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Abstract

This paper addresses the structure-and-motion problem, that requires to find camera motion and 3D structure from
point matches. A new pipeline, dubbed Samantha, is presented, that departs from the prevailing sequential paradigm
and embraces instead a hierarchical approach. This method has several advantages, like a provably lower computational
complexity, which is necessary to achieve true scalability, and better error containment, leading to more stability and
less drift. Moreover, a practical autocalibration procedure allows to process images without ancillary information.
Experiments with real data assess the accuracy and the computational efficiency of the method.
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1. Introduction

The progress in three-dimensional (3D) modeling re-
search has been rapid and hectic, fueled by recent break-
throughs in keypoint detection and matching, the advances
in computational power of desktop and mobile devices, the
advent of digital photography and the subsequent avail-
ability of large datasets of public images. Today, the goal
of definitively bridging the gap between physical reality
and the digital world seems within reach given the magni-
tude, breadth and scope of current 3D modeling systems.

Three dimensional modeling is the process of recover-
ing the properties of the environment and optionally of
the sensing instrument from a series of measures. This
generic definition is wide enough to accommodate very
diverse methodologies, such as time-of-flight laser scan-
ning, photometric stereo or satellite triangulation. The
structure-and-motion (a.k.a. structure-from-motion) field
of research is concerned with the recovery of the three
dimensional geometry of the scene (the structure) when
observed through a moving camera (the motion). Sensor
data is either a video or a set of exposures; additional
informations, such as the calibration parameters, can be
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used if available. This paper describes our contributions
to the problem of structure-and-motion recovery from un-
ordered, uncalibrated images i.e, the problem of building
a three dimensional model of a scene given a set of expo-
sures. The sought result (the “model”) is generally a 3D
point-cloud consisting of the points whose projection was
identified and matched in the images and a set of camera
matrices, identifying position and attitude of each image
with respect to an arbitrary reference frame.

The main challenges to be solved are computational
efficiency (in order to be able to deal with more and more
images) and generality, i.e., the amount of ancillary infor-
mation that is required.

To address the efficiency issue we propose to describe
the entire structure-and-motion process as a binary tree
(called dendrogram) constructed by agglomerative cluster-
ing over the set of images. Each leaf corresponds to a
single image, while internal nodes represent partial models
obtained by merging the left and right sub-nodes. Compu-
tation proceeds from bottom to top, starting from several
seed couples and eventually reaching the root node, cor-
responding to the complete model. This scheme provably
cuts the computational complexity by one order of mag-
nitude (provided that the dendrogram is well balanced),
and it is less sensitive to typical problems of sequential ap-
proaches, namely sensitivity to initialization [1] and drift
[2]. It is also scalable and efficient, since it partitions the
problem into smaller instances and combines them hierar-
chically, making it inherently parallelizable.

On the side of generality, our aim is to push the “pure”
structure-and-motion technique as far as possible, to inves-

Preprint submitted to Computer Vision and Image Understanding June 1, 2015



tigate what can be achieved without including any auxil-
iary information. Current structure-and-motion research
has partly sidestepped this issue using ancillary data such
as EXIF tags embedded in conventional image formats.
Their presence or consistency, however, is not guaranteed.
We describe our approach to autocalibration, which is the
process of automatic estimation from images of the inter-
nal parameters of the cameras that captured them, and
we therefore demonstrate the first structure-and-motion
pipeline capable of using unordered, uncalibrated images.

1.1. Structure-and-motion: related work.
The main issue to address in structure-and-motion is

the computational complexity, which is dominated by the
bundle adjustment phase, followed by feature extraction
and matching.

A class of solutions that have been proposed are the
so-called partitioning methods [3]. They reduce the struc-
ture-and-motion problem into smaller and better condi-
tioned subproblems which can be effectively optimized.
Within this approach, two main strategies can be distin-
guished.

The first one is to tackle directly the bundle adjustment
algorithm, exploiting its properties and regularities. The
idea is to split the optimization problem into smaller, more
tractable components. The subproblems can be selected
analytically as in [4], where spectral partitioning has been
applied to structure-and-motion, or they can emerge from
the underlying 3D structure of the problem, as described in
[5]. The computational gain of such methods is obtained
by limiting the combinatorial explosion of the algorithm
complexity as the number of images and points increases.

The second strategy is to select a subset of the input
images and points that subsumes the entire solution. Hi-
erarchical sub-sampling was pioneered by [3], using a bal-
anced tree of trifocal tensors over a video sequence. The
approach was subsequently refined by [6], adding heuris-
tics for redundant frames suppression and tensor triplet
selection. In [7] the sequence is divided into segments,
which are resolved locally. They are subsequently merged
hierarchically, eventually using a representative subset of
the segment frames. A similar approach is followed in [8],
focusing on obtaining a well behaved segment subdivision
and on the robustness of the following merging step. The
advantage of these methods over their sequential counter-
parts lies in the fact that they improve error distribution
on the entire dataset and bridge over degenerate config-
urations. In any case, they work for video sequences, so
they cannot be applied to unordered, sparse images. The
approach of [9] works with sparse datasets and is based on
selecting a subset of images whose model provably approx-
imates the one obtained using the entire set. This consid-
erably lowers the computational requirements by control-
lably removing redundancy from the dataset. Even in this
case, however, the images selected are processed incremen-
tally. Moreover, this method does not avoid computing the
epipolar geometry between all pairs of images.

Within the solutions aimed at reducing the impact of
the bundle adjustment phase, hierarchical approaches in-
clude [10, 11, 12] and this paper. The first can be consid-
ered as the first paper where the idea has been set forth:
a spanning tree is built to establish in which order the
images must be processed. After that, however, the im-
ages are processed in a standard incremental way. The
approach described in [11] is based on recursive partition-
ing of the problem into fully-constrained sub-problems, ex-
ploiting the bipartite structure of the visibility graph. The
partitioning operates on the problem variables, whereas
our approach works on the input images.

Orthogonally to the aforementioned approaches, a so-
lution to the the computational complexity of structure-
and-motion is to throw additional computational power at
the problem [13]. Within such a framework, the former al-
gorithmic challenges are substituted by load balancing and
subdivision of tasks. Such a direction of research strongly
suggest that the current monolithic pipelines should be
modified to accommodate ways to parallelize and opti-
mally split the workflow of structure-and-motion tasks. In
[14] image selection (via clustering) is combined with a
highly parallel implementation that exploits graphic pro-
cessors and multi-core architectures.

