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ABSTRACT

This paper deals with the synchronization problem, which arises in multiple 3D point-set registration
and in structure-from-motion. The problem is formulated as a low-rank and sparse matrix decom-
position that caters for missing data, outliers and noise, and it benefits from a wealth of available
decomposition algorithms that can be plugged-in. A minimization strategy, dubbed R-GoDec, is also
proposed. Experimental results on simulated and real data show that this approach o↵ers a good
trade-o↵ between resistance to outliers and speed.

c� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with the synchronization (a.k.a. averag-
ing) problem that arises in Computer Vision in the context of
structure-from-motion and multiple 3D point-set registration.
The goal is to compute a set of direct isometries that repre-
sent the absolute position and angular attitudes of a set of local
reference frames, given their relative positions and angular at-
titudes. These local frames can be camera reference frames,
in which case we are in the context of structure-from-motion,
or local coordinates where 3D points are represented, in which
case we are dealing with a 3D point-set registration problem.
A related problem restricts the attention to the angular attitude,
leaving out the position, which is analysed in depth by Hartley
et al. (2013) under the name “multiple rotation averaging”.

More abstractly, the aim of group synchronization (Girid-
har and Kumar, 2006; Singer, 2011) is to recover elements
of a group from noisy measures of their ratios. In our case,
when considering the full rigid transformations linking the lo-
cal frames, we set ourself to work in the group of direct isome-
tries, or Special Euclidean Group SE(3), which is the semi-
direct product of the Special Orthogonal Group SO(3) with R3.
Likewise, when only the angular attitudes are considered, they
are represented by rotations, i.e., elements of the Special Or-
thogonal Group SO(3).
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Our solution to these two synchronization problems is in-
spired by recent advances in the fields of robust principal com-
ponent analysis (RPCA) and matrix completion (MC). The
main and original contribution of this paper is the formulation
of synchronization as a “low-rank and sparse” (LRS) matrix de-
composition, by designing a novel cost function that naturally
includes missing data and outliers in its definition. In princi-
ple, any LRS decomposition method able to deal with outliers
and missing data can be plugged into this framework, such as
Grasta (He et al., 2012) or L1-Alm (Zheng et al., 2012).

In this respect, our approach could benefit from any devel-
opment in the field of LRS matrix decomposition, such as the
R-GoDec algorithm that we conceive here as an extension of the
GoDec algorithm (Zhou and Tao, 2011) that is able to address
RPCA and MC simultaneously.

Exhaustive experiments on synthetic and real data are per-
formed to evaluate the proposed approach against state-of-the-
art algorithms. Results show that our formulation can be prof-
itably applied to structure-from-motion and multiple 3D point-
set registration, it is computationally undemanding and pro-
vides a good trade-o↵ between statistical e�ciency and re-
silience to outliers. A drawback of the LRS approach is that
it is more a↵ected than others by the sparsity of the measure-
ment matrix. It is worth to remember, though, that the goal of
synchronization is to exploit redundancy: if the measures are
barely su�cient the problem starts loosing significance.

The paper is organized as follows. Applications of the syn-
chronization problem are presented in Section 2 while existing
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solutions are described in Section 3. Section 4 is a compre-
hensive introduction to LRS decomposition, which can be re-
garded as one of the contributions of this paper. Section 5 de-
fines the synchronization problem, whereas Section 6 describes
how such a problem can be translated into a LRS decomposition
of an incomplete matrix, corrupted by noise and outliers. The
approach proposed in this paper is supported by experimental
results on both synthetic and real data, reported in Sections 7
and 8. The conclusions are drawn in Section 9.

This work is an extended version of (Arrigoni et al., 2014a),
where the LRS approach was introduced and applied to SO(3),
and (Arrigoni et al., 2016b), where it has been applied to SE(3).
In this paper the R-GoDec algorithm is extended from `1 to
mixed `2,1-norm, in order to reflect the block structure of the
measures, and a discussion on its convergence is included. It
also contains a more thorough description of the background,
and further experiments that cover additional algorithms and
datasets.

2. Applications

In this section we shall describe in some details how syn-
chronization in SO(3) and SE(3) can be applied to structure-
from-motion and multiple 3D point-set registration. Other ap-
plications briefly surveyed here include sensor network local-
ization, cryo-electron microscopy, and simultaneous localiza-
tion and mapping.

2.1. Multiple 3D point-set registration

The goal of multiple 3D point-set registration is to find the
rigid transformations that bring multiple (n • 2) 3D point sets
into alignment, where each rigid transformation is represented
by a direct isometry, i.e. one element of SE(3). Such point sets
usually come from a 3D scanning device, which can frame only
a fraction of an object from a given viewpoint. Therefore, reg-
istration of multiple scans is necessary to build a full 3D model
of the object. This problem covers a wide range of applica-
tions, including (but not limited to) cultural heritage, reverse
engineering and virtual reality.

If n “ 2 then we are dealing with a pairwise (two point-sets)
registration problem. The gold standard in this context is the It-
erative Closest Point (ICP) Algorithm (Besl and McKay, 1992;
Chen and Medioni, 1991), which computes correspondences
between the point sets given an estimate for the rigid transfor-
mation, then updates the transformation based on the current
correspondences, and iterates through these steps until conver-
gence – to a local minimum – is reached. See (Rusinkiewicz
and Levoy, 2001) for several variants of the ICP Algorithm.

If n ° 2 then we are dealing with a multiple point-set reg-
istration problem, which is more complex than the n “ 2 case
due to the high amount of parameters that have to be estimated.
Among the early e↵orts to address this problem are the se-
quential approaches proposed by Chen and Medioni (1991) and
Pulli (1999), that repeatedly register two point sets and inte-
grate them into one model, until all the scans are considered.
This approach however does not take into account all the avail-
able constraints, e.g. the constraint between the last and first

point set is not used if the sets are obtained using a turntable.
Therefore the solution is suboptimal.

A di↵erent paradigm is realized by global methods, which
are able to register simultaneously all the points sets. Such tech-
niques take advantage of the redundancy in relative motions by
using all the constraints available between pairs of scans, thus
they distribute the errors evenly across the scans, preventing
drift in the solution.

Global registration can be solved in point (correspondences)
space or in frame space. In the first case, all the rigid trans-
formations are simultaneously optimized with respect to a
cost function that includes the distance between corresponding
points (Pennec, 1996; Benjemaa and Schmitt, 1998; Krishnan
et al., 2007; Toldo et al., 2010; Bonarrigo and Signoroni, 2011;
Fantoni et al., 2012; Chaudhury et al., 2015).

In the second case the optimization criterion is related to
the internal coherence of the network of rotations (and transla-
tions) applied to the local coordinate frames. Early frame-space
methods include (Fusiello et al., 2002) and (Sharp et al., 2002).
More recent works comprise (Torsello et al., 2011; Govindu
and Pooja, 2014; Bernard et al., 2015; Arrigoni et al., 2016c).
Frame-space methods are faster and less memory-demanding
than point-space ones. Unquestionably, any optimal formula-
tion must include points in the cost function, in analogy to bun-
dle adjustment in the context of structure-from-motion. Never-
theless, frame-space approaches yield a fairly accurate registra-
tion.

The formulation by Shih et al. (2008) lies at the boundary be-
tween frame-space and point-space methods, where 3D points
are used to compute a second-order approximation of the cost
function, but they are not involved in subsequent computations.

2.2. Structure-from-motion

Recovering geometric information about a scene captured by
multiple cameras has a great relevance in Computer Vision.
In the structure-from-motion problem such geometric informa-
tion includes both scene structure, i.e., 3D coordinates of scene
points, and camera motion, i.e., absolute positions and attitudes
of the cameras. This problem also appears in the context of
Photogrammetry under the name of block orientation. Several
systems have been developed to reconstruct large-scale scenes
from a collection of unordered images, recently surveyed by
Ozyesil et al. (2017). They can be divided into three categories:
structure-first, structure-and-motion, motion-first.

Structure-first approaches (e.g., Crosilla and Beinat (2002))
begin with estimating the structure and then compute the mo-
tion. Specifically, stereo-models are built and co-registered,
similarly to the multiple 3D point-set registration problem.

Structure-and-motion techniques solve simultaneously for
structure and motion. Bundle block adjustment (Triggs et al.,
2000; Fusiello and Crosilla, 2015), resection-intersection meth-
ods (Snavely et al., 2006; Brown and Lowe, 2005), and hierar-
chical methods (Gherardi et al., 2010; Ni and Dellaert, 2012)
belong to this category. Although being highly accurate, these
approaches su↵er from two main disadvantages: on one hand
they require intermediate expensive non-linear minimizations
to damp error propagation, on the other hand the output may
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depend on the order in which images are added or on the choice
of the initial pair/triplet.

Motion-first methods initially recover the motion and then
compute the structure (Govindu, 2001; Martinec and Pajdla,
2007; Arie-Nachimson et al., 2012; Moulon et al., 2013; Jiang
et al., 2013; Ozyesil and Singer, 2015; Goldstein et al., 2016;
Arrigoni et al., 2016a). They start from the relative motions de-
termined from point matches among the images, they compute
the angular attitude and position of the cameras with respect to
an absolute coordinate frame, and then they return a sparse 3D
point cloud representing the scene. These motion-first meth-
ods are global, for they take into account the entire relative in-
formation at once, or, in other terms, they consider the whole
epipolar graph (also known as the viewing graph), where the
nodes correspond to the cameras and the edges represent epipo-
lar relationships. Global techniques have the advantage of fairly
distributing the errors among the cameras, and thus they need
bundle adjustment only at the end, thereby resulting in a reduc-
tion of the computational cost. For this reason they have gained
increasing attention in the community, similarly to frame-based
methods for multiple 3D point-set registration.

Since the magnitude of the relative translations is not avail-
able, structure-from-motion cannot be solved straightforwardly
as a synchronization in SE(3). Most techniques split the motion
estimation process in two stages: a rotation synchronization to
obtain the angular attitudes, followed by the recovery of camera
positions, which in turn can be cast as a synchronization in R3

after computing the magnitude of relative translations (Arrigoni
et al., 2015), or as a bearing-only network localization (Zhao
and Zelazo, 2016) using only the directions of the relative dis-
placements. The direct computation of translation magnitudes
allows also to address the problem in SE(3), as in (Govindu,
2004; Arrigoni et al., 2016c).

As far as the structure-from-motion is concerned, we will
concentrate here only on the rotation synchronization stage.
This application has been recently surveyed by Tron et al.
(2016).

2.3. Other applications
The synchronization problem also arises in the context of

sensor network localization. In such a scenario the nodes of
a sensor network can measure each other’s relative rotation
(by means of e.g. angle-of-arrival) with respect to their relative
reference frames, and the goal is to express some other sen-
sor measurements in a unique/global reference frame (measure-
ments might include positions of targets, environment elements,
etc.). Usually this application refers to planar networks, namely
the synchronization problem in SO(2) (Cucuringu et al., 2012;
Piovan et al., 2013).

Another application regards structural biology. In (Singer
and Shkolnisky, 2011) the problem of recovering the three-
dimensional structure of a macromolecule from many cryo-
electron microscopy (cryo-EM) images is considered. The di-
rection from which each image is taken is unknown, and a ro-
tation synchronization technique is used for determining the
viewing direction of all cryo-EM images at once.

The synchronization problem is also related to simultaneous
localization and mapping (SLAM), where the goal is to orient

a robot moving in an unknown environment, while building
a map of the environment (Carlone et al., 2015; Rosen et al.,
2015; Bourmaud, 2016). This task can be reduced to a synchro-
nization in SE(3), if measures of relative poses are available.

