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Abstract

In this paper we describe a Structure and Motion pipeline
Sfrom images which is both more robust and computationally
cheaper than current competing approaches. Pictures are
organized into a hierarchical tree which has single images
as leaves and partial reconstructions as internal nodes.
The method proceeds bottom up until it reaches the root
node, corresponding to the final result. This framework is
one order of magnitude faster than sequential approaches,
inherently parallel, less sensitive to the error accumulation
causing drift and truly uncalibrated, not needing EXIF
metadata to be present in pictures. We have verified the
quality of our reconstructions both qualitatively producing
compelling point clouds and quantitatively, comparing them
with laser scans serving as ground truth. We also show how
to automatically extract a meaningful collection of planar
patches obtaining a compact, stable representation of scenes.

Keywords: Structure and Motion, Autocalibration, J-Linkage,
Modelization.

1 Introduction

Three dimensional content is pervasise in most forms of
digital media production, fueling the need for ubiquitous, high
quality acquisition of 3D data. In this article we describe a
complete, robust procedure for the reconstruction of the shape
of the environment and camera poses from a unconstrained
set of digital images. Picture datasets are easy to capture,
process and update. They have better resolution, contrast,
definition of the video that can be produced with equally
priced equipment. Pictures have also inferior requirements for
storage and globally lower costs for production, maintenance
and processing. Images are therefore the preferred way for
ubiquitous, low cost acquisition of quality three dimensional
data.

Relevant literature comprises several Structure and Motion
(SaM) pipelines that process images in batch and handle the
reconstruction process making no assumptions on the imaged
scene and on the acquisition rig [4, 18, 32, 38, 17].

The main issue to be solved in this context is the scalability

of the SaM pipeline. This prompted a quest for efficiency that
has explored several different solutions: the most successful
have been those aimed at reducing the impact of the bundle
adjustment phase, which — with feature extraction — dominates
the computational complexity.

A class of solutions that have been proposed are the so-called
partitioning methods [10]. They reduce the reconstruction
problem into smaller and better conditioned subproblems
which can be effectively optimized. The subproblems can be
selected analytically as in [33], where spectral partitioning has
been applied to SaM, or they can emerge from the underlying
3D structure of the problem, as described in [23]. The
computational gain of such methods is obtained by limiting
the combinatorial explosion of the algorithm complexity as the
number of images and feature points increases.

A second strategy is to select a subset of the input images and
feature points that subsumes the entire solution. Hierarchical
sub-sampling was pioneered by [10], using a balanced tree
of trifocal tensors over a video sequence. The approach was
subsequently refined by [24], adding heuristics for redundant
frames suppression and tensor triplet selection. In [29] the
sequence is divided into segments, which are resolved locally.
They are subsequently merged hierarchically, eventually using
a representative subset of the segment frames. A similar
approach is followed in [13], focusing on obtaining a well
behaved segment subdivision and on the robustness of the
following merging step. The advantage of these methods
over their sequential counterparts lays in the fact that they
improve error distribution on the entire dataset and bridge
over degenerate configurations. Anyhow, they work for video
sequences, so they cannot be applied to unordered, sparse
images.

A recent paper [31] that works with sparse dataset describes
a way to select a subset of images whose reconstruction
provably approximates the one obtained using the entire set.
This considerably lowers the computational requirements by
controllably removing redundancy from the dataset. Even
in this case, however, the images selected are processed
incrementally. Moreover, this method does not avoid
computing the epipolar geometry between all pairs of images.

A third solution is covered in literature, orthogonal to the
aforementioned approaches. In [1], the computational



complexity of the reconstruction is tackled by throwing
additional computational power to the problem. Within such
framework, the former algorithmical challenges are substituted
by load balancing and subdivision of reconstruction tasks.
Such direction of research strongly suggest that the current
monolithical pipelines should be modified to accommodate
ways to parallelize and optimally split the workflow of
reconstruction tasks.