The impact of the bundle adjustment phase can also be
reduced by adopting a different paradigm in which first the
motion is recovered and then the structure is computed.
All these methods start from the relative orientation of a
subset of camera pairs (or triplets), computed from point
correspondences, then solve for the absolute orientation
of all the cameras (globally), reconstruct 3D points by in-
tersection, and finally run a single bundle adjustment to
refine the reconstruction. Camera internal parameters are
required.

The method described in [15] solves a homogeneous lin-
ear system based on a novel decomposition of the essen-
tial matrix that involves the absolute parameters only. In
[16] nonlinear optimization is performed to recover camera
translations given a network of both noisy relative trans-
lation directions and 3D point observations. This step is
preceded by outlier removal among relative translations
by solving simpler low-dimensional subproblems. The au-
thors of [17] propose a discrete Markov random field for-
mulation in combination with Levenberg-Marquardt min-
imization. This technique requires additional information
as input, such as geotag locations and vanishing points.
Other approaches (e.g. [18, 19, 20]) compute translations
together with the structure, involving a significant num-
ber of unknowns. The method presented in [21] proposes
a fast spectral solution by casting translation recovery
in a graph embedding problem. Govindu in [22] derives
a homogeneous linear system of equations in which the
unknown epipolar scaling factors are eliminated by using
cross products, and this solution is refined through itera-
tive reweighted least squares. The authors of [23] propose
a linear algorithm based on an approximate geometric er-
ror in camera triplets. Moulon et al. [24] extract accurate
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relative translations by using an a-contrario trifocal ten-
sor estimation method, and then recover simultaneously
camera positions and scaling factors by using an `∞-norm
approach. Similarly to [23], this method requires a graph
covered by contiguous camera triplets. The authors of
[25] propose a two-stage method in which relative transla-
tion directions are extracted from point correspondences
by using robust subspace optimization, and then absolute
translations are recovered through semidefinite program-
ming.

Another relevant issue in structure-and-motion is the
level of generality, i.e., the number of assumption that are
made concerning the input images, or, equivalently the
amount of extra information that is required in addition
to pixel values. Existing pipelines either assume known
internal parameters [26, 27, 19, 28, 29, 15, 24], or con-
stant internal parameters [30], or rely on EXIF data plus
external information (camera CCD dimensions) [31, 32].
Methods working in large scale environments usually rely
on a lot of additional information, such as camera calibra-
tion and GPS/INS navigation systems [2, 33] or geotags
[17].

1.2. Autocalibration: related work.
Autocalibration (a.k.a. self-calibration) has generated

a lot of theoretical interest since its introduction in the
seminal paper by Maybank and Faugeras [34]. The atten-
tion created by the problem however is inherently practi-
cal, since it eliminates the need for off-line calibration and
enables the use of content acquired in an uncontrolled set-
ting. Modern computer vision has partly sidestepped the
issue by using ancillary information, such as EXIF tags
embedded in some image formats. Unfortunately it is not
always guaranteed that such data will be present or con-
sistent with its medium, and do not eliminate the need for
reliable autocalibration procedures.

A great deal of published methods rely on equations
involving the dual image of the absolute quadric (DIAQ),
introduced by Triggs in [35]. Earlier approaches for vari-
able focal lengths were based on linear, weighted systems
[36, 37], solved directly or iteratively [38]. Their reliabil-
ity has been improved by more recent algorithms, such
as [39], solving super-linear systems while directly forcing
the positive definiteness of the DIAQ. Such enhancements
were necessary because of the structural non-linearity of
the task: for this reason the problem has also been ap-
proached using branch and bound schemes, based either
on the Kruppa equations [40], dual linear autocalibration
[41] or the modulus constraint [42].

The algorithm described in [43] shares, with the branch
and bound approaches, the guarantee of convergence; the
non-linear part, corresponding to the localization of the
plane at infinity, is solved exhaustively after having used
the cheiral inequalities to compute explicit bounds on its
location.

1.3. Overview
This paper describes a hierarchical and parallelizable

scheme for structure-and-motion; please refer to Fig. 1 for
a graphical overview. The front end of the pipeline is key-
point extraction and matching (Sec. 2), where the latter
is subdivided into two stages: the first (“broad phase”) is
devoted to discovering the tentative topology of the epipo-
lar graph, while the second (“narrow phase”) performs the
fine matching and computes the epipolar geometry.

Images are then organized into a dendrogram by clus-
tering them according to their overlap (Sec. 3). A new
clustering strategy, derived from the simple linkage, is in-
troduced (Sec. 5) that makes the dendrogram more bal-
anced, thereby approaching the best-case complexity of
the method.

The structure-and-motion computation proceeds hier-
archically along this tree, from the leaves to the root (Sec. 4).
Images are stored in the leaves, whereas partial models cor-
respond to internal nodes. According to the type of node,
three operations are possible: stereo modeling (image-
image), resection-intersection (image-model) or merging
(model-model). Bundle adjustment is run at every node,
possibly in its “local” form (Sec. 6).

We demonstrate that this paradigm has several advan-
tages over the sequential one, both in terms of computa-
tional performance (which improves by one order of mag-
nitude on average) and overall error containment.

Autocalibration (Sec. 7) is performed on partial mod-
els during the dendrogram traversal. First, the location
of the plane at infinity is derived given two perspective
projection matrices and a guess on their internal param-
eters, and subsequently this procedure is used to iterate
through the space of internal parameters looking for the
best collineation that makes the remaining cameras Eu-
clidean. This approach has several advantages: it is fast,
easy to implement and reliable, since a reasonable solu-
tion can always be found in non-degenerate configurations,
even in extreme cases such as when autocalibrating just
two cameras.

Being conscious that “the devil is in the detail”, Section
8 reports implementation details and heuristics for setting
the parameters of the pipeline.

The experimental results reported in Sec. 9 are exhaus-
tive and analyze the output of the pipeline in terms of
accuracy, convergence and speed.

We report here on the latest version of our pipeline,
called Samantha. Previous variants have been described
in [44] and [12] respectively. The main improvements are in
the matching phase and in the autocalibration that now
integrates the method described in [45]. The geometric
stage has been carefully revised to make it more robust,
to the point where – in some cases – bundle adjustment
is not needed any more except at the end of the process.
Most efforts have been made in the direction of a robust
and automatic approach, avoiding unnecessary parameter
tuning and user intervention.
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Figure 1: Simplified overview of the pipeline. The cycle inside the structure-and-motion module corresponds to dendrogram traversal.
Autocalibration can be switched on/off depending on circumstances. Bundle adjustment (BA) can be global or local and include, or not, the
internal parameters.