3. Related work

Several approaches have been proposed to solve the synchro-
nization problem in SO(3) and SE(3), in the context of the ap-
plications surveyed in the previous section. We shall divide
them into non-robust and robust methods, according to the re-
silience they show to rogue measures. In general, robustness is
gained at the expense of statistical e�ciency, i.e., non-robust es-
timators typically get closer to the Cramèr-Rao bound (Boumal
et al., 2014). On the other hand, non-robust methods can be
skewed even by a single outlier, hence they are not applicable in
practice unless they are preceded by an outlier detection stage.

Outliers are ubiquitous in the real world. In the structure-
from-motion context, for example, repetitive structures in the
images cause mismatches which wreck the epipolar geome-
try. In multiple 3D point-set registration, outliers are caused
by faulty pairwise registration, which in turn may be originated
by insu�cient overlap or poor initialization.

3.1. Non-robust methods

Sharp et al. (2002) decompose the viewing graph into a set
of cycles, and they propose an iterative procedure to recover
the absolute rotations (and translations) in which the error is
distributed over these cycles. The same idea appeared also in
(Dubbelman and Browning, 2015; Peters et al., 2015). As ob-
served by Govindu and Pooja (2014), this technique performs a
suboptimal set of averages and as a result it may converge to a
local minimum.

In (Govindu, 2001; Fusiello et al., 2002; Fredriksson and
Olsson, 2012) the synchronization problem is cast to the
optimization of an objective function where rotations are
parametrized as unit quaternions. Govindu (2001) expresses
the compatibility constraint between relative and absolute ro-
tations as a linear system of equations which is solved in the
least-squares sense, while in (Fusiello et al., 2002) the absolute
rotations (and translations) are computed using a quasi-Newton
method. Fredriksson and Olsson (2012) exploit the theory of
Lagrangian duality and develop a procedure to verify the global
optimality of a local solution to rotation synchronization. Sim-
ilar to the way that rotations can be represented by quaternions,
rigid motions can be represented by dual quaternions. This
parametrization is used in (Torsello et al., 2011) where a dif-
fusion algorithm is proposed that updates each absolute trans-
formation in turn through linear or geodesic averaging.

The methods described in (Martinec and Pajdla, 2007; Arie-
Nachimson et al., 2012; Arrigoni et al., 2014b) perform `2 av-
eraging of relative rotations by using the chordal (Frobenius)
distance. Without enforcing the orthogonality constraints, ap-
proximate solutions are computed, and they are subsequently
projected onto SO(3) by finding the nearest rotation matrices (in
the Frobenius norm sense). Martinec and Pajdla (2007) com-
pute a least-squares solution through vectorization and Singular
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Value Decomposition (SVD), and this approach is extended by
Arie-Nachimson et al. (2012) using spectral decomposition or
semi-definite programming. A gradient descent method based
on matrix completion is presented in (Arrigoni et al., 2014b).
According to the analysis in (Martinec and Pajdla, 2007), meth-
ods involving matrices usually perform better than quaternion
minimization.

The methods presented in (Bernard et al., 2015; Arrigoni
et al., 2016c; Rosen et al., 2015, 2016) perform synchroniza-
tion in SE(3) using the matrix representation of the Special Eu-
clidean group combined with an `2 cost function. After relaxing
the geometric constraints of rigid motions, approximate solu-
tions are derived, which are then projected onto SE(3) (in the
Frobenius norm sense). In (Bernard et al., 2015; Arrigoni et al.,
2016c) a closed-form solution is found via eigenvalue decom-
position, which can be regarded as the extension to SE(3) of
the spectral synchronization in SO(3) (Arie-Nachimson et al.,
2012). In (Rosen et al., 2015) the Special Euclidean group is
relaxed to its convex hull, which has a semi-definite representa-
tion (Saunderson et al., 2015). A convex relaxation is also em-
ployed in (Rosen et al., 2016) where the authors, using the the-
ory of Lagrangian duality, develop an algorithm for certifying
the global optimality of a candidate solution to synchronization
in SE(3).

In (Tron and Danilidis, 2014) the Riemannian manifold
structure of SE(3) is exploited and the absolute transformations
are found via Riemannian gradient descent. Non isotropic noise
and incomplete measurements are taken into account through
the use of covariance matrices. However, this is a local iterative
method, hence it requires a good initialization.

A di↵erent approach is followed by Govindu (2004), where
the Lie-group structure of SO(3) and SE(3) is exploited, and
an iterative scheme is proposed in which at each step the ab-
solute rotations (and translations) are updated by averaging
two-view transformations in the tangent space. Originally pro-
posed in the structure-from-motion framework, the same tech-
nique was also applied to simultaneous localization and map-
ping (Agrawal, 2006) and multiple 3D point-set registration
(Govindu and Pooja, 2014).

3.2. Robust methods

The main drawback of the previous techniques is that
they su↵er from the presence of inconsistent relative rota-
tions/translations, and thus they need a preliminary step to de-
tect and remove such outliers before computing the absolute
rotations/translations.

A comprehensive survey of methods aimed at detecting out-
liers can be found in (Moulon et al., 2013). These approaches
check for cycle consistency, i.e., deviation from identity, within
the epipolar graph (Enqvist et al., 2011; Arrigoni et al., 2014b;
Zach et al., 2010; Bourmaud et al., 2014; Govindu, 2006;
Olsson and Enqvist, 2011). Enqvist et al. (2011) consider a
maximum-weight spanning tree, where the weight of an edge
is the number of inlier correspondences, and they analyse cy-
cles formed by the remaining edges. In (Arrigoni et al., 2014b)
some heuristics based on cycle bases are introduced to improve
this scheme. In (Zach et al., 2010) a Bayesian framework is

used to classify all the edges of the epipolar graph into in-
liers and outliers. Moulon et al. (2013) showed that an itera-
tive use of this method, adjusted with the cycle length weight-
ing by Enqvist et al. (2011), can remove most outlier edges in
the graph. In (Bourmaud et al., 2014) it is assumed that there
exists a spanning tree without dependent outliers (it may con-
tain independent outliers), and an iterative approach based on
a Kalman filter is developed for outlier detection. Other ap-
proaches (Govindu, 2006; Olsson and Enqvist, 2011) are based
on random spanning trees, in a RANSAC-like fashion.

These strategies are computationally demanding and do not
scale well with the number of cameras. For example, Olsson
and Enqvist (2011) reports that, after feature extraction and
matching, outlier removal is the most expensive step within the
entire structure-from-motion pipeline.

Recently, some approaches have been developed to robustly
solve the synchronization problem without detecting outliers
explicitly. Techniques in (Hartley et al., 2011; Chatterjee and
Govindu, 2013; Wang and Singer, 2013; Crandall et al., 2011;
Tron and Vidal, 2014; Arrigoni et al., 2016c; Boumal et al.,
2013), together with the approach presented in this paper, fall
under this category.

Tron and Vidal (2014) compute the absolute rotations via
Riemannian gradient descent. The choice of the step-size and
several cost functions are discussed, including a reshaped cost
function, which is similar to robust M-estimators and is less
sensitive to large errors. In (Boumal et al., 2013) a statistical
approach is adopted by assuming a specific noise model that
takes into account also the presence of outliers, and a maximum
likelihood estimator is computed via Riemannian trust-region
optimization.

In (Hartley et al., 2011; Wang and Singer, 2013) a cost func-
tion based on the `1 norm is used to average relative rotations,
exploiting the fact that the `1 norm is more robust to outliers
than the `2 norm. In (Hartley et al., 2011) the geodesic (an-
gular) distance is used, while in (Wang and Singer, 2013) the
chordal metric is adopted. Wang and Singer (2013) consider
a semidefinite relaxation and use the alternating direction aug-
mented Lagrangian method to minimize the cost function. They
focus on accuracy rather than e�ciency, providing theoretical
results about exact and stable recovery of rotations. In (Hartley
et al., 2011) each absolute rotation is updated in turn by apply-
ing the Weiszfeld algorithm to its neighbours. This technique
is generalized to `q optimization in (Aftab et al., 2015), with
1 § q † 2, where improved reliability and robustness is shown
compared to using the `2-norm.

Crandall et al. (2011) use a truncated quadratic as a more
robust self-consistency error. This method uses a discrete
Markov random field formulation, combined with a continuous
Levenberg-Marquardt refinement. In addition to relative mo-
tions, vanishing points and information from other sensors are
assumed as input.

As observed by Chatterjee and Govindu (2013), neither
(Crandall et al., 2011) nor the Weiszfeld algorithm satisfies both
the requirements of a computationally e�cient and scalable ro-
bust scheme. On one hand, the Weiszfeld method scales poorly
with large datasets, since any change in a given rotation takes



5

a long time to propagate over the entire graph. On the other
hand, the method by Crandall et al. (2011) can handle large-
scale problems, but it requires a significant amount of memory.

To overcome these drawbacks, Chatterjee and Govindu
(2013) proposed a two-stage synchronization scheme that ex-
tends the Lie-averaging algorithm by Govindu (2004). First, the
`1-norm of a vector that contains both noise and outliers is min-
imized, exploiting recent work in compressed sensing. Then,
this solution is improved through iteratively reweighted least
squares (IRLS). Chatterjee and Govindu (2017) proved that the
method in (Chatterjee and Govindu, 2013) is a quasi-Newton
optimization and analysed di↵erent robust loss functions in the
IRLS step. Experiments in (Chatterjee and Govindu, 2013,
2017) demonstrate that such technique is a robust solution to
rotation synchronization even for large-scale datasets.

An IRLS approach is also adopted in (Arrigoni et al., 2016c)
for synchronization in SE(3), based on the observation that the
spectral solution can be easily extended to handle weighted
measurements, where the weights reflect the reliability of the
pairwise measurements. Experimental results reported in (Ar-
rigoni et al., 2016c) show that this method produces high-
quality results in low execution time.

4. Low-rank and sparse matrix decomposition

Matrix decompositions have a long history and often occur
in the analysis of complex data. The idea is that decomposing a
data matrix into the sum of terms with specific properties makes
the understanding easier as it separates information into simpler
pieces. In recent years, decompositions imposing constraints on
the rank and sparsity of the addends have become very popular
thanks to their profitable application in several fields, such as
pattern recognition, machine learning, and signal processing.

Let pX be a data matrix, and suppose that pX is known to be the
exact or approximate sum of a low-rank term and a sparse term.
Low-rank and sparse (LRS) decompositions address problems
of the general form

F ppXq “ F pLq ` S ` N (1)

where F is a linear operator, L is an unknown low-rank ma-
trix, S is an unknown sparse matrix and N is a di↵use noise.
Generally, the sparse term S represents gross errors a↵ecting
the measurements (outliers), while the low-rank part represents
some meaningful low-dimensional structure contained into the
data. The goal is to recover L (and possibly S ) under di↵erent
conditions for S ,N and F . A survey on this topic is reported in
(Zhou et al., 2014).

4.1. Robust Principal Component Analysis

An example of LRS decomposition is Robust Principal Com-
ponent Analysis (RPCA) (Candès et al., 2011). The goal is to
find the lowest-rank matrix L and the sparsest matrix S such
that a given data matrix pX can be decomposed as

pX “ L ` S ` N (2)

+!
L S�X

Figure 1: Robust Principal Component Analysis. S is the outlier term.

with N a di↵use noise. This is illustrated in Figure 1. Please
observe that such a decomposition is an instance of the general
problem (1) with F being the identity operator.

