented if one refrains from
searching foronesolution and compute instead asetof so-
lutions (defined in terms of the error affecting the image
points) that contains the error-free solution.

C1

C2

B2

B1

D2

Figure 1. Interval-based triangulation.

In the case of two views, assuming that point location er-
rors are bounded by rectanglesB1 andB2 in the two images
respectively, thesolution setof triangulation is a diamond-
shaped polyhedronD2 as in Fig. 1. Geometrically,D2 is
obtained by intersecting the two semi-infinite pyramids de-

fined by the two rectanglesB1 andB2 and the respective
camera centers.

In the general case ofn views, the solution set is defined
as the polyhedron formed by the intersection of then semi-
infinite pyramids generated by the intervalsB1, . . . Bn. An-
alytically, this region is defined as the set

Dn = {M : ∀i = 1, . . . , n ∃mi ∈ Bi s.t.mi ' PiM}.
In the following section we will show how the solution set
can be enclosed with an axis-aligned box using Interval
Analysis.

These 3D polyhedra are the best piece of information
about the localization of the error-free 3D point one can de-
duce from the bounded correspondences. In order to nar-
row the solution set we must include additional informa-
tion. Thus, we seek for geometric constraints between scene
primitives that are able to reduce the solution set. If we add
a sufficient set of constraints we will be able to isolate, ide-
ally, a single solution.

The constraints considered in this paper are geometri-
cal constraints, such as orthogonality, coplanarity and par-
allelism between lines, that can be deduced automatically
from the 3D model obtained by the interval-based triangu-
lation. Eventually, a pointwise solution is derived by con-
straints propagation, as we will discuss in Section 6.

3. Interval Analysis

IA [15] is an approach to solve numerical problems by
performing computations on sets of reals rather than on
floating point approximations to reals. There are two princi-
pal advantages of IA over classical numerical analysis. The
first is that the input errors and the roundoff errors are au-
tomatically incorporated into the result interval. Thus, in-
terval evaluation can be viewed as automatically perform-
ing both a calculation and an error analysis. The second is
that IA allows one to compute provably correct upper and
lower bounds on the range of a function over an interval,
and this proves useful in the construction of verifiablecon-
straint solvers, which return intervals that are guaranteed to
contain all the real solutions.

In the sequel of this section we shall follow the notation
used in [14], where intervals are denoted by boldface. Un-
derscores and overscores will represent respectively lower
and upper bounds of intervals. The midpoint of an interval
x is denoted bymid(x). IR andIRn stand respectively for
the set of real intervals and the set of real interval vectors of
dimensionn. If f(x) is a function defined over an interval
x thenrange(f, x) = {y : ∃x ∈ x, y = f(x)}.

If x = [x, x] andy =
[
y, y

]
, a binary operation between

x andy is defined in interval arithmetic as:

x ◦ y = {x ◦ y | x ∈ x ∧ y ∈ y} ,

for all binary operator◦ ∈ {+,−,×,÷} . (1)

Operationally, interval operations are defined by the min-
max formula:

x ◦ y =
[
min

{
x ◦ y, x ◦ y, x ◦ y, x ◦ y

}
,

max
{
x ◦ y, x ◦ y, x ◦ y, x ◦ y

}]
(2)

Thus, the ranges of the four elementary interval operations
are exactly the ranges of the corresponding real operations.

Here, interval divisionx/y is undefined when0 ∈ y.
However, in theextended arithmetic[13], division by zero is
included, resulting the interval[−∞,∞] in the worst case.

In general, interval computation cannot produce the ex-
act range of a function, but only approximated it, providing
a guaranteed overestimation.

Definition 1 (Interval extension) [13] A function f :
IR → IR is said to be aninterval extensionof f : R → R
provided thatrange(f, x) ⊆ f(x) for all intervalsx ⊂ IR
within the domain off .