Our proposal is a hierarchical and parallelizable scheme for
SaM. The images are organized into a hierarchical cluster
tree, the reconstruction proceeding from leaves to the root.
Partial reconstructions correspond to internal nodes, whereas
images are stored in the leaves (see fig. 1). This scheme
provably cuts the computational complexity by one order of
magnitude (provided that the dendrogram is well balanced) and
achieves scalability by partitioning the problem into smaller
instances and combining them hierarchically in a inherently
parallelizable way. It is also less sensible to typical problems
of sequential approaches, namely sensitivity to initialization
[34] and drift [6]. This approach has some analogy with [28],
where a spanning tree is built to establish in which order the
images must be processed. After that, however, the images are
processed in a standard incremental way.
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Figure 1: An example of dendrogram for a 6 views set.

Most existing pipelines either assumes known internal
parameters [4, 17], or constant internal parameters [38, 18], or
relies on EXIF data plus external informations (camera CCD
dimensions) [32]. Our second contribution is to endow the
SaM pipeline with the capability of dealing with uncalibrated
images with varying internal parameters and no ancillary
information, using a novel auto-calibration procedure robust
enough to be applied in a Structure and Motion context.

Our third and final proposal is to extract photo-consistent
planar patches from the obtained point cloud. Planar patches
are a very compact and stable intermediate representation of
3D scenes, and a good starting point for a complete automatic
reconstruction of surfaces. They can also be regarded as a
rough semantic representation of the scene and as a one-step-
forward through the automatic scene understanding. The filling
of the semantic gap that separates unstructured cloud of points
from higher level renditions, is a one of the most challenging
research area in Computer Vision. Our approach differs from
the current state of the art algorithms that works only with
simple noise-free scenes [21, 2] or produce a dense points

cloud as output [11]. Our solution does not employ any prior
knowlodge and it is completely automatic. Furthermore it is
efficient, since it works directly on the sparse points cloud
produced by a SaM, without the need of densifying it.

The remainder of this article is organized as follows. The next
section outlines the matching stage, then Sec. 3 describes the
way the hierarchical cluster tree is built. Section 4 presents
the hierarchical approach to structure and motion recovery,
whereas the autocalibration strategy is explained in Sec. 5. We
will then describe the photo-consistent planar patch extraction
phase. Experimental detailed in Sec. 7, and finally conclusions
are drawn in Sec. 8.

2 Keypoint Matching

In this section we describe the stage of our SaM pipeline that is
devoted to the automatic extraction and matching of keypoints
among all the n available images. Its output is to be fed into
the geometric stage, that will perform the actual structure and
motion recovery.

The objective is to identify in a computationally efficient way
images that potentially share a good number of keypoints,
instead of trying to match keypoints between every image pair
(they are O(n?)). We follow the approach of [3]. SIFT [19]
keypoints are extracted in all n images. In this culling phase
we consider only a constant number of descriptors in each
image (300 in our experiments, where a typical image contains
thousands of SIFT keypoints). Then, each keypoint description
is matched to its ¢ nearest neighbors in feature space (we use
¢ = 8). This can be done in O(nlogn) time by using a k-d
tree to find approximate nearest neighbors (we used the ANN
library [22]). A 2D histogram is then built that registers in
each bin the number of matches between the corresponding
views. Every image will be matched only to the m images
that have the greatest number of keypoints matches with it (we
use m = 8). Hence, the number of images to match is O(n),
being m constant.

Matching follows a nearest neighbor approach [19], with
rejection of those keypoints for which the ratio of the nearest
neighbor distance to the second nearest neighbor distance is
greater than a threshold (set to 1.5 in our experiments).

Homographies and fundamental matrices between pairs of
matching images are then computed using MSAC [37]. Let
e; be the residuals after MSAC, following [39], the final set of
inliers are those points such that

le; — med; e;| < 3.507, (D
where o* is a robust estimator of the scale of the noise:
0" =1.4826 med, |e; — med,; €. (2)
This outlier rejection rule is called X84 in [14].