A suitable minimization problem for RPCA is
$
&

%

min
L,S

}L}˚ ` � }S }1

s.t.
›››pX ´ L ´ S

›››
F

§ ✏
(3)

where }¨}˚ denotes the nuclear norm, }¨}F denotes the Frobe-
nius norm, }S }1 is the `1-norm of S (viewed as a vector), and
✏, � are given parameters. It is well known from sparse repre-
sentation theory that minimizing the `1-norm promotes sparse
vectors (Fornasier, 2010). Moreover, the nuclear norm is the
tightest convex relaxation of the rank function (Fazel, 2002),
since it is the sum of the singular values of a matrix. Thus the
solution of problem (3) is expected to recover a blind separa-
tion between the lowest-rank component and the sparsest errors
contained into the data, i.e., the outliers.

Theoretical conditions under which such a solution is stable
with respect to a di↵use noise N with high probability are stud-
ied in (Zhou et al., 2010) and they depend on some incoherence
properties of the data matrix and on the sparsity pattern of S .

Available algorithms for RPCA include, among others, the
Accelerated Proximal Gradient (APG) method (Zhou et al.,
2010) and extensions of the Augmented Lagrange Multiplier
(ALM) method such as (Lin et al., 2010) or the ASALM algo-
rithm (Tao and Yuan, 2011). These approaches however involve
repeated computation of the SVD (or at least of a partial SVD)
of matrices of considerable size which represents the principal
bottleneck of current solutions for RPCA.

A faster alternative to RPCA is the randomized approximate
matrix decomposition (Tropp et al., 2010). This approach is
based on the observation that the low-rank term L of a decom-
position of the form (2) can be well approximated by random
projections onto its column space, thus providing a fast approx-
imation of SVD.

A technique exploiting this paradigm is the GoDec algorithm
described in (Zhou and Tao, 2011). This method requires to
know approximately both the rank r of the low-rank term L and
the cardinality (i.e., the number of non-zero entries) k of the
sparse term S , and it solves the following minimization prob-
lem $

&

%
min
L,S

›››pX ´ L ´ S
›››

2

F

s.t. rankpLq § r, cardpS q § k.
(4)

GoDec adopts a block-coordinate minimization scheme
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(a.k.a. block relaxation or alternating optimization), i.e., it al-
ternatively forces L to the rank-r approximation of pX ´ S , and
forces S to the sparse approximation with cardinality k of pX´L.
The rank-r projection is computed using Bilateral Random Pro-
jections (BRP) instead of SVD thus obtaining a speed up in the
computation. The updating of S is obtained via entry-wise hard
thresholding, keeping the k largest elements of |pX ´ L| only.

Estimating the cardinality k of the sparse term might be unre-
liable in practical applications. In order to avoid this parameter,
one can consider instead the following minimization problem:

$
&

%
min
L,S

1
2

›››pX ´ L ´ S
›››

2

F
` � }S }1

s.t. rankpLq § r
(5)

where � is a regularization parameter which balances the
tradeo↵ between the sparsity of S and the residual error›››pX ´ L ´ S

›››
2

F
. In this case, the updating of the sparse part is

obtained by minimizing the cost function in (5) with respect to
S , keeping L constant. Such a problem is known to have an
analytical solution, given by the soft thresholding or shrinkage
operator ⇥� (Beck and Teboulle, 2009) applied to the matrix
pX ´ L. This operator is defined as follows

⇥�pS q “ signpS q ¨ maxp0, |S | ´ �q (6)

where scalar operations are applied element-wise. This method
is described in detail in Algorithm 1.

Algorithm 1 GoDec for RPCA

Input: pX, r, ✏, �
Output: L, S

Initialize: L “ pX, S “ 0

while
›››pX ´ L ´ S

›››
2

F
{

›››pX
›››

2

F
° ✏ do

1. L – rank-r approximation of pX ´ S via BRP
2. S – ⇥�ppX ´ Lq

end while

A principled choice of �, which plays a role similar to an
inlier threshold, is derived in (Donoho, 1995) in the case of
uncorrelated residuals

� “ �
b

2 logpmq (7)

where m is the number of observations and � is an estimate of
the noise standard deviation (we used the default value of 0.02
in all our experiments).

4.2. Matrix completion
RPCA assumes that the data matrix pX is fully available.

However, in practical scenarios, one has to face the problem
of missing data. Matrix Completion (MC) (Candès and Recht,
2009; Candès and Tao, 2010) is the most natural tool to manage
matrices containing unspecified entries.

A partial matrix is a matrix whose entries are specified on a
subset of index pairs and unspecified elsewhere; a completion

of a partial matrix consists in assigning values to the unspecified
entries. Matrix completion problems deal with partial matrices
which satisfies some prescribed properties, notably low-rank or
positive definiteness. We are concerned here with the low-rank
problem, illustrated in Figure 2, which can be cast as an in-
stance of the general decomposition (1) with a specific choice
of F and S “ 0, namely

P⌦ppXq “ P⌦pLq ` N. (8)

Here ⌦ is a p0, 1q-matrix representing the pattern (a.k.a. sam-
pling set) of pX, i.e.,⌦i j “ 1 if pXi j is specified and⌦i j “ 0 other-
wise, andP⌦pXq “ ⌦˝X, where ˝ is the Hadamard (entry-wise)
product, with the provision that an unspecified value multiplied
by 0 gives 0.

?
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? ?

?

?

?

?
?

?

L�X

Figure 2: L is a low rank completion of pX.

The MC problem can be solved through nuclear norm mini-
mization $

&

%
min

L
}L}˚

s.t.
›››P⌦ppX ´ Lq

›››
F

§ ✏
(9)

or – if the rank is known a priori – by addressing the following
optimization problem

$
&

%
min

L

›››P⌦ppX ´ Lq
›››

2

F

s.t. rankpLq § r.
(10)

The minimum sample size required to make matrix comple-
tion well-posed is equal to the number of degrees of freedom
of the data matrix, namely pn1 ` n2 ´ rqr, where r is the rank
and n1 ˆ n2 is the dimension of the matrix. In general, practi-
cal MC algorithms do not cope with the minimal case but they
require a redundant number of observed entries. For instance,
nuclear norm minimization recovers the full low-rank matrix
L with high probability – under suitable assumptions – if the
number of observed entries is of the order Opn̄r log6pn̄qq, where
n̄ “ maxtn1, n2u (Candès and Tao, 2010). Similarly to RPCA,
such theoretical conditions depend on some incoherence prop-
erties of the data matrix and on the randomness of ⌦. With
reference to Problem (10), Keshavan et al. (2010) improved the
bound on the cardinality of ⌦ to Opn̄r logpn̄qq, with the extra
condition that the data matrix has bounded condition number.

Conventional solvers for MC include convex solvers such
as ALM (Lin et al., 2010), SVT (Cai et al., 2010) and FPCA
(Ma et al., 2011), and subspace identification solvers such
as OptSpace (Keshavan et al., 2010) and ADMiRA (Lee and
Bresler, 2010).
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Specifically, in the subspace identification problem the goal
is to identify the column space of the unknown low-rank term
L. Clearly, any matrix L of rank up to r admits a factorization
of the form L “ ZYT where Z and YT are of r columns and r
rows respectively. Thus an alternative minimization for the MC
problem is $

&

%
min
L,Z,Y

››ZYT ´ L
››2

F

s.t. P⌦ppXq “ P⌦pLq.
(11)

In particular, OptSpace solves a normalized version of the pre-
vious problem, with Z,Y belonging to the Grassmannian man-
ifold, namely the set of all r-dimensional subspaces of a Eu-
clidean space, via gradient descent.

The MC problem can also be solved by modifying the GoDec
Algorithm, as explained by Zhou and Tao (2011). The mini-
mization problem (10) is reformulated by introducing a sparse
term S which approximates ´P0pLq, where 0 represents the
complementary of ⌦, resulting in the following problem

$
&

%
min
L,S

›››P⌦ppXq ´ L ´ S
›››

2

F

s.t. rankpLq § r, supppS q “ 0
(12)

where supppS q denotes the support of S , i.e., the p0, 1q-matrix
with i j-th entry equal to 1 if S i j ‰ 0, and equal to 0 otherwise.
The associated decomposition problem is

P⌦ppXq “ L ` S ` N (13)

which is equivalent to (8) but it does not involve the projection
operator P⌦ in the right side, thanks to the introduction of the
auxiliary variable S . Note that here S does not represent the
outliers, but the recovery of missing entries. In the GoDec al-
gorithm for MC, the updating of the sparse term is obtained by
assigning P0ppX ´ Lq “ ´P0pLq to S . The method is summa-
rized in Algorithm 2.

Algorithm 2 GoDec forMC

Input: pX, ⌦, r, ✏
Output: L, S

Initialize: L “ pX, S “ 0

while
›››P⌦ppXq ´ L ´ S

›››
2

F
{

›››P⌦ppXq
›››

2

F
° ✏ do

1. L – rank-r approximation of P⌦ppXq ´ S via BRP
2. S – ´P0pLq

end while

4.3. RPCA and MC
Although being two instances of the same general formu-

lation (1), RPCA and MC remain two distinct problems. On
one hand, RPCA handles the presence of outlier measurements
but it does not deal with missing data, on the other hand MC
techniques can fill missing entries, but they are not robust to
outliers. Addressing these issues simultaneously is equivalent
to solving the following decomposition problem (illustrated in
Figure 3)

P⌦ppXq “ P⌦pLq ` S ` N (14)

which aims at recovering the low-rank matrix L starting from
an incomplete subset of its entries which are corrupted by both
noise and outliers, where S and N have support in ⌦. This
problem is also known as robust matrix completion.

+!
?!
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?!
?!

?!

?!

?!

?! ?!
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L S�X

Figure 3: Robust Matrix Completion. L is a low rank completion of pX ´ S .

This problem is numerically challenging and poorly studied
from a theoretical point of view, as confirmed by the analysis
in (Zhou et al., 2014). A seminal work is presented in (Waters
et al., 2011), where the authors combine a greedy pursuit for
updating the sparse term, with an SVD-based approximation for
the low-rank term. This method requires to know in advance the
cardinality of the sparse term. Other available approaches are
(Tao and Yuan, 2011), which reformulates the problem under
the scope of the classical ALM, and (He et al., 2012; Wen et al.,
2012; Zheng et al., 2012; Wang et al., 2014) which exploit a
di↵erent formulation in terms of subspace identification in the
presence of outliers.

In particular, the Grasta algorithm presented by He et al.
(2012) minimizes the following cost function

#
min
S ,Z,Y

}S }1

s.t. P⌦ppXq “ P⌦pZYT q ` S ,
(15)

with Z belonging to the Grasmannian manifold. Grasta works
on one column of pX at a time, i.e., it considers the following
minimization problem

#
min
s,Z,y

}s}1

s.t. P⌦ppxq “ P⌦pZyT q ` s,
(16)

where px, s and y are column vectors of pX, S and Y respectively.
The Augmented Lagrangian of this constrained minimization
problem is

LpZ, s, y,wq “ }s}1 ` wT pP⌦pZyT q ` s ´ P⌦ppxqq
` ⇢

2
››P⌦pZyT q ` s ´ P⌦ppxq

››2 (17)

where w is the dual vector. Grasta alternates between esti-
mating Z and the triple of vectors ps, y,wq. For computing Z,
Grasta uses gradient descent on the Grasmannian with ps, y,wq
fixed. With Z fixed, the triple ps, y,wq is computed using the
Alternating Direction Method of Multipliers (ADMM) (Boyd
et al., 2011).

