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Abstract. The goal of synchronization is to infer the unknown states of
a network of nodes, where only the ratio (or difference) between pairs of
states can be measured. Typically, states are represented by elements of
a group, such as the Symmetric Group or the Special Euclidean Group.
The former can represent local labels of a set of features, which refer
to the multi-view matching application, whereas the latter can represent
camera reference frames, in which case we are in the context of structure
from motion, or local coordinates where 3D points are represented, in
which case we are dealing with multiple point-set registration. A related
problem is that of bearing-based network localization where each node
is located at a fixed (unknown) position in 3-space and pairs of nodes
can measure the direction of the line joining their locations.

This paper is concerned with the synchronization problem, which can be
stated as follows: given a network of nodes, where each node is characterized
by an unknown state and pairs of nodes can measure the ratio (or difference)
between their states, the goal is to estimate the unknown states from the pairwise
measures. The problem can be modeled as a graph where nodes correspond to
the unknown states and edges encode the pairwise measures, and it is well-posed
only if such a graph is connected.

As an example, consider the graph in Figure 1, where nodes and edges are
labelled with integer numbers: the task is to recover the unknown numbers in
the nodes by measuring their differences (on the edges). Two things can be
immediately observed: a solution exists only if the sum of the differences along
any cycle is zero, and, when it exists, the solution is not unique, for adding a
constant to the nodes does not change the differences.

Mathematically, states are represented by elements of a group Σ: Σ = R
yields time synchronization [1, 2], from which the term synchronization origi-
nates, where all the nodes in a network are synchronized to a common clock.
Σ = SO(d) corresponds to rotation synchronization (also known as rotation
averaging) [3–13] and Σ = SE(d) results in rigid-motion synchronization (also
known as motion averaging or pose graph optimization) [14–22], which find appli-
cation in structure from motion, registration of 3D point sets and simultaneous
localization and mapping.
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Fig. 1. synchronization over (Z,+).

Finally, Σ = Sd and Σ = Id give rise to permutation synchronization [23–25]
and partial permutation synchronization [26], respectively, which are related to
multi-view matching.

In [27] we set forth a theoretical unified framework where several synchro-
nization problems are seen as instances of a more abstract principle. Thanks
to the formalism of synchronization, several Computer Vision problems can be
addressed without relying on features or points, since the problem is formulated
in frame space, or, more abstractly, in a group. In this paper we will focus on
permutation synchronization and motion synchronization.

In the case of permutation synchronization, each state is an unknown reorder-
ing of d objects, which is represented as a d× d permutation matrix, namely an
element of the Symmetric Group Sym(d). It is assumed that pairs of nodes can
match these objects, establishing which objects are the same in the two nodes,
despite the different naming, and the goal is to infer a global labeling of the
objects, such that the same object receives the same label in all the nodes (see
Fig. 2).

Permutation synchronization finds application in multi-view matching, where
nodes are images and objects are features. In practice, not all the features are
visible in all the images, so matches are modeled as partial permutations, which
form the so-called Symmetric Inverse Semigroup ISym(d). In [28, 26] we develop
a novel solution to partial permutation synchronization based on a spectral de-
composition, which successfully handles missing correspondences.

In the case of rigid-motion synchronization, each state is the angular attitude
and position of a d-dimensional reference frame, which is referred to as motion
in Computer Vision, orientation in Photogrammetry, or pose in Robotics, and
it is described by a direct isometry, which is an element of the Special Euclidean
Group SE(d).

The goal is to recover the location and attitude of a set of reference frames
organized in a network, where the links of this network are relative transforma-
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Fig. 2. In the center, two nodes with partial visibility match their three common
objects. At the extrema the ground truth ordering of the objects. Each node sees
some of the objects (white circles are missing objects) and puts them in a different
order, i.e., it gives them different numeric labels.

tions of one frame with respect to the others. If we restrict the attention to the
angular attitude (leaving out the position) then we get rotation synchronization.
Similarly, if position only is considered, it results in translation synchronization.