The model parameters are eventually re-estimated on this set
of inliers via least-squares minimization of the (first-order
approximation of the) geometric error [20, 5].



Figure 2: An example of one image (top left) from “Piazza
Bra” and its six closest neighbors according to the affinity
defined in Eq. 3.

The more likely model (homography or fundamental matrix)
is selected according to the Geometric Robust Information
Criterion (GRIC) [36]. Finally, if the number of remaining
matches between two images is less than a threshold (computed
basing on a statistical test as in [3]) then they are discarded.

Keypoints matching in multiple images are connected into
tracks, rejecting as inconsistent those tracks in which more
than one keypoint converges [32] and those shorter than three
frames.

3 Views Clustering

The second stage of our pipeline consists in organizing the
available views into a hierarchical cluster structure that will
guide the reconstruction process.

Algorithms for image views clustering have been proposed
in literature in the context reconstruction [28], panoramas
[3], image mining [26] and scene summarization [30].
The distance being used and the clustering algorithm are
application-specific.

The method starts from an affinity matrix among views,
computed using the following measure, that takes into account
the number of common keypoints and how well they are spread
over the images:

118,08 | 1CH(S,) + CH(S))
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where S; and S} are the set of matching keypoints in image I;
and I; respectively, CH(-) is the area of the convex hull of a
set of points and A; (A;) is the total area of the image. Figure 2
shows an example of the neighborhood defined by this affinity.

Views are grouped together by agglomerative clustering, which
produces a hierarchical, binary cluster tree, called dendrogram.
The general agglomerative clustering algorithm proceeds in a
bottom-up manner: starting from all singletons, each sweep
of the algorithm merges the two clusters with the smallest
distance. The way the distance between clusters is computed
produces different flavors of the algorithm, namely the simple
linkage, complete linkage and average linkage [7]. We selected
the simple linkage rule: the distance between two clusters is

determined by the distance of the two closest objects (nearest
neighbors) in the different clusters.

Simple linkage clustering is appropriate to our case because:
i) the clustering problem per se is fairly simple, ii) nearest
neighbors information is readily available with ANN and iii)
it produces “elongated” or “stringy” clusters which fits very
well with the typical spatial arrangement of images sweeping a
certain area or a building.

This procedure allows to decrease the computational
complexity with respect to a sequential SaM pipeline,
from O(n®) to O(n?) in the best case (see [12] for a complete
proof), i.e. when the tree is well balanced (n is the number
of views). If the tree is unbalanced this computational gain
vanishes. It is therefore crucial to enforce the balancing of the
tree and this is the goal of the technique that we shall describe
in this section.

In order to produce better balanced trees and approximate
best-case complexity, we modify the agglomerative clustering
strategy as follows: starting from all singletons, each sweep
of the algorithm merges the pair with the smallest cardinality
among the ¢ closest pair of clusters. The distance is computed
according to the simple linkage rule. The cardinality of a pair
is the sum of the cardinality of the two clusters.

In this way we are softening the “closest first” agglomerative
criterion by introducing a competing “smallest first” principle
that tends to produce better balanced dendrograms. The
amount of balancing is regulated by the parameter £: when
{ = 1 this is the standard agglomerative clustering with no
balancing; when £ > n/2 (n is the number of views) a perfect
balanced tree is obtained, but the clustering is poor, since
distance is largely disregarded. We found in our experiments
(see Sec. 7) that a good compromise is £ = 5. An example is
shown in 3. The height of the tree is reduced from 14 to 9 and
more initial pairs are present in the dendrogram on the right.
Computational complexity decrease accordingly.

Extra care must be taken when building clusters of cardinality
two. These are pair of images from which the reconstruction
will start, hence pairs related by homographies should be
avoided. This is tantamount to say that the fundamental model
must explain the data far better than an homography, and this
can be implemented by considering the GRIC, as in [25]. We
therefore modify the linkage strategy so that two views ¢ and
view j are allowed to merge in a cluster only if:

gric(F; ;) < a gric(H; ;) witha > 1, 4)
where gric(F; ;) and gric(H; ;) are the GRIC scores obtained
by the fundamental matrix and the homography matrix
respectively (we used a = 1.2). If the test fail, consider the
second closest elements and repeat.