This property is particularly suited for error propagation: If
x bounds the input error on the variablex, f(x) bounds
the output error. Therefore, if the exact value is contained
in interval data, the exact value will be contained in the in-
terval result. This approach is different from the established
techniques for error propagation [18, 5, 6, 11], mainly based
on statistical analysis: a statistical distribution of the error
need not to be assumed, and the result is mathematically
guaranteed to contain the exact value. On the contrary, co-
variance propagation assumes Gaussian distribution (other-
wise higher order moments should have been considered),
and is correct only under linear transformations.

Operationally, a straightforward interval extension is de-
fined as follows:

Definition 2 (Natural interval extension) Let us consider
a functionf computable as an arithmetic expressionf, com-
posed of a finite sequence of operations applied to con-
stants, argument variables or intermediate results. Anat-
ural interval extensionof such a function, denoted byf(x),
is obtained by replacing variables with intervals and exe-
cuting all arithmetic operations according to the rules (2).

Similar definitions apply for interval vectors (or boxes)
in IRn.

4. Interval-based triangulation

Given the camera matricesP1 andP2, let m1 andm2

be two corresponding points. It follows thatm2 lies on
the epipolar line ofm1 and so the two optical rays back-
projected from image pointsm1 andm2 lie in a common
epipolar plane. As they lie in the same plane, they will in-
tersect at some point. This point is the reconstructed 3D

scene pointM . The optical ray ofm1 is given by

M =
(−P−1

3×3,1p4,1

1

)
+ λ

(
P−1

3×3,1m1

0

)
, λ ∈ R, (3)

whereP3×3,1 is the matrix composed by the first three rows
and first three columns ofP1, andp4,1 is the fourth column
of P1. The epipolar line corresponding tom1 represents the
projection of the optical ray ofm1 onto the image plane of
the second camera:

κm2 = e2 + λm′
1 (4)

wheree2 = P2

(−P−1
3×3,1p4,1

1

)
, m′

1 = P3×3,2P
−1
3×3,1m1

andk is the depth ofM with respect to the second camera.
Analytically, the reconstructed 3D pointM can be found

by first solving for parametersλ in Eq. (4), and then insert-
ing it into Eq. (3).

As the 3-vectorsm2, m′
1, e2, are coplanar, the scalarsκ

and−λ are the so-calledbaricentric coordinatesof e2, and
they can be easily computed using the cross product [11] (a
similar formula holds forκ):

λ =
(e2 ×m2) · (m2 ×m′

1)
||m2 ×m′

1||2
(5)

After doing all the substitutions, we can write a closed form
expression that relates the reconstructed point to the two
conjugate image points:

M = f(m1,m2) (6)

Formula (6) represents the geometric operation of in-
tersecting rays in 3D space and – being a simple arith-
metic expression – is particularly well suited for apply-
ing IA. If we let m1 and m2 vary in B1 and B2 respec-
tively, thenrange(f, B1×B2) describes the solution setD2

(Fig. 1). Interval Analysis gives us a way to compute an
axis-aligned bounding box containingD2 by simply eval-
uatingf(m1, m2), the natural interval extension off, with
B1 = m1 andB2 = m2. IA guarantees that if the con-
jugate intervalsm1 andm2 contain the exact point corre-
spondences, then the interval result contains the exact (i.e.
error-free) 3D reconstructed point.

It may be worth noting that the result is not to be in-
terpreted in a probabilistic or fuzzy way: no assumption is
made on error statistical distribution (only that the error is
bounded), hence no point inside the resulting 3D interval is
more probable or more important than others.

This approach is easily extendible to the general case.
As defined in Section 2, the solution set of triangulation is
the 3D polyhedron formed by the intersection of the semi-
infinite pyramids generated by back-projecting in space the
intervalsm1, . . . , mn (Fig. 2). Thanks to the associativ-
ity of intersection,Dn can be obtained by first intersecting

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

C2

B2

B3

Dn

B1

C1 C3

Figure 2. n-views interval-based triangulation.

pairs of such pyramids and then intersecting the results. Let
Di,j

2 be the solution set of the triangulation between viewi
and viewj. Then:

Dn =
⋂

i=1,...,n
j=i+1,...,n

Di,j
2 . (7)

An enclosure of the solution setDn is obtained by inter-
secting then(n − 1)/2 enclosures ofDi,j

2 computed with
the method described above. Since each enclosure contains
the respective solution setDi,j

2 , their intersection will con-
tainDn. Similarly, as the error-free solution is contained in
eachDi,j

2 , then it must be contained inDn as well.
As robustness is concerned, our method allows to detect

outliers, because the intersection of pyramids is likely to
be empty in the case of outlying points. In particular this
will happen whenever the actual error is larger than the er-
ror modelled by the interval. This is analogous to setting
a rejection threshold in M-estimators or to the consensus
threshold in RANSAC.