The L1-Alm algorithm presented by Zheng et al. (2012) ex-
ploits a similar approach and solves instead

min
Z,Y

›››P⌦ppX ´ ZYT q
›››

1
` �

››YT
››

˚

s.t. ZT Z “ Ir.
(18)
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Enforcing Z to be column orthogonal shrinks the solution space,
while the (convex) nuclear norm regularization term is intro-
duced to improve convergence. The optimization problem is
solved via the augmented Lagrange multiplier (ALM) method
(Bertsekas, 1982). At each iteration, the augmented Lagrange
function with orthogonal Z is minimized using a Gauss-Seidel
strategy, then the Lagrange multiplier and the dual parameter
are updated.

We introduce here a novel variant of GoDec, dubbed R-
GoDec, which manages at the same time both the presence of
outliers and unspecified entries in the data matrix pX. More in
detail, the sparse term is expressed as the sum of two terms S 1
and S 2 having complementary supports:

• S 1 is a sparse matrix with support on ⌦ representing out-
lier measurements;

• S 2 has support on 0 and it is an approximation of
´P0pLq, representing completion of missing entries.

This results in the following model

P⌦ppXq “ L ` S 1 ` S 2 ` N (19)

which is the natural combination of the RPCA formulation (2)
with the MC formulation (13) associated to the GoDec algo-
rithm. Equation (19) reduces to (2) over ⌦, since S 2 is zero in
⌦. On 0 instead, Equation (19) turns to L ` S 2 ` N “ 0, since
both S 1 and pX are zero in 0, and thus S 2 must coincide with
´L (up to noise) as in the case of Problem (12).

The decomposition Problem (19) is translated into the fol-
lowing minimization

$
’’’’’&

’’’’’%

min
L,S 1,S 2

1
2

›››P⌦ppXq ´ L ´ S 1 ´ S 2

›››
2

F
` � }S 1}1

s.t. rankpLq § r,
supppS 1q Ñ ⌦,
supppS 2q “ 0

(20)

which is solved using a block-coordinate scheme that alternates
the steps of Algorithm 1 and Algorithm 2. First, the rank-r
projection of P⌦ppXq ´ S 1 ´ S 2 (computed through BRP) is
assigned to L. Then, the sparse terms S 1 and S 2 are updated
separately. The outlier term S 1 is computed by applying the
soft-thresholding operator ⇥� to the matrix P⌦ppX ´ Lq. As
for the completion term, ´P0pLq is assigned to S 2, according
to the GoDec algorithm for MC. These steps are iterated until
convergence. Our method, called R-GoDec where “R” stands
for “robust”, is summarized in Algorithm 3. Note that R-GoDec
has a flexible structure, e.g., it can be extended to the case where
P⌦ppXq contains Euclidean distances (Rossi et al., 2017).

The computational complexity of R-GoDec is dominated by
the computation of L via BRP, which requires, as reported in
(Zhou and Tao, 2011), r2pn1 ` 3n2 ` 4rq ` p4q ` 4qn1n2r flops,
where pX is n1 ˆ n2 dense matrix with rank r and q is an in-
teger (between 1 and 10 in our experiments) that controls the
approximation error of the BRP. Step 2 requires n1n2 flops and
the test of the cycle takes 5n1n2 flops. In total R-GoDec re-
quires pr p4 q ` 4q ` 6q n1 n2 ` r2 n1 `

`
3 r2

˘
n2 ` 4 r3 flops

per iteration, that asymptotically is Opn1n2q.

Algorithm 3 R-GoDec

Input: pX, ⌦, r, ✏, �
Output: L, S 1, S 2

Initialize: L “ pX, S 1 “ 0, S 2 “ 0

while
›››P⌦ppXq ´ L ´ S 1 ´ S 2

›››
2

F
{

›››P⌦ppXq
›››

2

F
° ✏ do

1. L – rank-r approximation of P⌦ppXq ´ S 1 ´ S 2 via
BRP

2. S 1 – ⇥�pP⌦ppX ´ Lqq
3. S 2 – ´P0pLq

end while

We shall summarize here what we know about the conver-
gence of R-GoDec, discussing first the convergence of the ob-
jective function and then the convergence of the variables. In
this analysis we assume that the matrix L is produced by SVD
instead of BRP, i.e., we disregard the random nature of BRP
and assume a deterministic result.

Convergence of the objective function. The alternative mini-
mization of problem (20) with respect to one variable at a time
produces a convergent sequence of objective function values
1
2

›››P⌦ppXq ´ L ´ S 1 ´ S 2

›››
2

F
`� }S 1}1. Indeed, each of the three

sub-problems has an optimal solution that can be computed re-
spectively by updating L via singular value hard-thresholding
of P⌦ppXq ´ S 1 ´ S 2, S 1 via entry-wise soft-thresholding of
P⌦ppX ´ Lq, and S 2 via ´P⌦pLq. Therefore, in each step the
sub-problem over the coordinate block is solved exactly to its
optimal solution hence the sequence of non-negative objective
function values is non-increasing.

Convergence of the variables L, S 1 and S 2. Convergence re-
sults for GoDec are known in the literature in the two following
cases:

Robust PCA (no missing data). In this case S 2 is null and S 1
is not null; then the minimization problem (20) reduces to
the RPCA case, namely problem (5) where S “ S 1. In this
case the cost function is continuous and coercive, in fact,
intuitively, if S grows to infinity so does the cost, while if
L grows to infinity then S seeks to compensate the growth
pushing ||S ||1 and thus the cost to infinity. Thus there
exists a convergent subsequence of variables. Thanks to
Lemma 3.1 and Theorem 4.1 in (Tseng, 2001) the cluster
point of such subsequence is actually a coordinate-wise
minimum and stationary point. The convergence of the
low-rank term is reported in (Zhou and Tao, 2013).

Matrix completion (no outliers). In this case S 1 is null and
S 2 is not null; then the minimization problem (20) col-
lapses to the MC case, namely problem (10) where S “
S 2. In this case the linear convergence of the variables to a
local minimum can by proved within the framework of al-
ternating projections on two manifolds (Lewis and Malick,
2008), as stated in Theorem 3 in (Zhou and Tao, 2011).

R-GoDec instead is a mix of these two cases, since it caters
for outliers and missing entries. In this case S 1 and S 2 are both
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Figure 4: Angular error [degrees] achieved by R-GoDec on rotation synchro-
nization versus fraction of outliers and missing data. The two cases of MC and
RPCA correspond to the axes.

present, and we have not been able to prove convergence re-
sults for the variables. In particular, the cost function (20) is no
longer coercive, and also the problem does not fall any more
under the framework of alternating projections on two mani-
folds. Nevertheless, empirical evidence supports the conjecture
that there is a region which extends beyond the axes where R-
GoDec converges to the global minimum of (20). Figure 4 re-
ports the result of a simulation where we varied the percentage
of outliers and the percentage of missing entries, as described
in Section 7.1. Since no noise has been added, zero error means
that the correct solution is attained. This occurs on a region
around the origin, which defines empirically the convergence
basin of R-GoDec.

Please note that even on the axis the error is not always zero:
in fact it increases when outliers reach the breakdown point or
missing entries approaches the limit of matrix completion. For
this reason, in the mixed case, when the error departs from zero
this can be caused by non-convergence to a global minimum or
by the intrinsic limits of the method itself, but we cannot tell
which alternative applies.

5. Problem formulation

The synchronization problem (Singer, 2011) aims at recov-
ering elements of a group given measures of their ratios, thus
leaping from two-view to multi-view information. More pre-
cisely, let ⌃ denote a group, let Y1, . . . ,Yn denote n elements
of ⌃ and let Xi j P ⌃ denote the ratio between Yi and Yj. The
goal is to recover Y1, . . . ,Yn P ⌃ based on the knowledge of a
certain number of Xi j P ⌃ such that the following compatibility
constraint is satisfied

Xi j “ YiY´1
j . (21)

In this paper we are interested in ⌃ “ S Ep3q, in which
case we are in the context of rigid-motion synchronization
(also known as motion averaging (Govindu, 2004)), and in
⌃ “ S Op3q, in which case we are dealing with rotation syn-
chronization (also known as rotation averaging (Hartley et al.,
2013)). In the first case, Y1, . . . ,Yn P SE(3) denote n rigid trans-
formations representing the absolute – i.e., expressed in an ex-
ternal coordinate system – angular attitudes and positions of lo-
cal reference frames, and Xi j P SE(3) denotes the ideal (noise-
free) relative motion of the pair pi, jq, namely the rigid trans-

formation (or direct isometry) that maps the reference frame i
in that associated to j. In the second case, Y1, . . . ,Yn P SO(3)
denote n rotations representing the absolute angular attitudes
of local reference frames, and Xi j P SO(3) denotes the ideal
relative rotation of the pair pi, jq.

In this paper we consider the matrix representations of SE(3)
and SO(3), which are viewed as subgroups of the General Lin-
ear Group of degree 4 and 3, respectively

SE(3) “
# ˆ

R t
0T 1

˙
, s.t. R P SO(3), t P R3

+

(22)

SO(3) “ tR P R3ˆ3, s.t. RTR “ RRT “ I, detpRq “ 1u (23)

thus inverse and composition of rotations/rigid transformations
reduce to matrix operations. In particular, in the Special Or-
thogonal Group the inverse equals matrix transposition, thus the
compatibility constraint rewrites

Xi j “ YiYT

j . (24)

In practice only a subset of all the relative motions/rotations
is available, due to the lack of overlap between some pairs of
images/scans. However, there is a significant level of redun-
dancy in general datasets, which can be used to distribute the
error over all the nodes, avoiding drift in the solution. Let A
be the p0, 1q-matrix that indicates the available measurements:
Ai j “ 1 if Xi j is available, Ai j “ 0 otherwise. Let us consider
the measurement graph G “ pV,Eq whose adjacency matrix
is A, where V denotes the vertex set and E denotes the edge
set. It must consist of a single connected component, in order
to guarantee solvability of the synchronization problem. Con-
sequently, in the minimal case the graph must be a spanning
tree over n nodes, which has n ´ 1 edges (i.e., relative mo-
tions/rotations).

Let pXi j denote an estimate of Xi j (in this paper we use the hat
accent to denote noisy measurements). The estimated relative
rotations/motions are usually corrupted by a di↵use noise with
small variance, hence they do not satisfy Equation (21) exactly.
Thus the goal is to average them so as to maximally satisfy
pXi j « YiY´1

j . A possible approach consists in formulating the
following optimization problem

min
YiP⌃

ÿ

pi, jqPE

›››pXi j ´ YiY´1
j

›››
2

F
(25)

where the Frobenius norm }¨}F defines a left-invariant metric
on SE(3) and a bi-invariant metric on SO(3). The solution is
determined up to a global transformation, a↵ecting the external
coordinate system. This fact is inherent to the problem and can-
not be resolved without external measurements. Note that if G
is a tree then there is no counteraction of the errors in the solu-
tion. However, as soon as redundant measures are considered
(i.e. the graph has at least one cycle), they are exploited by the
synchronization process to globally compensate the errors.

Problem (25) is analyzed in depth in (Hartley et al., 2013)
in the ⌃ “ S Op3q case under the name `2-chordal averaging.
Further theoretical analysis is reported in (Wilson et al., 2016)
where it is shown that smaller and well-connected graphs are
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easier than larger and noisy ones, based on a local convexity
analysis.

As observed in (Arie-Nachimson et al., 2012), Problem (25)
can be reformulated in a useful equivalent form that captures a
low-rank constraint.