4 Hierarchical Structure and Motion

The dendrogram produced by the clustering stage imposes a
hierarchical organization of the views that will be followed by
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Figure 3: Two dendrograms produced on a 52-views set. The left one was produced using the standard simple linkage rule,

the right using the modified rule, with { = 5.

our SaM pipeline. At every node in the dendrogram an action
must be taken, that augment the reconstruction (cameras + 3D
points): a two views reconstruction is performed when a cluster
is first created, then there can be the addition of a single view
to an existing cluster or the merging of two clusters. The first
two are the typical operations of a sequential pipeline, whereas
the latter is unique to the hierarchical pipeline.

Each node is upgraded, when possible, to a Euclidean frame.
Autocalibration with known skew and aspect ratio requires a
minimum of m = 4 views to work; when this condition is
not met, or in degenerate cases, a quasi-Euclidean upgrade will
suffice.

4.1 Two-views reconstruction.

The reconstruction from two views proceeds from the
fundamental matrix. It is well known that the following two
camera matrices:

P11[1|0] and PQZ[[GQ]XF|€!2], (5)

yield the fundamental matrix F, as can be easily verified.

This canonical pair is related to the correct one (up to a
similarity) by a collineation H of 3D space. Section 5
will describe how to guess a matrix H that provides a well
conditioned starting point for the subsequent autocalibration
step.

Given the upgraded versions of the perspective projection
matrices P1H and P»H, the position in space of the 3D
points is then obtained by triangulation (Sec. 4.1.1) and bundle
adjustment is run to improve the reconstruction.

4.1.1 Triangulation.

Triangulation (or intersection) is performed by the iterated
linear LS method [16]. Points are pruned by analyzing the
condition number of the linear system and the reprojection
error. The first test discards ill-conditioned 3D points, using
a threshold on the condition number of the linear system (104,

in our experiments). The second test applies the so-called X84
rule [14], that establishes that, if e; are the residuals, the inliers
are those points such that

le; — med; e;| < 5.2med; |e; — med; e;. (6)

4.2 One-view addition.

The reconstructed 3D points that are visible in the view to
be added provides a set of 3D-2D correspondences, that are
exploited to glue the view to the cluster. This can be done
by resection with DLT [15], using MSAC [37] to cope with
outliers. The view that has been glued might have brought
in some new tracks, that are triangulated as described before
(Sec. 4.1.1). Finally, bundle adjustment is run on the current
reconstruction.

4.3 Clusters merging.

When two clusters merge the respective reconstructions live
in two different reference systems, that are related by a a
projectivity of the space (which is a similarity when both are
properly calibrated). The points that they have in common
are the tie points that serve to the purpose of computing
the unknown transformation, using MSAC to discard wrong
matches. An homography of the projective space is sought
that brings the second onto the first, thereby obtaining the
correct basis for the second. Once the cameras are registered,
the common 3D points are re-computed by triangulation
(Sec. 4.1.1), and the tracks obtained after the merging as
well. The new reconstruction is eventually refined with bundle
adjustment.

5 Autocalibration

To be able to traverse the hierarchical tree without calibration
information, we strive to enforce Euclidean structure inside
each node. This is of course not always possible, in particular
for nodes at the lowest level of the hierarchy, composed by a
low number of views (for example, autocalibration with known
skew and aspect ratio requires a minimum of 4 views to obtain



a unambiguous solution). For these nodes, a quasi-Euclidean
upgrade will suffice until the minimum number of views or a
unambiguous configuration is reached.

Our approach is based on a novel method for the estimation
of the plane at infinity given an estimate for the internal
parameters of at least two cameras. Equipped with such
procedure, we can then explore exaustively the space of valid
calibration parameters (which is naturally bounded because of
the finiteness of acquisition devices) while looking for the best
rectifying homography.