2. Keypoint detection and matching

In this section we describe the stage of Samantha that
is devoted to the automatic extraction and matching of
keypoints among all the n available images. Its output is
to be fed into the geometric stage, that will perform the
actual structure-and-motion recovery. Good and reliable
matches are the key for any geometric computation.

Although most of the building blocks of this stage are
fairly standard techniques, we carefully assembled a pro-
cedure that is fully automatic, robust (matches are pruned
to discard as many outliers as possible) and computation-
ally efficient. The procedure for recovering the epipolar
graph is indeed new.

2.1. Keypoint detection.
First of all, keypoints are extracted in all n images.

We implemented the keypoint detector proposed by [46],
where blobs with associated scale levels are detected from
scale-space extrema of the scale-normalized Laplacian:

∇2
normL(x, y, s) = s∇2 (g(x, y; s) ∗ f(x, y)) . (1)

We used a 12-level scale-space and in each level the Lapla-
cian is computed by convolution (in CUDA) with a 3× 3
kernel.

As for the descriptor, we implemented a 128-dimen-
sional radial descriptor (similar to the log-polar grid of
GLOH [47]), based on the accumulated response of steer-
able derivative filters. This combination of detector/de-
scriptor performs in a comparable way to SIFT and avoids
patent issues.

Only a given number of keypoints with the strongest
response overall are retained. This number is a multiple
of n, so as to fix the average quota of keypoints per image
(details in Sec. 8).

2.2. Matching: broad phase.
As the images are unordered, the first objective is to

recover the epipolar graph, i.e., the graph that tells which
images overlap (or can be matched) with each other.

This must be done in a computationally efficient way,
without trying to match keypoints between every image
pair. As a matter of fact, keypoint matching is one of
the most expensive stages, so one would like to reduce the
number of images to be matched from O(n2) to O(n).

In this broad phase we consider only a small constant
number of descriptors for each image. In particular, we
consider the keypoints with the highest scales, since their
descriptors are more representative of the whole image
content.

Then, each keypoint descriptor is matched to its ap-
proximate nearest neighbors in feature space, using the
ANN library [48] (with ε = 0.5). A 2D histogram is then
built that registers in each bin the number of matches be-
tween the corresponding images.

Consider the complete weighted graph G = (V,E) where
V are images and the weighted adjacency matrix is the
2D histogram. This graph is – in general – dense, having
|V | = O(n2). The objective is to extract a subgraph G′

with a number of edges that is linear in n.
In the approach of [49], also followed in [44], every im-

age is connected (in the epipolar graph) to the m images
that have the greatest number of keypoint matches with it.
This creates a graph with O(mn) edges, where the average
degree is O(m) (by the handshaking lemma).

When the number of images is large, however, it tends
to create cliques of very similar images with weak (or no)
inter-clique connections. On the other hand, one would
like to get an epipolar graph that is strongly connected,
to avoid over-fragmentation in the subsequent clustering
phase. This idea is captured by the notion of k-edge-
connectedness: In graph theory, a graph is k-edge-connected
if it remains connected whenever fewer than k edges are re-
moved. So, the graph produced by the original approach
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has a low k, while one would like to have k as high as
possible (ideally k = m), with same edge budget.

We devised a strategy that builds a subgraph G′ of G
which is “almost” m-edge-connected by construction.

1. Build the maximum spanning tree of G: the tree is
composed of n− 1 edges;

2. remove them from G and add them to G′;

3. repeat m times.

In the hypothesis that m spanning trees can be extracted
from G, the algorithm produces a subgraph G′ that is m-
edge-connected (a simple proof of this is given in Appendix
A). Please note that by taking the maximum spanning
tree we favor edges with high weight. So this strategy can
be seen as a compromise between picking pairs with the
highest score in the histogram, as in the original approach,
and creating a strongly connected epipolar graph.

If the hypothesis about G is not verified, a spanning
forest will be obtained at a certain iteration, and G′ will
not be m-edge-connected. However, when m � |E| one
could expect that “almost” m spanning trees can be ex-
tracted from G without disconnecting it.

2.3. Matching: narrow phase.
Keypoint matching follows a nearest neighbor approach

[50], with rejection of those keypoints for which the ra-
tio of the nearest neighbor distance to the second nearest
neighbor distance is greater than a threshold (see Sec. 8).
Matches that are not injective are discarded.

In order to speed up the matching phase we employ a
keypoint clustering technique similar to [51]. Every key-
point is associated with a different cluster according to its
dominant angle, as recorded in the descriptor. Only key-
points belonging to the same cluster are matched together
(in our implementation we used eight equidistant angular
clusters): this breaks down the quadratic complexity of the
matching phase at the expense of loosing some matches at
the border of the clusters.

Homographies and fundamental matrices between pairs
of matching images are then computed using M-estimator
SAmple Consensus (MSAC) [52], a variation of RANSAC
that gives outliers a fixed penalty but scores inliers on how
well they fit the data. This makes the output less sensitive
to a higher inlier threshold, thereby rendering less critical
the choice of the threshold, at no extra computational cost
with respect to RANSAC. The random sampling is done
with a bucketing technique [53], which forces keypoints
in the sample to be spatially separated. This helps to
reduce the number of iterations and provide more stable
estimates. Since RANSAC and its variants (like MSAC)
have a low statistical efficiency, the model must finally be
re-estimated on a refined set of inliers4.

4It is understood that when we refer to MSAC in the following,
this procedure is always carried out.

Let ei be the residuals of all the N keypoints after
MSAC, and let S∗ be the sample that attained the best
score; following [54], a robust estimator of the scale is:

σ∗ = 1.4826
(

1 +
5

N − |S∗|

) √
med
i 6∈S∗

e2
i . (2)

The resulting set of inliers are those points such that

|ei| < θσ∗, (3)

where θ is a constant (we used 2.5).
The model parameters are re-estimated on this set of

inliers via least-squares minimization of the (first-order ap-
proximation of the) geometric error [55, 56].