5. Constraint Logic Programming

CLP [9, 1] is a declarative programming paradigm par-
ticularly well suited for encoding minimization problems in
various domains. It is the natural merger of the two declar-
ative AI paradigms known as Constraint Solving and Logic
Programming.

Generally, a Constraint Satisfaction Problem is modeled
by assigning admissible intervals of values and constraints
to each variable. A built-in constraint solver then contracts
these intervals preserving the solution set. The output of the
constraint solver is an interval associated to each variable of
the problem, such that any value of the variables in their in-
tervals is a solution to the initial problem (if solutions exist).

One of the peculiar features of CLP is the independence
of the problem modeling and of the search strategy. Prob-
lem modeling is based on traditional declarative programs
in which one can use the built-in notion of constraint. Con-
straints are in general first-order formulas concerning vari-
ables that can assume values in some domains. The scheme

is general, and various possible constraints and domains can
be used. The problem considered in this paper is naturally
encoded using constraints overinterval of reals. We denote
this instance of the CLP scheme as CLP(Intervals). This
language can be used in practice using the libraryic of the
ECLiPSe 5.8 system [3].

We briefly introduce this programming paradigm with a
simple example. Let us consider three variablesA, B, andC
that we know can assume values in the following intervals
(the syntax, rather intuitive, is the same as in ECLiPSe):

A :: 1.0 .. 4.0, B :: 0.0 .. 2.0, C :: -2.5 .. 3.5

Assume moreover that we know the following two con-
straints hold on those variables

A + 0.1 < B, B + 0.1 < C

The constraint solver of CLP(Interval) performs a form
of reasoning, known asconstraint propagationand return
the new intervals:

A = A1.0 .. 1.9000000000000001
B = B1.0999999999999999 .. 2.0
C = C1.1999999999999993 .. 3.5

for the three variables. Let us observe that the solution set
is unchanged.

The built-in predicatelocate looks for real (interval) so-
lutions to a set of constraints. This predicate requires a pre-
cision parameter that specifies the width of the interval so-
lution. For instance,locate([A,B,C],0.01) returns:

A = A1.0 .. 1.005027077049309
B = B1.0999999999999999 .. 1.1100774675439455
C = C1.1999999999999993 .. 1.2100774675439454

Solutions that minimize/maximize a given function of
the variables can also be found by the solver. In this case a
search tree is internally generated and pruned using the con-
straints. Moreover, search strategies can be then selected
among the built-in available (such as branch and bound) or
programmed at this level. Let us observe that while con-
straint propagation is executed by polynomial time algo-
rithms, solution search can be computationally more expen-
sive. In particular, computation time depends on the preci-
sion chosen.

6. Interval Constraints Propagation

The interval-based triangulation yields boxes in 3D
space, each representing the error-free 3D point bounded
by its error. Given the connectivity information between
these points, geometric constraints can be deduced, such as
orthogonality, parallelism, and coplanarity. They were ob-
tained automatically using very simple heuristics: If two
such primitives in a pointwise reconstruction nearly satisfy
the constraint, then the constraint is added to the list.