The canonical pair of camera matrices

Py =[I10] and P =[Q2]es], (7)
is related to the Euclidean one by a collineation H of 3D space
that has the following structure:

K, 0 } ®)

H =

{ vi 1
Given reasonable assumptions on internal parameters of the
cameras K and K, the upgraded, metric versions of the
perspective projection matrices are equal to:

PlE:[Kl |0]2P1H (9)

PQE = KQ [R2|t2] ~ PQH = [QgKl +82VT|92] (10)
The rotation Rs can therefore be equated to the following:

Ry~ K3t (Q2K1 +eav') = Ky ' QoK1 +tov' (1)

in which it is expressed as the sum of a 3 by 3 matrix and a rank
1 term. Let R* be the rotation such that: R*t, = [|[t2]| 00]" .
Left multiplying it to Eq. 11 yields:

w

———
R*Ry ~ R* K;' QoK +[|[t2] 00]T v (12)

Calling the first term W and its rows wiT , we arrive at the
following:

w1 4oV’
WQT

W3

R* R2 == /||W3|| (13)

in which the last two rows of the right hand side are
independent from the value of v. Since the rows of the right
hand side form a orthonormal basis, we can recover the first

one taking the cross product of the other two. Vector v is
therefore equal to:
v = (wa x wa/[[ws|| — w1) /[t]] (14)

With the described procedure, we can enumerate through all
possible matrices of intrinsics of two cameras K; and K
checking for the best upgrading homography, which can finally
be refined through non-linear optimization.

In order to sample the space of calibration parameters we can
safely assume, as customary, null skew and unit aspect ratio:
this leaves the focal length and the principal point location
as free parameters. However, as expected, the value of the
plane at infinity is in general far more sensitive to errors in
the estimation of focal length values rather than the image
center. Thus, we can iterate just over focal lengths f; and
f2 assuming the principal point to be centered on the image;
the error introduced with this approximation is normally well-
within the radius of convergence of the subsequent non-linear
optimization. The search space is therefore reduced to a
bounded region of R?.

To score each sampled point (f1, f2), we consider the aspect
ratio, skew and principal point location of the resulting
transformed camera matrices and aggregate their respective
value into a single cost function:

{f1, 2} = argmin Y C*(K) (15)
J1.f2 =

where K is the intrinsic parameters matrix of the /-th camera
after the Euclidean upgrade determined by (f1, f2), and

skew aspect ratio principal point
——
C(K) = wsk|k1 2| + war k1,1 — Ka2| + wu, |k1,3] 4+ wy, [k2 3|

(16)
where k; ; denotes the entry (Z,j) of K and w are suitable
weights, computed as in [25]. The first term of (16) takes into
account the skew, which is expected to be 0, the second one
penalizes cameras with aspect ratio different from 1 and the
last two weigh down cameras where the principal point is away
from the image centre.

Operatively, self calibration procedure is triggered when any
of the internal camera parameters of the reconstructed cameras
in the current node after the merge step lie outside the valid
parameter space. Along with bundle adjustment, this rule
ensure a proper Euclidean framework for all nodes for which
the self-calibration problem is well-posed.

6 Photo Consistent Planar Patches

What separates unstructured cloud of points from higher-level
renditions of an architectural model is a semantic gap, which
should be bridged exploiting additional information. When
no prior knowledge is assumed or user intervention is not
available, bottom-up methods are employed. They start directly
from raw three-dimensional data points trying to aggregate
them in progressively higher level structures, possibly using
also the information coming from the images. In this section
we will explain how to extract planar image-consistent planar
patches. More details can be found in [27]. Planar patches
are a very compact and stable intermediate representation of
3D scenes, as they are a good starting point for a complete
automatic reconstruction of surfaces. The method integrates
several constraints inside J-linkage[35], a robust algorithm for
multiple models fitting. It makes use of information coming
both from the 3D structure and the images.