The more likely model (homography or fundamental
matrix) is selected according to the Geometric Robust In-
formation Criterion (GRIC) [57]:

GRIC =
∑

ρ(e2
i ) + nd log(r) + k log(rn) (4)

ρ(x) = min
(
x/σ2, 2(r − d)

)
where σ is the standard deviation of the measurement er-
ror, k is the number of parameters of the model, d is the
dimension of the fitted manifold, and r is the dimension
of the measurements. In our case, k = 7, d = 3, r = 4
for fundamental matrices and k = 8, d = 2, r = 4 for ho-
mographies. The model with the lower GRIC is the more
likely.

In the end, if the number of remaining matches ni be-
tween two images is less than 20% of the total number
of matches before MSAC, then they are discarded. The
rationale is that if an excessive fraction of oultliers have
been detected, the original matches are altogether unreli-
able. A similar formula is derived in [49] on the basis of
a probabilistic model. As a safeguard, a threshold on the
minimum number of matches is also set (details in Sec. 8).

After that, keypoint matching in multiple images are
connected into tracks (see Figure 2): consider the undi-
rected graph G = (V,E) where V are the keypoints and
E represents matches; a track is a connected component
of G. Vertices are labeled with the image the keypoints
belong to: an inconsistency arises when in a track a la-
bel occurs more than once. Inconsistent tracks and those
shorter than three frames are discarded 5. A track repre-
sents the projection of a single 3D point imaged to multiple
exposures; such a 3D point is called a tie-point.

3. Clustering images

The images are organized into a tree with agglomera-
tive clustering, using a measure of overlap as the distance.

5There is nothing in principle that prevents the pipeline from
working also with tracks of length two. The choice of cutting these
tracks is a heuristics aimed at removing little reliable correspon-
dences.
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Figure 2: Tracks over a 12-images set. For the sake of readability only a sample of 50 tracks over 2646 have been plotted.

The structure-and-motion computation then follows this
tree from the leaves to the root. As a result, the problem
is broken into smaller instances, which are then separately
solved and combined.

Algorithms for image clustering have been proposed
in the literature in the context of structure-and-motion
[10], panoramas [49], image mining [58] and scene summa-
rization [59]. The distance being used and the clustering
algorithm are application-specific.

In this paper we deploy an image affinity measure that
befits the structure-and-motion task. It is computed by
taking into account the number of tie-points visible in
both images and how well their projections (the keypoints)
spread over the images. In formulae, let Si and Sj be the
set of visible tie-points in image Ii and Ij respectively:

ai,j =
1
2
|Si ∩ Sj |
|Si ∪ Sj |

+
1
2

CH(Si) + CH(Sj)
Ai + Aj

(5)

where CH(·) is the area of the convex hull of a set of image
points and Ai (Aj) is the total area of image Ii (Ij). The
first term is an affinity index between sets, also known as
the Jaccard index. The distance is (1−ai,j), as ai,j ranges
in [0, 1].

The general agglomerative clustering algorithm pro-
ceeds in a bottom-up manner: starting from all singletons,
each sweep of the algorithm merges the two clusters with
the smallest distance between them. The way the distance
between clusters is computed produces different flavors of
the algorithm, namely the simple linkage, complete linkage
and average linkage [60]. We selected the simple linkage
rule: The distance between two clusters is determined by
the distance of the two closest objects (nearest neighbors)
in the different clusters.

Simple linkage clustering is appropriate to our case
because: i) the clustering problem per se is fairly easy,
ii) nearest neighbors information is readily available with
ANN and iii) it produces “elongated” or “stringy” clusters
which fits very well with the typical spatial arrangement
of images sweeping a certain area or building.

4. Hierarchical structure-and-motion

Before describing our hierarchical approach, let us set
the notation and review the geometry tools that are needed.
A model is a set of cameras and 3D points expressed in
a local reference frame (stereo-model with two cameras).
The procedure of computing 3D point coordinates from

corresponding points in multiple images is called intersec-
tion (a.k.a. triangulation). Recovering the camera matrix
(fully or limited to the external parameters) from known
3D-2D correspondences is called resection. The task of
retrieving the relative position and attitude of two cam-
eras from corresponding points in the two images is called
relative orientation. The task of computing the rigid (or
similarity) transform that brings two models that share
some tie-points into a common reference frame is called
absolute orientation.

Let us assume pro tempore that the internal parameters
are known; this constraint is removed in Sec. 7.

Images are grouped together by agglomerative clus-
tering, which produces a hierarchical, binary cluster tree,
called a dendrogram. Every node in the tree represents a
partial, independent model. From the processing point of
view, at every node in the dendrogram an action is taken
that augments the model, as shown in Figure 3.

Three operations are possible: When two images are
merged a stereo-model is built (relative orientation + in-
tersection). When an image is added to a cluster a resection-
intersection step is taken (as in the standard sequential
pipeline). When two non-trivial clusters are merged, the
respective models must be conflated by solving an abso-
lute orientation problem (followed by intersection). Each
of these steps is detailed in the following.

Figure 3: An example of a dendrogram for a 12 image set. The
circle corresponds to the creation of a stereo-model, the triangle
corresponds to a resection-intersection, the diamond corresponds
to a fusion of two partial independent models.

While it is useful to conceptually separate the clus-
tering from the modeling, the two phases actually occur
simultaneously: during the simple linkage iteration, every
time a merge is attempted the corresponding modeling ac-
tion is taken. If it fails, the merge is discarded and the
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next possible merge is considered.

4.1. Stereo-modeling.
The parameters of the relative orientation of two given

cameras are obtained by factorization of the essential ma-
trix [61]. This is equivalent to knowing the external pa-
rameters of the two cameras in a local reference frame,
and since the internal parameters are already known, the
two camera matrices are readily set up. Then tie-points
are obtained by intersection (see Sec. 4.2 ahead) from the
tracks involving the two images, and the model is refined
with bundle adjustment [62].

It is worth noting that in order for this stereo-modeling
to be successful the two images must satisfy two conflicting
requirements: to have both a large number of tie-points in
common and a baseline sufficiently large so as to allow
a well-conditioned solution. The first requirement is im-
plemented by the affinity defined in (5), but the second
is not considered; as a result, the pairing determined by
image clustering is not always the best choice as far as
the relative orientation problem is concerned. Since in our
pipeline the clustering and the structure-and-motion pro-
cessing occurs simultaneously, these pairs will be discarded
by simple sanity-checks before and after attempting to per-
form the stereo-modeling. The a-priori check requires that
the relationship between the two images is described by a
fundamental matrix (instead of a homography), according
to the GRIC score. The a-posteriori check considers the
residual error and the cheirality check of the points before
and after the bundle adjustment.