As previously said, this problem is suitable for being for-
malised as a constraint satisfaction problem: Each recon-
structed box is associated to an interval variable, and these
variables must satisfy the aforementioned geometric con-
straints. The main ECLiPSe predicate is the following:

best_pos(V,Rcts,Pars,SameL,SameP,SameA,Dom,Res) :-
set_intervals(V,Dom,Res,VList), % 1
set_orthogonal(Rcts,Res), % 2
set_parallel(Pars,Res), % 3
set_coplanar(SameP,Res), % 4
epsilon(Eps), locate(VList,Eps,lin). % lin/log

The predicatesset_intervals, set_orthogonal, etc., im-
pose the constraints corresponding to their names. They
are defined using some recursion to address the desired
variables; then the constraints on the variables are added.
set_intervals fixes the known input domainInf..Sup to the
triple of variables representing the pointA:

Ax :: Infx..Supx, Ay :: Infy..Supy, Az :: Infz..Supz.

set_orthogonal imposes that̂ABC is a right angle:

ic:(Cos =:= (Ax-Bx)*(Cx-Bx)+(Ay-By)*(Cy-By)+
(Az-Bz)*(Cz-Bz)), ic:(abs(Cos) < Delta).

whereDelta is a precision parameter, set to10−10. The
fact thatAB and CD are parallel segments is imposed by
set_parallel as follows:

ic:(Vetx =:=(Ay-By)*(Cz-Dz)-(Az-Bz)*(Cy-Dy)),
ic:(Vety =:= (Az-Bz)*(Cx-Dx)-(Ax-Bx)*(Cz-Dz)),
ic:(Vetz =:= (Ax-Bx)*(Cy-Dy)-(Ay-By)*(Cx-Dx)),
ic:(abs(Vetx)< Delta), ic:(abs(Vety) < Delta),
ic:(abs(Vetz) < Delta).

The constraints encodings in the other predicates are
similar and omitted due to lack of space.

Finding the solution of this problem is committed to
the ECLiPSe constraint solver, using the built-in predicate
locate (cf. Sec. 5) with precision parameterEps.

Figure 3. Ground truth structure (dashed line) and pointwise solu-
tion (solid line). The bigger boxes are the result of interval-based
triangulation, whereas the small ones (see the detail on the right)
are the result obtained after constraints propagation.

The solution achieved by ECLiPSe is composed by inter-
vals, though very thin. We finally attain a point solution tak-
ing a random point within each of these intervals because, as

already outlined, there is not a preferred point inside them.
Since computation time grows as the precision parameter
Eps gets smaller, the level of precision attainable in a rea-
sonable time strictly depends on the size of the problem’s
instance, namely the number of variables and the number of
constraints.

7. Experimental results

We tested the overall technique (interval-based triangu-
lation and constraint propagation) on real calibrated se-
quences. We report here the results relative to theTribuna
and Castle sequences (Fig. 4), consisting of five frames
each. Intrinsic parameters were obtained from calibration,
extrinsic parameters were recovered from the factorization
of the essential matrices. We assumed a 2-pixel wide in-
terval as a reasonable bound for feature points. Calibra-
tion error – provided by the Calibration Toolbox [2] – was
also taken into account by transforming the intrinsic param-
eters matrixA in an interval matrixA. Then, normalized
image coordinates were computed in interval arithmetic as:
m ← A−1m. In this way the error derived from calibra-
tion is summed up with the point localization error, and the
resulting 3D box will take into account both. The average
side length of the 3D boxes obtained by interval-based tri-
angulation is about 10 cm forTribunaand 70 cm forCastle.

The number and the type of constraints considered for
the two examples are detailed in Table 1. The 3D intervals
and the constraints are formalized in the constraint satisfac-
tion problem as described in Sec. 6 and constraints propa-
gation is applied. This permits us to shrink these boxes up
to an average side length of about 5 mm and 10 cm respec-
tively. The whole process took a few seconds on a PowerPC
G4 1.33 GHz machine.

Constraints Tribuna Castle
Orthogonality 36 16
Parallelism 34 22
Coplanarity 4 33

Table 1. The constraints considered in the propagation step.

Finally, a pointwise solution is obtained taking a point at
random in each box (there are 53 points inTribunaand 33
points inCastle). The top views are depicted in Fig. 4 and
the shaded views in Fig. 5 highlight the faithfulness of the
structure.