Let X denote the rn ˆ rn block-matrix containing the rel-
ative measures, let Y denote the rn ˆ r block-matrix contain-
ing the absolute transformations, and let Y´5 denote the r ˆ rn
block-matrix containing the inverse of absolute transforma-
tions, namely

X “

¨

˚̊
˝

I X12 . . . X1n

X21 I . . . X2n

. . . . . .
Xn1 Xn2 . . . I

˛

‹‹‚, Y “

»

——–

Y1
Y2
. . .
Yn

fi

��fl ,

Y´5 “
“
Y´1

1 Y´1
2 . . . Y´1

n
‰

(26)

where I denotes the identity matrix, r “ 3 in the ⌃ “ SO(3)
case and r “ 4 in the ⌃ “ SE(3) case. Using this notation,
the compatibility constraint (21) can be expressed in a compact
form as

X “ YY´5 (27)

which implies that rankpXq “ r. In the Special Orthogonal
Group Equation (27) reduces to

X “ YYT (28)

and hence, besides being low-rank, the matrix X is symmetric
and positive semidefinite.

The minimum number of relative measures necessary to
solve the synchronization problem is n ´ 1; in addition to this,
we have n measures equal to the identity matrix along the diag-
onal of X (i.e., Xii “ I for i “ 1, . . . , n) resulting in r2p2n ´ 1q
specified entries of X. Not surprisingly, this number coincides
with the degrees of freedom of a generic rn ˆ rn rank-r matrix
(in general, a n1 ˆn2 matrix of rank r has pn1 `n2 ´rqr degrees
of freedom).

Let pX be a noisy version of the ideal matrix X containing the
observed relative rotations/motions pXi j. Since the measurement
graph is not complete in general, pX has missing entries, which
are represented as zero blocks. In other words, the available
relative information is given by P⌦ppXq, where the sampling set
has a r ˆ r block-structure: ⌦ “ A b rˆr, where b denotes
the Kronecker product and rˆr is a r ˆ r matrix of ones. Using
this notation, the minimization problem (25) can be expressed
as

min
X

›››P⌦ppX ´ Xq
›››

2

F

s.t. X “ YY´5, Y P ⌃n.
(29)

Problem (29) is non-convex, and therefore computationally
hard to solve in general. For this reason, a principled strat-
egy consists in formulating tractable approaches that solve the
problem approximately but accurately, so as to provide a good
starting point for a subsequent local refinement. This can be
regarded as an “extrinsic calculation”, for the rotation/rigid-
motion constraints are relaxed to compute the solution.

One example is the spectral relaxation where the synchro-
nization problem is cast to a spectral decomposition, and a
straightforward robust enhancement can be gained via Itera-
tively Reweighted Least Squares (IRLS). This approach was
introduced by Singer (2011) for SO(2), extended in (Singer and
Shkolnisky, 2011; Arie-Nachimson et al., 2012) to SO(3) and
further generalized in (Arrigoni et al., 2016c) to SE(3). An-
other possibility is the semidefinite relaxation used in (Arie-
Nachimson et al., 2012; Rosen et al., 2015) where the synchro-
nization problem is expressed as a semidefinite program (SDP).

6. Proposed approach

In this section we cast the synchronization problem as a LRS
matrix decomposition, paving the way to the application of gen-
eral matrix decomposition techniques in structure-from-motion
and multiple 3D point-set registration. Besides this, we adapt
R-GoDec (Algorithm 3) in order to fit the needs of rotation and
rigid-motion synchronization.

We observe that the formulation in (29) can successfully av-
erage noisy relative measures, but it is not resistant to outliers.
For this reason we consider the following problem

min
X,S

›››P⌦ppX ´ Xq ´ S
›››

2

F

s.t. X “ YY´5, Y P ⌃n, S is sparse in ⌦
(30)

where the additional variable S represents outliers, which are
sparse over the measurement graph (by assumption).

If the rank relaxation is adopted, i.e. all the constraints except
of the rank property are ignored, then the following optimiza-
tion problem is obtained

min
L,S

›››P⌦ppX ´ Lq ´ S
›››

2

F

s.t. rankpLq § r, S is sparse in ⌦
(31)

where L denotes a low-rank matrix which approximates the the-
oretical X defined in (26). It is worth noting that an outlier term
is included in the cost function by design. With respect to non
robust solutions that rely on a preliminary outlier rejection step,
this approach has the great advantage of being intrinsically re-
silient against outliers.

Note that Problem (31) is indeed a LRS decomposition prob-
lem with unspecified entries and outliers, since it is associated
to the formulation (14), namely P⌦ppXq “ P⌦pLq ` S ` N.
Thus the absolute rotations/motions can be recovered by means
of any algorithm that computes such decomposition, such as
Grasta (He et al., 2012) or L1-Alm (Zheng et al., 2012), as ex-
plained in Section 4.3. Alternatively, the equivalent formulation
(19) can be used, namely P⌦ppXq “ L ` S 1 ` S 2 ` N, which
can be computed via the R-GoDec algorithm.

In the synchronization problem, however, the data matrix pX
has a block structure, being composed of rotations or rigid mo-
tions, and this should be reflected by the sparse term which rep-
resents the outliers. This is taken into account by modifying
Algorithm 3 in order to enforce a block-structure in S 1. Specif-
ically, the `1-norm in (20) is substituted with the mixed `2,1-
norm which promotes group sparsity. Accordingly, we address
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the following problem
$
’’’’’&

’’’’’%

min
L,S 1,S 2

1
2

›››P⌦ppXq ´ L ´ S 1 ´ S 2

›››
2

F
` � }S 1}2,1

s.t. rankpLq § r,
supppS 1q Ñ ⌦,
supppS 2q “ 0

(32)

where the mixed `2,1-norm of a rn ˆ rn matrix S is defined as
the sum of the Frobenius norm of each r ˆ r block S i j

}S }2,1 “
nÿ

i, j“1

}S i j}F . (33)

The minimum of the cost function with respect to S 1 keep-
ing the other variables constant has a closed-form expression,
given by the generalized soft-thresholding (or shrinkage) oper-
ator ⇥2,1

� applied to the matrix P⌦ppX ´ Lq (Kowalski and Tor-
résani, 2009). Such an operator takes a rn ˆ rn matrix S as
input and on each r ˆ r block S i j it computes

⇥2,1
� pS i jq “ S ¨ maxp1 ´ �

}S i j}F
, 0q (34)

where scalar operations are applied element-wise. In this way
the selected blocks are the ones with the biggest Frobenius
norms. Accordingly, Step 2 of Algorithm 3 is modified as fol-
lows

S 1 – ⇥2,1
� pP⌦ppX ´ Lqq.

The optimal S 1 can be used to identify the outliers, since rogue
relative measures correspond to nonzero blocks in S 1. Please
note that, as in Algorithm 3, the cost function in (32) has a
unique minimum with respect to S 1.

Once the optimal L is found via any LRS algorithm, we
proceed as follows to compute the absolute rotations/motions.
Since the solution to synchronization is defined up to a global
transformation, any block-column of L can be used as an esti-
mate of Y . Due to the rank relaxation, each r ˆ r block is not
guaranteed to belong to ⌃ and needs to be projected onto the
group. As concerns the Special Orthogonal Group, the nearest
rotation matrix (in the Frobenius norm sense) is found via Sin-
gular Value Decomposition (SVD) (Keller, 1975). As concerns
the Special Euclidean Group, every fourth row is set equal to
r0 0 0 1s and 3 ˆ 3 rotation blocks are projected onto SO(3)
through SVD, as explained in (Belta and Kumar, 2002).

7. Experiments in SO(3)

We plugged R-GoDec, Grasta and L1-Alm in our frame-
work, obtaining three rotation synchronization methods based
on LRS matrix decomposition. We evaluated these solutions on
both synthetic and real scenarios in terms of accuracy, execution
cost and robustness to outliers. All the experiments were per-
formed in Matlab on a dual-core MacBook Air with i5 1.3GHz
processor, 4Gb RAM.

We compared R-GoDec, Grasta and L1-Alm to several tech-
niques from the state of the art. We considered the spectral

relaxation (EIG) (Arie-Nachimson et al., 2012) and its robust
variation (EIG-IRLS), the semidefinite relaxation (SDP) (Arie-
Nachimson et al., 2012), the OptSpace algorithm (Keshavan
et al., 2010), the Weiszfeld algorithm (Hartley et al., 2011), the
L1-IRLS algorithm (Chatterjee and Govindu, 2013), and the
LUD algorithm (Wang and Singer, 2013).

The code of LUD has been provided by Wang and Singer
(2013), the codes of Grasta, L1-Alm, OptSpace and L1-IRLS
are available on the web, while in the other cases we used our
implementation. The Cauchy weight function (Holland and
Welsch, 1977) was used in EIG-IRLS and the SeDuMi toolbox
(Sturm, 1999) was used to solve the semidefinite program as-
sociated to the SDP method. Our implementation of R-GoDec
is available on-line1. All the methods used the default tuning
parameter(s) specified in the original paper or code.

In order to compare estimated and ground-truth absolute
rotations we employed `1 single averaging. Specifically, if
pY1, . . . , pYn are estimates of the theoretical absolute rotations
Y1, . . . ,Yn, then the optimal S P S Op3q that aligns them into
a common reference system solves Yi “ pYiS , and hence it is
the single mean of the set tYi pYT

i , i “ 1, . . . , nu, and it can be
computed e.g. by using (Hartley et al., 2011). Then we used
the angular distance to evaluate the accuracy of rotation recov-
ery. The angular (or geodesic) distance between two rotations
A and B is the angle of the rotation BAT (in the angle-axis
representation) so chosen to lie in the range r0, 180˝s, namely
d=pA, Bq “ d=pBAT , Iq “ 1{

?
2

››logpBAT q
››

2 . Other dis-
tances in SO(3) can be considered with comparable results.

7.1. Simulated Data

In our simulations we considered n rotation matrices sam-
pled from random Euler angles, representing ground truth ab-
solute rotations. The measurement graph G “ pV,Eq is a ran-
dom graph drawn from the Erdős-Rényi model with parameters
pn, pq, i.e. given a vertex set V “ t1, 2, . . . , nu each edge pi, jq
is in the set E with probability p P r0, 1s, independently of
all other edges. Thus p1 ´ pq controls the degree of sparsity
of the graph and p “ 1 corresponds to the complete graph.
Only connected graphs are considered among all the instances
generated in this way. A fraction of the pairwise rotations was
drawn uniformly from SO(3), simulating outliers. The remain-
ing pairwise rotations were corrupted by multiplicative noise
pXi j “ Xi jNi j where Ni j P SO(3) has axis uniformly distributed
over the unit sphere and angle following a Gaussian distribution
with zero mean and standard deviation �R P r1˝, 10˝s, thus rep-
resenting a small perturbation of the identity matrix. Consider-
ing the first order approximation of rotations, this corresponds
to additive noise. All the results were averaged over 50 trials.

It is hard to evaluate the performances of a synchronization
method as a whole, since several factors are involved, thus in
the following simulations we let one parameter vary at a time
and keep the others fixed.

1
www.diegm.uniud.it/fusiello/demo/gmf/
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Figure 5: Mean angular errors [degrees] as a function of the noise standard
deviation, with p “ 0.5 (left) and p “ 0.2 (right). Outliers are not introduced
in this experiment.