4.2. Intersection.
Intersection (a.k.a. triangulation) is performed by the

iterated linear LS method [63]. Points are pruned by ana-
lyzing the condition number of the linear system and the
reprojection error. The first test discards ill-conditioned
intersections, using a threshold on the condition number
of the linear system (104, in our experiments). The second
test applies the so-called X84 rule6 [64], that establishes
that, if ei are the residuals, the inliers are those points
such that

|ei −med
j

ej | < 5.2 med
i
|ei −med

j
ej |. (6)

A safeguard threshold on the reprojection error is also
set (details in Sec. 8).

In general, the intersection module obeys the following
strategy. As soon as one track reaches length two in a given
model (i.e. at least two images of the track belongs to the
model), the coordinates of the corresponding tie-point are
computed by intersection. If the operation fails (because
of one of the sanity checks described above) the 3D point is
provisionally discarded but the track is kept. An attempt
to compute the tie-point coordinates is undertaken every
time the length of the track increases within the model.

6This rule is consistently used in the following stages to set data-
dependent thresholds whenever required.

4.3. Resection
The tie-points belonging to the model that are also

visible in the image to be added provides a set of 3D-2D
correspondences, that are exploited to glue the image to
the partial model. This is done by resection, where only
the external parameters of the camera are to be computed
(a.k.a. external orientation problem). We used the PPnP
algorithm described in [65] inside MSAC, followed by non-
linear minimization of the reprojection error at the end.

After resection, which adds one image to the model, tie-
points are updated by intersection, and bundle adjustment
is run on the resulting model.

4.4. Merging two models.
When two partial independent (i.e., with different ref-

erence systems) models are are to be conflated into one,
the first step is to register one onto the other with a sim-
ilarity transformation. The common tie-points are used
to solve an absolute orientation (with scale) problem with
MSAC.

Given the scale ambiguity, the inlier threshold for MSAC
is hard to set. In [66] a complex technique for the auto-
matic estimation of the inlier threshold in 3D is proposed.
We take a simpler but effective approach: instead of con-
sidering the length of the 3D segments that connect cor-
responding points as the residuals, we look at the average
length of their 2D projections in the images; in this way
a meaningful inlier threshold in pixels can be set easily.
The final transformation, computed with the Orthogonal
Procrustean (OP) method [67, 68], minimizes the proper
geometric residual, i.e. the sum of squared distances of 3D
points.

Once the models are registered, tie-points are updated
by intersection, and the new model is refined with bundle
adjustment.

This hierarchical algorithm can be summarized as fol-
lows:

1. Solve many independent relative orientation prob-
lems at the leaves of the tree, producing many inde-
pendent stereo-models.

2. Traverse the tree; in each node one of these opera-
tions takes place:

(a) Update one model by adding one image with
resection followed by intersection;

(b) Merge two independent models with absolute
orientation.

Steps 1. and 2.(a) are the resection-intersection steps of
classical sequential pipelines, as Bundler. Step 2.(b) sum-
mons up the photogrammetric Independent Models Block
Adjustment (IMBA) [69], where for each pair of overlap-
ping photographs a stereo-model is built and then all these
independent models are simultaneously transformed into a
common reference frame with absolute orientation.
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If the tree reduces to a chain, the algorithm is the se-
quential one, whereas if the tree is perfectly balanced, only
steps 2.(b) are taken, and the resulting procedure resem-
bles the IMBA, besides the fact that our models are dis-
joint and that models are recursively merged in pairs.

Compared to the standard sequential approach, this
framework has a lower computational complexity, is inde-
pendent of the initial pair of images, and copes better with
drift problems, typical of sequential schemes.

4.5. Complexity analysis.
The hierarchical approach that has been outlined above

allows us to decrease the computational complexity with
respect to the sequential structure-and-motion pipeline.
Indeed, if the number of images is n and every image adds
a constant number of tie-points ` to the model, the compu-
tational complexity7 in time of sequential structure-and-
motion is O(n5), whereas the complexity of Samantha
(in the best case) is O(n4).

The cost of bundle adjustment with m tie-points and n
images is O(mn(m+2n)2) [7], hence it is O(n4) if m = `n.

In sequential structure-and-motion, adding image i re-
quires a constant number of bundle adjustments (typically
one or two) with i images, hence the complexity is

n∑
i=1

O(i4) = O(n5). (7)

In the case of the hierarchical approach, consider a node
of the dendrogram where two models are merged into a
model with n images. The cost T (n) of adjusting that
model is given by O(n4) plus the cost of doing the same
onto the left and right subtrees. In the hypothesis that
the dendrogram is well balanced, i.e., the two models have
the same number of images, this cost is given by 2T (n/2).
Hence the asymptotic time complexity T in the best case
is given by the solution of the following recurrence:

T (n) = 2T (n/2) + O(n4) (8)

that is T (n) = O(n4) by the third branch of the Master’s
theorem [70].

The worst case is when a single model is built up by
adding one image at a time. In this case, which corre-
sponds to the sequential case, the dendrogram is extremely
unbalanced and the complexity drops to O(n5).

5. Dendrogram balancing

As demonstrated in precedence, the hierarchical frame-
work can provide a provable computational gain, provided
that the resulting tree is well-balanced. The worst case
complexity, corresponding to a sequence of single image

7We are considering here only the cost of bundle adjustment,
which clearly dominates the other operations.

additions, is no better than the standard sequential ap-
proach. It is therefore crucial to ensure a good balance
during the clustering phase. Our solution is to employ a
novel clustering procedure, which promotes the creation of
better balanced dendrograms.

The image clustering procedure proposed in the previ-
ous section allows us to organize the available images into
a hierarchical cluster structure (a tree) that will guide the
structure-and-motion process. This approach decreases
the computational complexity with respect to sequential
structure-and-motion pipelines, from O(n5) to O(n4) in
the best case, i.e. when the tree is well balanced (n is the
number of images). If the tree is unbalanced this compu-
tational gains vanishes. It is therefore crucial to enforce
the balancing of the tree.