6.1 Overview of the J-linkage algorithm

In this section the J-linkage algorithm will be briefly
overviewed. More details can be found in [35].

The method is based on random sampling, like RANSAC. Each
minimal sample set (MSS) defines a tentative model. Imagine
to build a N x M matrix (Fig. 6.1) where entry (7, j) is 1 if
point ¢ is closer to model j than a threshold €. Each column
of that matrix is the characteristic function of the consensus
set of a model. Each row is the characteristic function of
the preference set (PS) of a given point, i.e., indicates which
models a points has given consensus to. Points belonging to the
same structure will have similar PS, in other words, they will
cluster in the conceptual space {0, 1}*. This is a consequence
of the fact that models generated with random sampling cluster
in the hypothesis space around the true models.

CS of model j
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Figure 4: An example of consensus/preference matrix.
Columns are consensus sets (CS), rows are preference sets
(PS).

Models are extracted by agglomerative clustering data points
in the conceptual space, where each point is represented
by its PS. The distance between two elements (point or
cluster) is computed as the Jaccard distance between the
respective preference sets. The PS of a cluster is defined as the
intersection of the preference sets of its points. Given two sets
A and B, the Jaccard distance is

AUB|-]ANB
t45) - MUB=tAns

(I7)

The Jaccard distance measures the degree of overlap of A and
B and ranges from 0 (A = B)to 1 (AN B = 0).

The algorithm proceeds by linking elements with distance
smaller than 1 and stops as soon as there are no such elements
left. This can be performed efficiently using an heap data
structure. As a result, clusters have the following properties:

e for each cluster there exists at least one model that is in
the PS of all its points;
e one model cannot be in the PS of all the points of two
distinct clusters;
The final model parameters for each cluster of points is
estimated by least squares fitting.

6.2 Constraints integration

A planar patch associated to a cluster of points is the surface
delimited by the convex hull given by the projection of the

points onto the fitting plane. Making use of the solely spatial
information is not enough for our goal (see Fig. 5). In order
for a planar patch to represent an actual surface, it must
satisfy a number of constraints, beside coplanarity, that will
be described later. This section will concentrate on how these
constraints can be seamlessly integrated inside J-linkage.

Figure 5: A single plane (yellow) contains several patches
(blue and red).

J-linkage extracts models in an incremental way, by merging
smaller structures at each step. In the case on planar patches,
two patches can merge only if the result is a set of coplanar
points (to some extent). The validation of additional constraints
can be integrated at this level so that two clusters can be merged
if and only if the new cluster does not violate additional rules,
i.e., the additional constraints must hold for the planar patch
associated to the new cluster.

More in detail, the constraints will be formulated and tested on
triangles, since any planar polygon can be triangulated. When
two patches are being considered for possible merging, a new
patch is computed as the convex hull of the union of the points.
By inductive hypothesis the two original patches satisfy the
constraints, whereas the new triangles that are created must
be tested against the constraints. If a single triangle fails the
merging is rejected. A graphical explanation of this step is
shown in the Fig. 6.
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Figure 6: Incremental step. The constraints are assumed to
be valid for each patch (top). When two patches are merged
(bottom) the constraints needs to be checked only for the new
triangles (yellow).

Three kind of constraints are enforced:

o Photo-Consistency Constraint: the projections of a
triangle on the images where it is visible should be
photo-consistent.



o Visibility Constraint: a triangle must not to occlude any
visible point.

e Non Intersection Constraint: a triangle must not
intersect any previously defined surface.

6.2.1 Photo-Consistency Constraint

A patch in space is image-consistent if all its projections
onto the images where it is visible contain conjugate points.
Image-consistent patches are attached to actual object surfaces
in the scene. Image-consistency can be checked through
photo-consistency, the property that the projections of a patch
are equal up to a projective transformation and photometric
differences.