Noise
In this experiment we analyse the behaviour of the aforemen-

tioned methods in the presence of noise among the input rota-
tions without introducing outliers, with n “ 100. Results are
reported in Figure 5 with p “ 0.5 and p “ 0.2, which corre-
spond to about 50% and 80% of missing pairs, respectively. As
expected the lowest errors are achieved by the non-robust meth-
ods, namely EIG, SDP and OptSpace. On the contrary, all the
robust methods yield worse results, since they essentially trade
robustness for statistical e�ciency. This compromise is partic-
ularly evident in L1-IRLS at the point when it switches from
quadratic to fixed loss, defined by a fixed value (5˝), whereas
EIG-IRLS, that uses a data dependent threshold, has a more
linear trend, for the trade-o↵ takes place at all noise levels.
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Figure 6: Mean angular errors [degrees] as a function of q, with p “ 0.5 (left)
and p “ 0.2 (right). A fixed level of noise is applied to the inlier rotations in
this experiment.

Outliers
In this experiment we study the robustness to outliers of our

approach. Each edge pi, jq P E was designated as an outlier
with uniform probability q P r0, 1s, independently of all other
edges. Figure 6 shows the angular errors of all the analysed
methods as a function of q, with n “ 100. As before, we chose
p “ 0.2 and p “ 0.5 to define the density of the measure-
ment graph. In this experiment all the inlier rotations were cor-
rupted by a fixed level of noise (�R “ 5˝). When the percentage
of unspecified relative rotations is about 50%, the errors of R-
GoDec, Grasta and L1-Alm remain almost constant, showing
no sensitivity to outliers. The same happens for LUD, L1-IRLS
and EIG-IRLS. On the contrary, EIG, SDP and OptSpace are
not robust to outliers, as already observed in the previous sec-
tions. As for the Weiszfeld algorithm, its performances places it
at the middle between robust and non-robust solutions. Specif-
ically, it shows good resilience to outlier rotations when they
are below 30%, then the errors start to grow up, yielding a be-

haviour similar to non-robust approaches. When the data matrix
is highly incomplete (p “ 0.2), the di↵erence between robust
and non-robust solutions becomes smaller, however results are
qualitatively similar to the previous case.
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Figure 7: Mean angular errors [degrees] as a function of p1 ´ pq, with q “ 0
(left) and q “ 0.2 (right). A fixed level of noise is applied to the inlier rotations
in this experiment. The average angular error of Grasta is approximately 80˝
for p1 ´ pq “ 0.95.

Missing Data
In this experiment we study how missing data influence the

performances of LRS algorithms. Figure 7 reports the angular
errors of the analysed methods as a function of p1 ´ pq, with
n “ 100. The sparsity parameter p1 ´ pq ranges from 0.5 to
0.95, which correspond to about 50% and 95% of missing pairs.
Results with lower values of p1´ pq yield the same behaviour as
p1 ´ pq “ 0.5, and hence they are not reported. We considered
both the ideal case where outliers are not present (q “ 0) and a
more realistic situation in which a given percentage of outliers
is introduced (q “ 0.2). In the first case we also considered
the minimal situation in which n ´ 1 relative rotations are avail-
able, which corresponds to 98% of missing pairs. In both cases
all the inlier rotations were corrupted by a fixed level of noise
(�R “ 5˝). In the absence of outliers, when the percentage of
missing pairs do not exceed 90%, the errors obtained by our
approach and the remaining methods remain constant, show-
ing no sensitivity to missing data. Grasta can tolerate up to
90% of missing pairs, whereas R-GoDec and L1-Alm can also
handle the minimal situation, but the errors are higher then the
previous cases. Indeed, there is no way to compensate the ini-
tial errors since there is no redundancy. However, it should be
noted that if only n ´ 1 relative rotations are available, then
there is no need to perform rotation synchronization, and the
absolute rotations can be computed by propagating the compat-
ibility constraint (21) along a spanning tree, starting from any
node assumed equal to the identity matrix.
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Figure 8: Algebraic connectivity of G divided by the number of absolute rota-
tions, as a function of p1´ pq. Low values correspond to hard problems (Wilson
et al., 2016).
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In the presence of outliers, Grasta can tolerate up to 90% of
missing data, while R-GoDec and L1-Alm give reasonable re-
sults until 95% of missing data. However, the performances of
R-GoDec degrade starting from 80% of missing pairs, reaching
errors comparable to non-robust methods when the percentage
of missing pairs is 90%. As for the remaining algorithms, their
behaviour is qualitatively similar to the case where outliers are
not present.

In order to provide a quantitative measure of hardness of the
synchronization problems related to Figure 7, we consider the
indicator introduced by Wilson et al. (2016)

�2pGq
n

(35)

where �2pGq denotes the algebraic connectivity of the measure-
ment graph G “ pV,Eq, that is the second-smallest eigenvalue
of the Laplacian matrix. Figure 8 reports the value of �2pGq{n
as a function of the sparsity parameter p1 ´ pq with n “ 100,
where low values correspond to hard problems, according to
the analysis in (Wilson et al., 2016). As expected, rotation syn-
chronization becomes more di�cult to solve as the percentage
of missing data increases.
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Figure 9: Execution times [seconds] as a function of the number of absolute
rotations, with p “ 0.5 and q “ 0.2. A fixed level of noise is applied to the
inlier rotations in this experiment. LUD, SDP and Weiszfeld are analysed only
with a maximum of 300 nodes due to computational limitations. The bottom
row figures are a magnification of the top-left one.
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Figure 10: Execution times [seconds] as a function of p1 ´ pq, with n “ 100
and q “ 0.2. A fixed level of noise is applied to the inlier rotations in this
experiment. The right figure is a magnification of the left one.

Execution Time
In this experiment we analyse the computational e�ciency

of our approach in two situations. First, we kept the density
level of the measurement graph fixed (p “ 0.5) and let n vary
between 30 and 600. Then, we kept the number of absolute
rotations fixed (n “ 100) and let p1 ´ pq vary between 0.05
(about 5% of missing data) and 0.95 (about 95% of missing
data). In both cases we introduced a fixed level of noise and
outliers on relative rotations (�R “ 5˝, q “ 0.2).

Figure 9 shows that LUD, SDP and Weiszfeld qualify as the
slowest algorithms, while the other ones are significantly faster.
In particular, the EIG method is the fastest solution to the ro-
tation synchronization problem, but it is not robust. Among all
the robust methods, R-GoDec and EIG-IRLS achieve the lowest
execution times, outperforming L1-IRLS. The execution times
of Grasta and L1-Alm are slightly higher than R-GoDec.

Figure 10 shows that LUD and Weiszfeld require more time
as the viewing graph gets denser, whereas the execution times
of the other techniques do not change significantly as p varies.
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Figure 11: ROC curves of outlier detection for di↵erent percentages of outliers,
with p “ 0.2. A fixed level of noise is applied to the inlier rotations in this
experiment.
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Outlier Detection
We conclude this analysis by discussing the performances of

our approach in terms of outlier detection, although this is not
strictly part of rotation synchronization. Outliers correspond
to non-zero entries in the sparse term, namely S 1 for R-GoDec
and S for Grasta. We considered the receiver operating charac-
teristic (ROC) curve, where the x-axis is the fraction of inliers
erroneously classified as outliers, and the y-axis is the fraction
of outliers correctly detected. The parameters that balance spar-
sity of outliers and noise are � for R-GoDec and ⇢ for Grasta,
thus each point in the ROC space is associated to a specific
value of � or ⇢, respectively.

While R-GoDec and Grasta separate outliers and noise, the
L1-Alm algorithm does not perform a classification of the data
into inliers/outliers, thus we used a threshold on the error resid-
uals. More precisely, a relative rotation pXi j P SO(3) is classified
as inlier if

d=ppXi j, pYi pYT

j q § ✓ (36)

where pY1, . . . , pYn are estimates of the absolute rotations, thus
each point in the ROC space is associated to a specific value of
✓. The same procedure was used also for EIG-IRLS, L1-IRLS,
LUD and the Weiszfeld algorithm, whereas non robust methods
are not considered in this experiment.

Figure 11 shows the ROC curves of the analysed algorithms
for di↵erent percentages of outliers, with p “ 0.2 and n “ 100.
All the inlier rotations were corrupted by a fixed level of noise
(�R “ 5˝). It is remarkable that R-GoDec gives a perfect clas-
sification with up to 50% of outliers. The performances drop
with 60% of outliers, which is however a fairly high degree of
contamination. Figure 11 evidences that R-GoDec is generally
more accurate than Grasta in terms of classification, probably
thanks to the mixed `2,1-norm that promotes a block structure
in S 1, whereas there are no significative di↵erences between R-
GoDec and L1-Alm. The ROC curves obtained by EIG-IRLS
and LUD are comparable to those of R-GoDec and L1-Alm
with up to 50% of outliers, and they are generally better than
L1-IRLS and the Weiszfeld algorithm.

7.2. Structure-from-motion
We applied R-GoDec, Grasta and L1-Alm to the rotation

synchronization stage of the structure-from-motion problem,
considering both the benchmark set up by Strecha et al. (2008)
and the irregular large-scale image collection assembled by
Wilson and Snavely (2014).

EPFL Benchmark
The EPFL benchmark (Strecha et al., 2008) contain from 8

to 30 images and it provides ground-truth absolute rotations,
which were used to evaluate the performances of the anal-
ysed methods. We followed a common structure-from-motion
pipeline to obtain estimates of relative rotations. First, reli-
able matching points across the input images were computed
by extracting and matching SIFT features (Lowe, 2004). Then,
for each image pair, the essential matrix was computed in a
RANSAC scheme, and it was factorized to obtain a unique
pXi j P SO(3) via SVD, which was considered missing if insuf-
ficient inlier correspondences were found. Relative rotations

were then improved by applying bundle adjustment to pairs of
cameras.

Results are shown in Table 1, which reports the mean an-
gular errors and execution times of the analysed methods. R-
GoDec, Grasta and L1-Alm are able to recover camera rota-
tions accurately in low execution time, achieving better results
than non-robust algorithms when contamination of outliers is
particularly evident, namely in the Castle sequences which con-
tain repetitive structures. In the remaining datasets all the anal-
ysed methods perform well, obtaining an average angular error
less than 1˝. Among the LRS methods, the highest accuracy is
achieved by L1-Alm. Di↵erences in execution times are mean-
ingless for such relatively small datasets, except in the Castle-
P30 sequence where LUD is remarkably slower than the other
techniques.

Large-scale Datasets
The datasets from (Wilson and Snavely, 2014) contain from

247 to 2508 images and they provide estimates of relative ro-
tations, which were given as input to all the analysed methods.
These input rotations are very noisy and the associated graphs
are highly incomplete in some cases, thus recovering camera
rotations is challenging. Since ground-truth absolute rotations
are not available, we used the output of Bundler (Snavely et al.,
2006) as reference solution.

Results are shown in Table 2 and Figure 12, which report the
median angular errors and the execution times of the analysed
algorithms. Note that such errors are obtained without applying
bundle adjustment, which is the final refinement required in any
structure-from-motion system.

Neither EIG, SDP and OptSpace nor Weiszfeld and LUD are
applicable in practical scenarios, since they do not satisfy the re-
quirements of an e�cient robust scheme. The first three achieve
the highest errors since they are not robust to outliers, whereas
the last two show resilience to outliers (to variable degrees) but
they have the highest execution times.

The remaining algorithms solve the rotation synchronization
problem while ensuring robustness and e�ciency at the same
time, to di↵erent extents. In particular, L1-IRLS achieves the
highest accuracy, while R-GoDec and Grasta achieve an accu-
racy lower than L1-IRLS, albeit comparable in most datasets, in
less time. L1-Alm is more accurate than R-GoDec and Grasta
in most image sequences, at the expense of a higher execution
time. If the percentage of missing data is extremely high, the
performances of LRS methods degrades, in agreement with the
outcome of the simulations and the literature on matrix com-
pletion. As for EIG-IRLS, results are comparable to L1-IRLS
in most datasets both in terms of accuracy and execution time.
R-GoDec and Grasta turn out to be the fastest solutions among
all the robust ones.