The preceding solution, which used the simple rule,
specified that the distance between two clusters is to be
determined by the distance of the two closest objects (near-
est neighbors) in the different clusters. In order to produce
better balanced trees, we modified the agglomerative clus-
tering strategy as follows: starting from all singletons, each
sweep of the algorithm merges the pair with the smallest
cardinality among the ` closest pair of clusters. The dis-
tance is computed according to the simple linkage rule.
The cardinality of a pair is the sum of the cardinality of
the two clusters. In this way we are softening the closest
first agglomerative criterion by introducing a competing
smallest first principle that tends to produce better bal-
anced dendrograms.

The amount of balancing is regulated by the parameter
`: when ` = 1 this is the standard agglomerative cluster-
ing with no balancing; when ` ≥ n/2 (n is the number of
images) a perfect balanced tree is obtained, but the clus-
tering is poor, since distance is largely disregarded.

Figure 4 shows an example of balancing achieved by
our technique. The height of the tree is reduced from 14
to 9 and more initial pairs are present in the dendrogram
on the right.

6. Local bundle adjustment

In the pursuit of further complexity reduction, we adopted
a strategy that consists in reducing the number of images
to be used in the bundle adjustment in place of the whole
model. This strategy is an instance of local bundle ad-
justment [71, 72], which is often used for video sequences,
where the active images are the most recent ones. Let us
concentrate on the model merging step, as the resection is
a special case of the latter. Consider two models A and
B, where A has fewer images than B. We always trans-
form the smallest onto the largest (if one is projective it is
always the smallest).

The bundle adjustment involves all the images of A
and the subset of images of B that share some tracks with
A (tie-points that are visible in images in both models).
Let us call this subset B′. All the tie-points linking B′
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Figure 4: An example of the dendrogram produced by simple linkage (left) and the balanced rule on a 52-images set. An example of the
dendrogram produced by [44] (left) and the more balanced dendrogram produced by our technique (right) on a 52-images set, with ` = 5.

and A are considered in the bundle adjustment. Images
in B \ B′ are not moved by bundle adjustment but their
tie-points are still considered in the minimization in order
to anchor B′ through their common tie-points. The tie-
points linking only cameras in B \ B′ are not considered.
This strategy is sub-optimal because in a proper bundle
adjustment all the images in B should be involved, even
those that do not share any tie-point with A. However,
a bundle adjustment with all the images and all the tie-
points can be run at the end to obtain the optimal solution.

7. Uncalibrated hierarchical structure-and-motion

A model that differs from the true one by a projectivity
is called projective. A model that differs from the true
one by a similarity is called Euclidean. The latter can
be achieved when calibration parameters are known, the
former can be obtained if images are uncalibrated.

In this section we relax the hypothesis that images are
calibrated and integrate the autocalibration algorithm in
our pipeline, so that the resulting model is still Euclidean.

The main difference from the procedure described in
Sec. 4 is that now leaf nodes do not have proper calibration
right from the start of the structure-and-motion process.
The models is projective at the beginning, and as soon as
one reaches a sufficient number of images, the Euclidean
upgrade procedure (described in Section 7.1) is triggered.
Moreover, each step of hierarchical structure-and-motion
must be modified to accommodate for projective models,
as described in Sections 7.2, 7.3, and 7.4.

7.1. Autocalibration
Autocalibration starts from a projective model and

seeks the collineation of space H so as to transforms the
model into a Euclidean one.

Without loss of generality, the first camera of the Eu-
clidean model can be assumed to be P E

1 = [K1 | 0], so

that the Euclidean upgrade H has the following structure,
since P E

1 = P1H:

H =
[

K1 0
r> λ

]
(9)

where K1 is the calibration matrix of the first camera, r
is a vector which determines the location of the plane at
infinity and λ is a scale factor.

Our autocalibration technique is based on two stages:

1. Given a guess on the internal parameters of two cam-
eras compute a consistent upgrading collineation. This
yields an estimate of all cameras but the first.

2. Score the internal parameters of these n−1 cameras
based on the likelihood of skew, aspect ratio and
principal point.

The space of the internal parameters of the two cameras is
enumerated and the best solution is refined via non-linear
least squares.

This approach has been introduced in [45], where it is
compared with several other algorithms obtaining favor-
able results.

7.1.1. Estimation of the plane at infinity.
This section describes a closed-form solution for the

plane at infinity (i.e., the vector r) given two perspective
projection matrices and their internal parameters.

While the first camera is P1 = [I | 0], the second pro-
jective camera can be written as P2 = [A2 | e2], and its
Euclidean upgrade is:

P E

2 = K2 [R2|t2] ' P2H =
[
A2K1 + e2r>|λe2

]
. (10)

The rotation R2 can therefore be equated to:

R2 ' K−1
2

(
A2K1 + e2r>

)
= K−1

2 A2K1 + K−1
2 e2r> (11)

Using the constraints on orthogonality between rows or
columns of a rotation matrix, one can solve for r finding
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the value that makes the right hand side of (11) equal to
a rotation, up to a scale.

The solution can be obtained in closed form by not-
ing that there always exists a rotation matrix R∗ such as:
R∗t2 = [‖t2‖ 0 0]> , where t2 = K−1

2 e2. Left multiplying
it to (11) yields:

R∗R2 ' R∗K−1
2 A2K1 + [‖t2‖ 0 0]> r> (12)

Calling W = R∗K−1
2 A2K1 and its rows w>

i , we arrive
at the following:

R∗R2 =

 w2
> + ‖t2‖r>

w2
>

w3
>

 /‖w3‖ (13)

in which the last two rows are independent of the value
of r and the correct scale has been recovered normalizing
each side of the equation to unit norm.

Since the rows of R∗R2 are orthonormal, we can recover
the first one taking the cross product of the other two.
Vector r is therefore equal to:

r = (w2 ×w3/‖w3‖ −w1) /‖t2‖ (14)

The upgrading collineation H can be computed using (9);
the term λ can be arbitrarily chosen, as it will just influ-
ence the overall scale.

When the calibration parameters are known only ap-
proximately, the right hand side of (13) is no more a ro-
tation matrix. However, (14) will still yield the value of r
that will produce an approximate Euclidean model.

7.1.2. Estimation of the internal parameters.
In the preceding section we showed how to compute the

Euclidean upgrade H given the calibration parameters of
two cameras of the projective model.

The autocalibration algorithm loops through all pos-
sible internal parameter matrices of two cameras K1 and
K2, checking whether the entire upgraded model has the
desired properties in terms of K2 . . .Kn. The process is
well-defined, since the search space is naturally bounded
by the finiteness of the acquisition devices.