Such local frames can be camera reference frames, in which case we are in
the context of structure-from-motion (see Fig. 3), or local coordinates where
3D points are represented, in which case we are dealing with multiple point-set
registration (see Fig. 4). In the first case, the goal is to recover both the 3D
structure of the scene and camera motion from multiple images, whereas in the
second case the goal is to find the rigid transformations that bring multiple 3D
point sets into alignment.
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Fig. 3. Structure from motion with motion synchronization.

In [29, 20] we express synchronization over SO(d) and SE(d) in terms of low-
rank and sparse (LRS) matrix decomposition, that is the problem of recovering
a low-rank matrix starting from an incomplete subset of its entries, possibly cor-
rupted by noise and outliers. As far as the Special Euclidean Group is concerned,
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Fig. 4. Multiple point-set registration with motion synchronization

we tackle the problem of multiple point-set registration, whereas in the case of
the Special Orthogonal Group we concentrate on structure from motion. In [19]
we also propose a closed-form approach to synchronization over SE(d) based
on a spectral decomposition, which is applied to multiple point-set registration,
where robustness to outliers is be gained via iteratively re-weighted least squares
(IRLS).

This method can be viewed as the extension to SE(d) of the spectral solution
developed in [5, 30, 31] for SO(d).

The motion task of the structure-from-motion problem cannot be straight-
forwardly solved as a synchronization over SE(3), due to the depth-speed am-
biguity: only the directions of the relative displacements between camera pairs
can be measured, but the magnitude is unknown.

A possibility consists in breaking the motion estimation process in two stages,
namely a rotation synchronization to obtain the angular attitudes of the cameras,
followed by the recovery of camera positions from pairwise directions, which is
an instance of bearing-based network localization in 3-space.

This workflow is exploited in several structure from motion systems, such as
[32–36].

Alternatively, the translation magnitudes (referred to as the epipolar scales)
can be explicitly computed, as we propose in [37], via a two-stage method: first, a
cycle basis is computed; then, all the epipolar scales are recovered simultaneously
by solving a homogeneous linear system .

This allows either to address the synchronization problem over SE(3), using
(e.g.) the spectral solution [19], or to perform rotation synchronization followed
by translation synchronization. With reference to the latter, we also propose a
“divide and conquer” technique for computing the epipolar scales [38].

The two paths are equivalent: in [27] we show that the epipolar scales can
be uniquely (up to scale) recovered from pairwise directions if and only if node
locations can be uniquely (up to translation and scale) recovered from pairwise
directions. Requiring that the graph is connected is not sufficient for unique
localizability, but more complicated assumptions are required, which are studied
under the name of parallel rigidity. Several theoretical results about parallel
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rigidity are present in the literature, which come from disparate communities,
including discrete geometry, computer vision, and robotics.

Exhaustive experiments were performed to evaluate the proposed solutions
on both synthetic scenarios and real data in the context of structure from motion,
multiple point-set registration and multi-view matching.

In general synchronization translate into efficient closed form solutions, namely
spectral decomposition or linear least squares. As a matter of fact, in the ex-
periments reported in the literature [30, 18, 19] they are consistently the fastest
method.

For instance, the motion synchronization pipeline in [38], takes 7 seconds for
the Madrid Metropolis dataset [35], whose epipolar graph contains about 300
nodes and 65% of missing edges (with respect to the complete graph).

Besides the least-squares solution for translation synchronization, which is
statistically optimal, the spectral (or null-space) solution of the other instances
of synchronization provides an extrinsic estimate, whose quality is – in general
– inferior to those provided by intrinsic methods.

For instance, in [19] the spectral method is compared to [21], which mini-
mizes a geometric error tightly related to the synchronization cost function. The
latter returns a more accurate solution, but it requires a significant amount of
time. However, the accuracy obtained by the spectral method is high (although
not optimal), as demonstrated by experiments performed in [19] in a variety of
scenarios. As a consequence, it can be seen as a good and fast initialization for a
subsequent local refinement (e.g. bundle adjustment in structure from motion).

The spectral solution can also be made resistant to outliers via Iteratively
Reweighted Least Squares (IRLS) [39], as suggested in [19], thanks to the fact
that the matrix formulation of synchronization can easily cope with weights on
individual edge labels (by means of a weighted adjacency matrix).
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