Since there is an inherent trade-o↵ between execution time
and error in all the methods, the results reported in Figure 12
show that LRS methods are never dominated (in the Pareto
sense) by others, meaning that they are candidates to lie on the
Pareto front. In particular, R-GoDec reaches one limit of such
a front, since it has the lowest execution time among all the ro-
bust algorithms. The opposite limit is represented by L1-IRLS
that exhibits the lowest angular error.
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Table 1: Mean angular errors [degrees] and execution times [seconds] for several algorithms on the datasets from (Strecha et al., 2008). The number of images (n),
the percentage of missing relative rotations (miss) and the hardness measure in Equation (35) (�2{n) are also reported for each dataset. The lowest angular errors
are highlighted in boldface.

Grasta R-GoDec L1-Alm L1-IRLS EIG-IRLS EIG OptSpace SDP Weiszfeld LUD

Dataset n miss �2{n err t err t err t err t err t err t err t err t err t err t

Castle-P30 30 55 0.07 0.55 0.35 1.33 0.04 0.38 0.08 0.65 0.04 0.33 0.32 2.03 0.01 2.06 0.06 2.22 0.40 0.89 0.87 0.56 10.13
Herz-Jesu-P25 25 43 0.08 0.68 0.35 0.10 0.02 0.09 0.06 0.06 0.03 0.06 0.11 0.13 0.01 0.14 0.05 0.14 0.30 0.06 0.93 0.07 0.97
Castle-P19 19 58 0.06 1.10 0.23 1.80 0.03 0.80 0.04 1.03 0.04 1.34 0.30 2.46 0.01 2.49 0.03 2.52 0.20 1.67 0.37 1.21 1.21
Fountain-P11 11 18 0.41 0.04 0.14 0.03 0.02 0.04 0.03 0.03 0.01 0.03 0.15 0.03 0.01 0.03 0.02 0.03 0.21 0.03 0.03 0.03 0.25
Entry-P10 10 2 0.80 0.07 0.13 0.43 0.01 0.04 0.03 0.30 0.04 0.05 0.11 0.52 0.01 0.52 0.01 0.52 0.16 0.25 0.10 0.07 1.14
Herz-Jesu-P8 8 18 0.44 0.05 0.09 0.05 0.02 0.03 0.06 0.04 0.02 0.04 0.18 0.05 0.01 0.05 0.02 0.05 0.16 0.05 0.02 0.06 0.15

Table 2: Median angular errors [degrees] and execution times [seconds] for several algorithms on the datasets from (Wilson and Snavely, 2014). The number of
images (n), the percentage of missing relative rotations (miss) and the hardness measure in Equation (35) (�2{n) are also reported for each dataset. The lowest
angular errors are highlighted in boldface.

Grasta R-GoDec L1-Alm L1-IRLS EIG-IRLS EIG OptSpace SDP Weiszfeld LUD

Dataset n miss �2{n err t err t err t err t err t err t err t err t err t err t

Piccadilly 2508 90 0.0002 6.41 72 15.31 41 11.47 387 1.89 468 23.95 424 34.99 21 18.65 33 - - 16.81 1195 - -
Roman Forum 1134 89 0.0008 2.65 21 13.08 5.6 8.95 75 2.27 17 1.80 45 21.46 2.1 14.57 5 - - 22.54 250 - -
Union Square 930 94 0.0004 6.87 12 9.25 2.1 14.63 46 3.98 9 4.84 29 8.62 0.8 10.15 3 10.98 3127 8.07 113 - -
Vienna Cathedral 918 75 0.0006 2.08 20 3.11 3.3 1.83 52 1.37 64 1.60 37 5.96 2.2 5.43 5 6.15 2963 3.91 304 - -
Alamo 627 50 0.0013 1.25 14 1.47 4.4 1.19 24 1.09 40 1.18 28 3.16 1.2 2.92 1.8 3.21 717 2.11 265 - -
Notre Dame 553 32 0.0036 0.84 14 1.04 1.4 0.75 19 0.65 34 0.73 22 3.44 1.1 3.03 1.6 3.65 424 1.87 270 - -
Tower of London 508 81 0.0017 2.77 6.2 3.36 0.7 2.90 13.4 2.62 2.9 2.78 6.4 3.86 0.3 3.72 0.9 3.98 380 3.31 73 - -
Montreal N. Dame 474 53 0.0021 0.78 8.9 0.86 0.9 0.62 14 0.57 12 0.59 9.9 2.24 0.6 1.87 1.1 2.29 302 1.15 156 0.69 1038
Yorkminster 458 74 0.0016 2.04 5.9 2.31 3.0 1.85 11.4 1.69 3.3 1.82 6.5 5.84 0.3 4.97 0.9 5.67 280 3.75 80 1.87 937
Madrid Metropolis 394 69 0.0018 2.92 5 4.11 0.7 2.43 8.4 1.01 7.3 4.43 4 7.48 0.2 6.73 0.5 7.40 187 5.53 66 4.55 695
NYC Library 376 71 0.0025 2.26 4.7 3.40 0.3 1.76 7.8 1.33 3.2 1.99 3 5.51 0.2 5.28 0.6 5.58 149 3.68 59 1.95 681
Piazza del Popolo 354 60 0.0011 1.17 4.9 1.63 0.3 1.05 7.1 0.98 5.7 1.03 9.3 3.34 0.2 3.11 0.5 3.48 118 2.27 76 1.22 598
Ellis Island 247 33 0.0011 0.93 3.6 1.00 0.4 0.78 3.2 0.57 3.5 0.82 4.8 2.81 0.1 2.63 0.3 2.89 34 1.50 54 0.91 212
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Figure 12: Median angular error [degrees] versus execution time [seconds].
The dashed line connects all the methods which are not dominated by any other
method, meaning that no algorithm on this line has both execution time and
angular error lower than the others. Only robust algorithms and the largest
datasets from (Wilson and Snavely, 2014) are reported.

In summary, LRS methods achieve a good trade-o↵ between
robustness to outliers and speed. Failure cases appear when the
percentage of missing data is extremely high.

8. Experiments in SE(3)

We evaluated our solution to synchronization in SE(3) on
both simulated and real datasets, analysing resilience to noise,

robustness to outliers, sensitivity to missing data and compu-
tational cost. We considered three LRS decomposition algo-
rithms, namely R-GoDec, Grasta (He et al., 2012) and L1-Alm
(Zheng et al., 2012), as done in Section 7.

We compared such algorithms to several techniques from the
state of the art, namely the methods developed by Sharp et al.
(2002), Govindu (2004), Torsello et al. (2011) (Diffusion), and
Rosen et al. (2016). We also included in the comparison the
spectral relaxation (EIG-SE(3)) and its robust variation (EIG-
SE(3)-IRLS) (Arrigoni et al., 2016c). The codes of Grasta,
L1-Alm, Diffusion and (Rosen et al., 2016) are available online,
the one by Govindu (2004) has been provided by the author,
while in the other cases we used our implementation. All the
methods used the default tuning parameter(s) specified in the
original paper or code.

In order to compare estimated and ground-truth absolute mo-
tions, we found the optimal isometry that aligns them by ap-
plying single averaging for the rotation term and least-squares
for the translation term. Specifically, if pY1, . . . , pYn are esti-
mates of the theoretical absolute motions Y1, . . . ,Yn then the
optimal N P SE(3) that aligns them into a common reference
system solves Yi “ pYiN, which is equivalent to Ri “ pRiR and
ti “ pRit `pti by considering separately the rotation and transla-
tion term. Thus the optimal R P SO(3) is the single mean of the
set tRi pRT

i , i “ 1, . . . , nu, which can be estimated by applying `1
single averaging (Hartley et al., 2011), while the optimal t P R3

is computed in the least-squares sense. Then we used the an-
gular distance and Euclidean norm to measure the accuracy of
estimated rotations and translations respectively,
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Figure 13: Mean errors on absolute motions as a function of the noise standard
deviation, with p “ 0.5. Outliers are not introduced in this experiment.
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Figure 14: Mean errors on absolute motions as a function of q, with p “ 0.5. A
fixed level of noise is applied to the inlier relative motions in this experiment.

8.1. Simulated Data
We considered n absolute motions in which rotations were

sampled from random Euler angles and translation coordinates
followed a standard Gaussian distribution. As done in Section
7, the measurement graph G “ pV,Eq was drawn from the
Erdős-Rényi distribution with parameters pn, pq, and it was dis-
carded if not connected. The inlier pairwise motions were cor-
rupted by a multiplicative noise pXi j “ Xi jEi j, with Ei j P SE(3)
representing a small perturbation of the identity matrix. The
rotation component of Ei j was generated as in Section 7, and
the translation component was sampled from a Gaussian distri-
bution with zero mean and standard deviation �T P r0.01, 0.1s.
All the results were averaged over 50 trials.

Noise
In this experiment we evaluate the e↵ect of noise on relative

motions in the absence of outliers. We considered n “ 100 ab-
solute motions and p “ 0.5, which corresponds to about 50% of
missing pairs. Figure 13 shows the mean errors on absolute mo-
tions (rotation errors are measured in degrees while translation
errors are commensurate with the simulated data) obtained by
all the analysed techniques, as a function of the standard devia-
tion of noise. The worst resilience to noise is achieved by Sharp
et al. (2002) while LRS decomposition techniques and the re-
maining algorithms return good estimates of absolute motions.
A possible explanation of such behaviour is that in (Sharp et al.,
2002) the error is distributed among the motions but it is not re-
duced. The best accuracy is achieved by non robust methods –
namely, Diffusion, EIG-SE(3), Govindu (2004) and Rosen et al.
(2016) – while robust techniques trade robustness for statistical
e�ciency.

Outliers
In this experiment we study the robustness to outliers of LRS

methods. Each edge pi, jq P E was designated as an outlier

with uniform probability q P r0, 1s, independently of all other
edges. Outlier edges were assigned random elements of SE(3).
We considered n “ 100 absolute motions sampled as before,
we chose p “ 0.5 to define the density of the measurement
graph, and we introduced a fixed level of noise on relative mo-
tions (�T “ 0.05,�R “ 5˝). The probability q that an edge
is outlier ranges from 0.05 to 0.5, which correspond to about
5% and 50% of e↵ective outliers. Results are reported in Fig-
ure 14, which shows the mean errors on absolute motions as a
function of q. The errors obtained by Sharp et al. (2002) are
not reported so as to better visualize di↵erences between the re-
maining algorithms (the method by Sharp et al. (2002) yields
an average rotation error of 20˝ for q “ 0.05 and 100˝ for
q “ 0.5). Figure 14 confirms that Diffusion, EIG-SE(3) the
methods by Govindu (2004) and Rosen et al. (2016) are not ro-
bust, and it clearly shows the resilience to outliers gained by
R-GoDec, Grasta, L1-Alm and EIG-SE(3)-IRLS. In particular,
the errors obtained by LRS decomposition techniques remain
almost unchanged until q “ 0.4 for rotations and q “ 0.3 for
translations.
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Figure 15: Mean errors on absolute motions as a function of p1 ´ pq, with
q “ 0 (top) and q “ 0.2 (bottom). A fixed level of noise is applied to the
inlier relative motions in this experiment. In the left sub-figures, the average
rotation errors of R-GoDec are approximately 90˝ for p1 ´ pq “ 0.9 and 120˝
for p1 ´ pq “ 0.95.