In order to sample the space of calibration parameters
we can safely assume, as customary, null skew and unit
aspect ratio: this leaves the focal length and the principal
point location as free parameters. However, as expected,
the value of the plane at infinity is in general far more
sensitive to errors in the estimation of focal length values
rather than the image center. Thus, we can iterate just
over focal lengths f1 and f2 assuming the principal point
to be centered on the image; the error introduced with this
approximation is normally well within the radius of con-
vergence of the subsequent non-linear optimization. The
search space is therefore reduced to a bounded region of
R2.

To score each sample (f1, f2), we consider the aspect
ratio, skew and principal point location of the upgraded

(i.e., transformed with H) camera matrices and aggregate
their respective value into a single cost function:

{f1, f2} = arg min
f1,f2

n∑
`=2

C2(K`) (15)

where K` is the internal parameters matrix of the `-th
camera after the Euclidean upgrade determined by (f1, f2),
and C(K) reflects the degree to which K meets a-priori ex-
pectations.

Let us consider the viewport matrices of the cameras,
defined as:

V =
1
2

 √w2 + h2 0 w

0
√

w2 + h2 h
0 0 2

 (16)

where w and h are respectively the width and height of
each image. Camera matrices are normalized with P ←
V −1P/‖P3,1:3‖. In this way, the principal point expected
value is (0, 0) and the focal range is [1/3, 3]. Therefore,
the term of the cost function writes:

C(K)=

skew︷ ︸︸ ︷
wsk|k1,2|+

aspect ratio︷ ︸︸ ︷
war|k1,1−k2,2|+

principal point︷ ︸︸ ︷
wuo |k1,3|+wvo |k2,3|

(17)
where ki,j denotes the entry (i, j) of K and w are suitable
weights, computed as in [37]. The first term takes into
account the skew, which is expected to be 0, the second
one penalizes cameras with aspect ratio different from 1
and the last two weigh down cameras where the principal
point is away from (0, 0).

Finally, the solution selected is refined by non-linear
minimization of Eq. (15). Since it is usually very close to a
minimum, just a few iterations of a Levenberg-Marquardt
solver are necessary for convergence.

The entire procedure is presented as pseudo-code in
Algorithm 1. The algorithm shows remarkable conver-
gence properties; it has been observed to fail only when
the sampling of the focal space was not sufficiently dense
(in practice, less than twenty focal values in each direc-
tion), and therefore all the tested infinity planes were not
close enough to the correct one. Such problems are easy
to detect, since they usually take the final, refined solution
outside the legal search space.

In principle, autocalibration requires a minimum num-
ber of images to work, according to the autocalibration
“counting argument” [73] (e.g. 4 images with known skew
and aspect ratio). However, as we strive to maintain an
“almost” Euclidean reference frame from the beginning, to
better condition subsequent processing, autocalibration is
triggered for models starting from two images. The result
is an approximate Euclidean upgrade; in fact these mod-
els are still regarded as projective, until they reach a suf-
ficient cardinality. After that point autocalibration is not
performed any more and the internal parameters of each
camera are refined further only with bundle adjustment,
as the computation proceeds. In order not to hamper the
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Algorithm 1: Autocalibration pseudo-code

input : a set of PPMs P and their viewports V
output: their upgraded, Euclidean counterparts

1 foreach P do P ← V −1P/‖P3,1:3‖
/* normalization */

2 foreach K1,K2 do /* iterate over focal pairs */

3 compute Π∞
4 build H from (9)
5 foreach P do /* compute cost profiles */

6 PE ← PH
7 K ← internal of PE

8 compute C(K) from (17)

9 end

10 end

11 aggregate cost and select minimum
12 refine non-linearly

13 foreach P do P ← V PH /* de-normalization,
upgrade */

process too much, the internal parameters of a camera be-
comes fixed after they have been bundle-adjusted together
with a given number of cameras.

7.2. Projective stereo-modeling.
The model that can be obtained from two uncalibrated

images is always projective. The following two camera
matrices are used:

P1 = [I | 0] and P2 = [[e2]×F | e2], (18)

This canonical pair yields a projective model with the
plane at infinity passing through the centre of the second
camera, which is very unnatural. Therefore, the method
of Section 7.1.1 is applied for guessing a better location for
the plane at infinity compatible with rough focal estimates,
obtained from the magnitude of the image diagonal. Even
when the true focal lengths are far from the estimates, this
procedure will provide a useful, well conditioned starting
point for the subsequent steps.

Cheirality is then tested and enforced on the model. In
practice only a reflection (switches all points from in front
to behind the cameras) may be necessary, as the twisted
pair case never occurs. In fact, the twisting corresponds to
the infinity plane crossing the baseline, which would imply
that our guess for the infinity plane is indeed very poor.

The 3D coordinates of the tie-points are then obtained
by intersection as before. Finally bundle adjustment is run
to improve the model.

7.3. Resection-intersection.
The procedure is the same as in the calibrated case,

taking care of using the Direct Linear Transform (DLT)

algorithm [74] for resection, as the the single image is al-
ways uncalibrated. While PPnP computes only the exter-
nal parameters of the camera, the DLT computes the full
camera matrix.

7.4. Merging two models.
Partial models live in two different reference frames,

that are related by a similarity if both are Euclidean or
by a projectivity if one is projective. In this case the
projectivity that brings the projective model onto the Eu-
clidean one is sought, thereby recovering its correct Eu-
clidean reference frame. The procedure is the same as in
the calibrated case, with the only difference that when
computing the projectivity the DLT algorithm should be
used instead of OP.

The new model is refined with bundle adjustment (ei-
ther Euclidean or projective) and upgraded to a Euclidean
frame when the conditions stated beforehand are met.

8. Parameter Settings

Samantha is a complex pipeline with many internal
parameters. With respect to this issue our endeavor was:
i) to avoid free parameters at all; ii) to make them data-
dependent; iii) to make user-specified parameters intelli-
gible and subject to an educated guess. In the last case
a default should be provided that works with most sce-
narios. This guarantees the processing to be completely
automatic in the majority of cases.

All the heuristic parameter settings used in the exper-
iments have been reported and summarized in Table 1.

Keypoint detection. The keypoints extracted from all im-
ages are ordered by their response value and the ones with
the highest response are retained, while the others are dis-
carded. The total number of keypoints to be kept is a
multiple of the number of images, so as to keep the aver-
age quota of keypoints for each image fixed.