Let us first define a set of compatible images as the ones where
the vertices of a given triangle are visible. Among them,
the one where the projected triangle exhibits the maximum
area is chosen as the reference. All the triangles in the
compatible images are projectively warped onto the triangle
in the reference image and compared to it through normalized
cross-correlation (NCC):

1 R(z,y) — R)(C(z,y) — C
Z((y) )(C(z,y) = C)

n—1 OROC

. (18)

z,y

where R is the region inside the reference triangle, C' is the
region inside the triangle in a compatible image, n is the
number of pixels inside the triangle,  denotes the mean and
o denotes the standard deviation. The final photo-consistency
of the 3D triangle is obtained as the average of the NCC scores
of its projections (the value ranges from —1 to 1), and its
is considered photo-consistent if this value is below a fixed
threshold.

6.2.2 Visibility Constraint

A Structure and Motion pipeline generally outputs the
visibility of the points, i.e. the cameras from which a point
is visible. This information derives from the initial stage of
the pipeline where keypoints are extracted and matched with
other keypoints from different images. We can thus formulate
a simple yet powerful constraint: a surface patch must not
occlude a 3D point from the view where it is visible.

Mathematically, this translates into a segment-triangle
intersection test. The segment ranges from the optical center
of the view to the 3D point that is being examined. The
intersection test can be performed efficiently at constant time.
However, in the worst case - i.e. when no intersections with
the current triangle were found - one need to run the test
for each view and for each visible point from that view. In
order to speed up the process, we precompute the axis aligned
bounding box (AABB) for each view that contains every
visible points and the optical center. We also compute and
update an AABB that contains every point of a patch. A prior

intersection test is made between the AABB of the patch and
the AABB of a view: if no intersection occurs we are assured
that no triangle of the patch will intersect a segment in that
view. The intersection test between two AABB also takes
constant time.

6.2.3 Non Intersection Constraint

During the patch growing, it may happen that patches end up
intersecting each other in their interior. It would be desirable to
deal with tridimensional meshes that are not self-intersecting.
This derives from the fact that surfaces are assumed to be
manifolds. We embedded the non intersection constraint
directly in the J-linkage.

When creating a new patch we check that it is not intersecting
any previously defined patch. This translates into a triangle-
triangle intersection test among all the triangles of two
patches.  The triangle-triangle intersection test can be
computed in constant time. However, when dealing with
surfaces composed by many triangles, it may require many
checks. We thus perform a prior AABB-AABB intersection
test: if the bounding boxes do not overlap, we are assured that
the surfaces are not intersecting each other and we do not need
any further testing.

6.3 Filling the gaps

During the agglomerative clustering of J-linkage, it is sufficient
that a single triangle does not satisfy a constraint to discard the
entire merge, because it is inductively assumed that patches
are convex. As a result, triangles that fulfill the constraints
are discarded, thereby leaving gaps in the surfaces between
neighbouring patches (Fig. 7). This issue is solved a-posteriori,
by a gap-filing heuristics that relaxes the convexity assumption.

(

Figure 7: Green regions are gaps between adjacent patches
that are to be filled. Blue regions are gaps between
orthogonal patches.

Two patches are said to be adjacent if at least one of the
points of one patch contains a point of the other patch in his
k-neighborhood. We can distinguish two cases of adjacent



patches: coplanar, when the angle between the respective
support planes is less than 30 degrees, and orthogonal, when
the angle lays between 60 and 120 degrees. A graph of
connection between the patches can thus be inferred. First,
we fill the gaps between orthogonal patches. By construction,
a point can belong to only one patch. We identify the
points compatible, by means of the inlier threshold, to both
the orthogonal patches. The points are then added to both
patches if the constraints defined before are valid for the newly
computed patches.

Finally, we fill the gaps between coplanar patches by testing
each one connecting triangles between the patches using the
same methods and constraints defined before.