8. Conclusions

In this paper we presented a new approach to scene mod-
elling from many calibrated views based on Interval Anal-
ysis and Constraint Logic Programming. We demonstrate
how IA and CLP can be used to obtain an accurate geomet-
ric model of a scene that rigorously takes into account the
propagation of data errors and roundoff.

(a) (b) (c) (d)
Figure 4. Interval-based triangulation ofTribuna(a) andCastle(b). To better visualize the 3D structure, the segments joining the midpoints
of the intervals have been drawn. Top views of the 3D models after constraint propagation, (c) and (d).

Figure 5. A shaded view of the final 3D model ofTribuna (left)
andCastle(right).

The output of triangulation is no more a single 3D point,
but a 3D box that contains all the possible solutions given a
bounded perturbation of the conjugate points.

The width of the solution boxes is then reduced by propa-
gating geometrical constraints using CLP. The final solution
is composed by points that i) are inside the original boxes
and ii) satisfy the given constraints. Experiments show that
in a reasonable time we can achieve a (practically) point-
wise solution.

Acknowledgements

Arrigo Benedetti co-authored some papers in the past and
introduced the authors to IA. This work have been sup-
ported by the LIMA3D project (PRIN).

References

[1] K. R. Apt. Principles of Constraint Programming. Cam-
bridge, 2003.

[2] J.-Y. Bouguet. MATLAB calibration toolbox.
[3] A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Shen,

and M. G. Wallace. ECLiPSe: An Introduction. Technical
Report 03–1, IC-Parc, Imperial College London, 2003.

[4] M. Farenzena and A. Fusiello. Rigorous computing in com-
puter vision. InVideo, Vision and Graphics, pages 101–108,
Edimburgh,UK, 2005.

[5] O. Faugeras.Three-Dimensional Computer vision: a geo-
metric viewpoint. MIT Press, Cambridge, MA, 1993.

[6] R. M. Haralick. Propagating covariance in computer vision.
In Workshop on Performance Characteristics of Vision Algo-
rithms, pages 1–12, Cambridge,UK, 1996.

[7] R. Hartley and F. Schaffalitzky. L∞ minimization in geo-
metric reconstruction problems. InProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 504–509, Washington, D.C., USA, 2004.

[8] R. I. Hartley and P. Sturm. Triangulation.Computer Vision
and Image Understanding, 68(2):146–157, November 1997.

[9] J. Jaffar and M. J. Maher. Constraint Logic Programming:
A Survey. Journal of Logic Programming, 19–20:503–581,
1994.

[10] F. Kahl. Multiple view geometry and thel∞-norm. InPro-
ceedings of the IEEE International Conference on Computer
Vision, pages 510–517, Beijing, China, 2005.

[11] K. Kanatani.Geometric Computation for Geometric Vision.
Oxford University Press, 1993.

[12] Q. Ke and T. Kanade. Quasiconvex optimization for robust
geometric reconstruction. InIEEE International Conference
on Computer Vision (ICCV 2005), October 2005.

[13] R. B. Kearfott. Rigorous Global Search: Continuos Prob-
lems. Kluwer, 1996.

[14] R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump, S. P.
Shary, and P. van Hentenryck. Standardized notation in in-
terval analysis. Submitted to Reliable Computing.

[15] R. E. Moore.Interval Analysis. Prentice-Hall, 1966.
[16] H. Stewenius, F. Schaffalitzky, and D. Nister. How hard is

3-view triagulation really? InProceedings of the IEEE In-
ternational Conference on Computer Vision, pages 510–517,
Beijing, China, 2005.

[17] B. Telle, M. Aldon, and N. Ramdani. Guaranteed 3d visual
sensing based on interval analysis. InIEEE International
Conference on Intelligent Robots and Systems, pages 1566–
1571, Las Vegas, USA, 2003.

[18] J. Weng, T. S. Huang, and N. Ahuja. Motion and structure
from two perspective views: Algorithms, error analysis, and
error estimation.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(5):451–476, 1989.

[19] Z. Zhang. Determining the epipolar geometry and its uncer-
tainty: A review. International Journal of Computer Vision,
27(2):161–195, March/April 1998.