Missing Data
In this experiment we study how missing data influence the

performances of our approach. We considered n “ 100 ab-
solute motions sampled as before and we introduced a fixed
level of noise on relative motions (�T “ 0.05,�R “ 5˝). The
sparsity parameter p1 ´ pq ranges from 0.5 to 0.95, which cor-
respond to about 50% and 95% of missing pairs. We consid-
ered both the q “ 0 case (no outliers) and the q “ 0.2 case.
Results are reported in Figure 15, which shows the mean er-
rors on absolute motions as a function of the sparsity parameter
p1 ´ pq. The errors obtained by Sharp et al. (2002) remain
constant as p1 ´ pq increases, showing no sensitivity to missing
data. The same holds for the method by Govindu (2004), Rosen
et al. (2016), Diffusion and the spectral relaxation, if there are
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Figure 16: Execution times [seconds] as a function of n, with p “ 0.5 and
q “ 0.2. A fixed level of noise is applied to the inlier relative motions in
this experiment. The method by Sharp et al. (2002) is analysed only with a
maximum of 300 nodes due to computational limitations. The top-right and
bottom figures are a magnification of the top-left one.
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Figure 17: Execution times [seconds] as a function of p1 ´ pq, with n “ 100
and q “ 0.2. A fixed level of noise is applied to the inlier relative motions in
this experiment. The right figure is a magnification of the left one.

no outliers. In the presence of outliers, the errors achieved by
such techniques slightly increase as the fraction of missing data
becomes higher. As for our approach, Grasta and L1-Alm can
tolerate up to 90% of missing pairs in the q “ 0.2 case, whereas
R-GoDec breaks down with 80% of missing pairs. If there are
no outliers (q “ 0), all the LRS methods can tolerate an extra
5% of missing data.

Execution Time
In this experiment we assess the computational e�ciency of

all the methods in two scenarios. First, we kept the density
level of the measurement graph fixed (p “ 0.5) and let n vary
between 30 and 600. Then, we kept the number of absolute mo-
tions fixed (n “ 100) and let p1 ´ pq vary between 0.05 (about
5% of missing data) and 0.95 (about 95% of missing data). In
both cases we introduced a fixed level of noise and outliers on
relative motions (�T “ 0.05,�R “ 5˝, q “ 0.2). Diffusion
is implemented in C++ (by the authors), while the remaining
algorithms are implemented in Matlab. Figure 16 shows that
the method by Sharp et al. (2002) is remarkably slower than
the other techniques. R-GoDec, Grasta and L1-Alm are faster
than Diffusion and the methods by Govindu (2004) and Rosen
et al. (2016) and slower than the spectral relaxation. The R-

GoDec algorithm turns out to be the fastest solution among the
LRS methods, computing a solution in 12 seconds for n “ 600.
Figure 17 shows that the execution time of matrix decomposi-
tion techniques and the spectral relaxation do not change sig-
nificantly when p varies, whereas the other techniques require
more time as the measurement graph gets denser.

8.2. Multiple 3D point-set registration

In this section we report the outcome of tests on real datasets
of range images. Relative motion estimates were produced
thanks to the Matlab implementation of ICP (pcregrigid).
The ICP algorithm has two outputs: an element of SE(3) that
transforms one point set to the other; and a registration error
computed after applying the transformation. The measurement
graph was defined by discarding all the pairs with registra-
tion error higher than a threshold. This produced a redundant
set of relative motions which were compensated by solving a
rigid-motion synchronization problem, returning the transfor-
mations that align the original point sets. These estimates could
have been improved by alternating rigid-motion synchroniza-
tion and computing relative motions, as suggested by Torsello
et al. (2011) and Govindu and Pooja (2014). However, such a
refinement was not applied in these experiments, i.e. we per-
formed rigid-motion synchronization only once.

Experimentally we observed that LRS methods perform bet-
ter when translation components have values comparable to ro-
tations, namely in the range r´1, 1s. For this reason, before per-
forming rigid-motion synchronization, we divided all the rela-
tive translations by the maximum of the translations norm (and
eventually multiplied the absolute translations by such a scale).
This normalization also improves the results of the other algo-
rithms.

Benchmark datasets
In this experiment we considered two benchmark reposito-

ries, which provide ground-truth absolute motions in addition to
the range images. From the Stanford 3D Scanning Repository2

we used the Bunny, Happy Buddha (standing) and Dragon
(standing) datasets, which contain 10, 15 and 15 point sets, re-
spectively. From the Aim@Shape-Visionair Shape Repository3

we used the Sheep, Kitten and Frog datasets, which contain
20, 24 and 24 point sets, respectively. As for the initialization
of the ICP algorithm, we perturbed the available ground-truth
motions by a rotation with random axis and angle uniformly
distributed over r0, 2˝s, similarly to the experiments carried out
by Govindu and Pooja (2014).

Since ground-truth motions are available for these datasets,
we evaluated quantitatively the results by reporting the mean
errors in Table 3. The errors obtained by R-GoDec, Grasta,
L1-Alm and EIG-SE(3)-IRLS are always lower than the other
techniques, highlighting the benefit of robustness, and the worst
errors are those by Sharp et al. We also evaluated qualitatively

2
http://graphics.stanford.edu/data/3Dscanrep/

3
http://visionair.ge.imati.cnr.it/ontologies/shapes/
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Table 3: Mean errors (rotations in degrees, translations in millimetres) on absolute motions for the Stanford and Aim@Shape-Visionair repositories. The number of
point sets and the percentage of missing pairs are also reported. The lowest errors are highlighted in boldface.

R-GoDec Grasta L1-ALM Govindu Diffusion Sharp et al. EIG-SE(3) EIG-SE(3)-IRLS Rosen et al.

Dataset n % miss. rot. tra. rot. tra. rot. tra. rot. tra. rot. tra. rot. tra. rot. tra. rot. tra. rot. tra.

Bunny 10 0 0.82 2.9 0.84 1.9 0.78 1.6 1.07 3.7 1.07 3.7 1.07 4.5 1.07 3.7 0.73 1.5 1.07 3.7
Buddha 15 0 0.85 0.3 0.79 0.4 0.94 0.4 1.28 0.4 1.28 0.4 2.22 0.6 1.27 0.4 0.78 0.3 1.27 0.4
Dragon 15 0 0.79 0.3 0.91 0.4 0.77 0.4 1.52 0.4 1.52 0.4 1.45 0.6 1.51 0.4 0.76 0.3 1.52 0.4
Sheep 20 22 0.75 0.8 0.59 1.1 0.34 0.8 5.58 4.2 5.36 4.1 3.31 4.6 4.87 3.8 0.33 0.6 5.04 3.2
Kitten 24 17 1.01 0.8 0.90 0.4 0.91 0.4 1.88 1.4 1.97 1.4 5.71 2.6 1.84 1.4 0.90 0.6 1.85 1.4
Frog 24 23 0.44 1.1 0.26 0.5 0.26 0.4 0.92 1.3 0.92 1.3 2.56 1.7 0.90 1.3 0.28 0.5 0.90 1.3

Table 4: Execution times (seconds) of rigid-motion synchronization. The number of point sets and the percentage of missing pairs are also reported.

Dataset n % miss. R-GoDec Grasta L1-ALM Govindu Diffusion Sharp et al. EIG-SE(3) EIG-SE(3)-IRLS Rosen et al.

Bunny 10 0 0.02 0.17 0.08 0.04 0.09 0.30 0.04 0.34 0.15
Buddha 15 0 0.03 0.24 0.08 0.09 0.20 1.02 0.02 0.12 0.16
Dragon 15 0 0.03 0.26 0.06 0.08 0.18 0.94 0.02 0.12 0.20
Sheep 20 22 0.04 0.32 0.08 0.18 0.29 1.21 0.03 0.11 0.29
Kitten 24 17 0.03 0.44 0.11 0.20 0.42 2.15 0.05 0.13 0.30
Frog 24 23 0.04 0.41 0.10 0.15 0.39 2.44 0.05 0.17 0.27
Gargoyle 27 40 0.05 0.47 0.15 0.13 0.35 1.94 0.03 0.15 0.24
Capital 100 71 0.67 1.62 1.66 0.98 2.53 25.27 0.09 0.38 0.93

Table 5: Cross-sections of registered point-sets.

the results in terms of cross-sections in Table 5, as it is custom-
ary in the registration literature. LRS methods produce accu-
rate cross-sections, which are comparable to EIG-SE(3)-IRLS
and better than the remaining methods. The misalignment pro-
duced by Sharp et al. (2002) is particularly evident in the Kitten
dataset. For visualization purposes, we report in Figure 18 the
3D models obtained by aligning the original point clouds with

L1-Alm.

Execution times are reported in Table 4, which refer to the
rigid-motion synchronization step, i.e. computing absolute mo-
tions from relative motions, and they do not include the time for
computing relative motions, which is the same for all the tech-
niques. Table 4 shows that the method by Sharp et al. (2002) is
the slowest one. As for the other techniques, di↵erences in exe-
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cution times are meaningless for such relatively small datasets.

Large-scale datasets
In another experiment we considered two datasets, named

Gargoyle and Capital, which contain 27 and 100 point sets
respectively. Since there is no information about the scans,
we simply initialized the ICP algorithm with identity matrices.
This arbitrary initialization may produce some outliers among
relative motions.

Execution times are reported in Table 4. R-GoDec is slower
than EIG-SE(3) but faster than the other solutions, the method
by Sharp et al. (2002) is the slowest technique, while Grasta
and L1-Alm are faster than Diffusion, comparable to Rosen
et al. (2016) and slower than EIG-SE(3)-IRLS and Govindu
(2004). The di↵erent registration techniques can be appraised
qualitatively from the cross-sections of output 3D models re-
ported Table 5. The cross-sections obtained by our approach
are crisper than non-robust methods, proving the e↵ectiveness
of LRS decomposition in handling measurement errors in the
context of multiple 3D point-set registration. In particular, the
best visual accuracy is achieved by L1-Alm and Grasta, which
is comparable to EIG-SE(3)-IRLS, while R-GoDec get slightly
worse results, yet better than the remaining methods. There is
no significant di↵erence between the cross-sections obtained by
Diffusion, EIG-SE(3), Govindu (2004) and Rosen et al. (2016),
while the misalignment produced by Sharp et al. (2002) is evi-
dent, especially for the Gargoyle dataset. Figure 18 shows the
3D models produced by L1-Alm with di↵erent colours for each
point cloud.

The summary of these tests echoes those of Section 7: rigid-
motion synchronization methods based on LRS decomposi-
tion provide a good trade-o↵ between resilience to outliers and
speed. However, they are more a↵ected than the other methods
by the sparsity of the graph.

9. Conclusions

After reviewing the state-of-the-art on LRS matrix decompo-
sition, for the first time in the literature we formulated synchro-
nization in SO(3) and SE(3) as a LRS decomposition problem.
This mathematical formulation caters for missing data, outliers
and noise, and it benefits from a wealth of available decomposi-
tion algorithms that can be seamlessly used as alternatives, such
as Grasta or L1-Alm. Among these, we conceived R-GoDec
that, building on GoDec, solves RPCA and MC together and the
block structure of the problem is tailored. Experimental results
show that this approach o↵ers a good trade-o↵ between com-
putational e�ciency and robustness to outliers. Failure cases
appear when the percentage of missing data is extremely high.

Our novel formulation opens the way to the application of
matrix decomposition techniques to structure-from-motion and
multiple 3D point-set registration, since – in principle – any
LRS algorithm can be plugged-in. In this respect, our approach
will benefit from future developments in the field of LRS matrix
decomposition.
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