7 Results

In this section we will first show the potentialities of our
approach by processing a uncalibrated urban dataset composed
of pictures collected in the city of Verona, Italy. We will then
analyze the accuracy of our reconstructions comparing them
to laser scans, taken as ground truth data. Finally we will
present the result of the planar patches extraction phase and
the resulting compact models.

No comparative results will be presented here; hierarchical
framework was already demonstrated to be faster [8§] and more
precise [12] in previous literature.

7.1 Verona dataset

Our first experiments consisted in processing a dataset of
1129 images composed fusing together five different image
collections captured in the city of Verona, Italy, as shown in
table 1. The total running time for the cumulative bundle
adjustment phase for this dataset was slightly over 6 hours,
producing a cloud of over 370000 points. The final results
is shown in figure 8 where the obtained point cloud is shown
superimposed to a map of the city. The cloud is not composed
from a single cluster but is partitioned into the four connected
components, corresponding to the overlapping picture groups.
Three of them are shown as colored point clouds in figure 8.

Dataset | # images |
Piazza Bra 380
Piazza Erbe 333
Dante 40
Via Roma 326
Castevecchio 120

| Total | 1129 ]

Table 1: Dataset “Verona” was obtained joining five different
datasets of sightseeing location in Verona, Italy.

7.2 Duomo dataset

Our second experiment will test the accuracy of our proposal.
We will evaluate dataset “Duomo”, composed of 309
uncalibrated pictures of the cathedral of Pisa, Italy. Thanks

to the availability of ground truth for obtained from laser
scanning, we were able to assess the accuracy of our results.
We subsampled the cloud of points generated from laser
scanners in such a way that they have roughly double the
number of points of our reconstruction, then we run Iterative
Closet Point (ICP) in order to find the best similarity that
brings our data onto the model (fig. 9). The residual distances
between closest pairs are measured and their average — the
reconstruction accuracy — is about 15c¢m over an area of more
than 70 meters as the crow flies.

7.3 Planar patches models

The first set - “Dante” - is composed of 39 images and 2971
points. The results are shown in Fig. 10. In the second test
the subject is a church. The images involved are 54 and the
cloud of points is composed of 11094 points. The last test
is computationally more challenging. The subject is “Piazza
Bra” (Verona). The images are 380 and the points 52024
(obtained by subsampling the original 104047 points). The
final extracted patches with our approach are 302. Please note
that the boundaries of the patches seldom do not coincide with
the actual edges of the facades, because points were detected by
SIFT, which tends to keep away from corners. However, these
planar patches must be considered only as a initial step toward
the extraction of an high-level model. Several heuristics can be
deployed to expand the regions up to their natural boundaries.
More detailed results are are shown in [27].

(a) Planar Patches. (b) Supporting planes.
Figure 10: “Dante” dataset.

A textured version of our results are shown in Fig. 11.

(a) “Dante”.

(b) “Pozzoveggiani”. (c) “Piazza Bra”.

Figure 11: Textured examples.



Figure 8: A top view of the reconstruction of dataset “Verona” (Italy). The three perspective views are respectively of the
sightseeing locations Piazza Bra, Castevecchio and Piazza Erbe.
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Figure 9: A top view and two perspective views of the reconstruction of “Duomo” (Pisa, Italy). In the last picture the point

cloud (blue) is shown superimposed to the ground truth (red).

8 Conclusions

We presented a Structure and Motion pipeline that improves
on the state of the art thanks to a hierarchical scheme based on
views clustering. Our proposal is more efficient than sequential
approaches, boosting the computational efficiency by one order
of magnitude, more effective, because it is insensitive to
initialization and copes better with drift problems, and more
general, because able to process uncalibrated picture datasets.

The point clouds were augmented with planar photo-consistent
patches, seamlessly combining information coming from the
images and the SaM pipeline. The final result is a very compact
and stable intermediate representation, and can be regarded as a
starting point for a complete automatic reconstruction of scene
surfaces. Future work will aim at bridging further the semantic
gap.

Data and additional material are available from from
http://profs.sci.univr.it/~fusiello/demo/samantha/.
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