Matching - broad phase. During the broad matching phase
the goal is to compute the 2D histogram mentioned in
Sec. 2.2. To this end, the keypoints in each image are
ordered by scale and the 300 keypoints with the highest
scale are considered. The number of neighbors in feature
space is set to six, as in [49]. Given the nature of the broad
phase, this value is not critical, to the point where only the
number of keypoints is exposed as a parameter.

The number m in Sec. 2.2 (“Degree of edge-connected-
ness”, in Table 1), has been set to eight following [49]. In
our case, the role of the parameter is more “global”, as it
does not set the exact number of images to be matched but
the degree of edge-connectedness of the graph. However
our experiments confirmed that that m = 8 is a good
default.
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Parameter Value
Keypoint detection

Number of LoG pyramid levels 12
Average number of keypoints per image 7500

Matching - broad
Number of keypoints per image 300
Degree of edge-connectedness 8

Matching - narrow
Matching discriminative ratio 1.5
Maximum number of MSAC iterations 1000
Bucket size (MSAC) in pixels D/25
Minimum number of matches 10
Homography-to-Fundamental GRIC Ratio 1.2
Minimum track length 3

Reconstruction
Maximum bundle adjustment iterations 100
Reprojection Error D/1800

Autocalibration
Number of cameras for autocalibration 4
Number of cameras to fix internal param.s 25

Prologue
Final minimum track length 2
Final maximum reprojection error D/2400

Table 1: Main settable parameters of Samantha. D is the image
diagonal length [pixels].

Matching - narrow phase. The number of max iterations
of MSAC is set to 1000 during the matching phase. This is
only an upper bound, for the actual value is dynamically
updated every time a new set of inliers is found.

The “Matching discriminative ratio” refers to the ra-
tio of first to second closest keypoint descriptors, used to
prune weak matches at the beginning of this phase.

The “ Minimum number of matches” parameter refers
to the last stage of the narrow phase, when poor matches
between images are discarded based on the number of sur-
viving inliers after MSAC.

Clustering. The parameter ` of Sec. 5 has been set to ` = 3
based on the graph reported in Fig. 5, where the number
of reconstructed tie-points/images and the computing time
are plotted as the value of ` is increased. After ` = 3, the
computing time stabilizes at around 30% of the baseline
case, without any significant difference in terms of number
of reconstructed images and tie-points.

Reconstruction. The safeguard threshold on the reprojec-
tion error (Sec. 4.2) is set to 2 pixels with reference to a
6 Mpixel image, and scaled according to the actual image
diagonal (assuming an aspect ratio of 4:3, the reference
diagonal is 3600 pixels).

Autocalibration. The Euclidean upgrade is stopped as soon
as a cluster reaches a sufficient cardinality k (“Number of
cameras for autocalibration”) that satisfies the following
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Figure 5: This plot shows the number of reconstructed tie-points,
images, height of the tree and computing time as a function of the
parameter ` in the balancing heuristics. The values on the ordinate
are in percentage, where the baseline case ` = 1.

inequality [73], giving the condition under which autocal-
ibration is feasible:

5k − 8 ≥ (k − 1)(5− pk − pc) + 5− pk (19)

where pk internal parameters are known and pc internal
parameters are constant. With known (or guessed) skew
and aspect ratio (pk = 2 and pc = 0) four cameras are
sufficient.

The reason for keeping this value to the minimum is
because we observed experimentally that projective align-
ment is fairly unstable and it is beneficial to start using a
similarity transformation as soon as possible.

The cluster cardinality after which the internal param-
eters are kept fixed in the bundle adjustment is set to 25,
a fairly high value, that guarantees all the internals pa-
rameters, especially the radial distortion ones, are steady.

Local bundle adjustment. As discussed previously, the lo-
cal bundle adjustment is generally to be preferred over the
full one. However, since the autocalibration phase is cru-
cial, our strategy is to run the full bundle adjustment un-
til the clusters become Euclidean. It should also be noted
that the computational benefits of the local bundle adjust-
ment are more evident with large clusters of cameras.

Prologue. The last bundle adjustment is always full (not
local) and is run with a lower safeguard threshold on the
reprojection error (1.5 pixel in the reference 6 Mpixel im-
age). A final intersection step is carried out using also the
tracks of length two, in order to increase the density of the
model. Please note however that these weak points do not
interfere with the bundle adjustment, as they are added
only after it.

9. Experiments

We run Samantha on several real, challenging datasets,
summarized in Tab. 2. All of them have some ground truth
available, being either a point cloud (from laser scanning),
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the camera internal parameters or measured “ground” con-
trol points (GCP).

The qualitative comparison against VisualSFM fo-
cuses on differences in terms of number of reconstructed
cameras and manifest errors in the model. The quantita-
tive evaluation examines the accuracy of the model against
GCPs and laser scans, and/or the internal orientation ac-
curacy.

9.1. Qualitative evaluation.
We compared Samantha (version 1.3) with VisualSFM

(version 0.5.22) [77, 78], a recent sequential pipeline that
improves on Bundler [32] in terms of robustness and effi-
ciency.

In all the experiments of this section, the internal cam-
era parameters were considered to be unknown for both
pipelines. However, while Samantha uses a completely
autocalibrated approach, VisualSFM extracts an initial
guess of the internal parameters from the image EXIF and
a database of known sensor sizes for common cameras (or
uses a default guess for the focal length).

We report four experiments. The first one, “Brà”, is
composed of 331 photos of Piazza Brà, the main square
in Verona where the Arena is located. Photos were taken
with a Nikon D50 camera and a fixed focal length of 18mm.
This dataset is also publicly available for download 8. Re-
sults are shown in Figure 6. Both VisualSFM and Saman-
tha produced a correct result in this case. It can also be
noticed that Bundler failed with the same dataset [12].

The second test, “Duomo di Pisa”, is composed of 309
photos of the Duomo of Pisa in the famous Piazza dei
Miracoli square. The dataset is composed of three sets of
photos taken with a Nikon D40X camera at different focal
lengths (13mm, 20mm and 58mm). Results are shown in
Figure 7. Also in this case both the pipelines produced
a good solution. This dataset is a relatively easy one as
far as the structure-and-motion is concerned, for there are
many photos covering a relatively small and limited scene,
but there are three different cameras, which makes it chal-
lenging for the autocalibration.

The third tested dataset, “S. Giacomo”, is composed
of 270 photos of one of the main squares in Udine (IT).
It consists of two set of exposures. The first one was shot
with a Sony DSC-H10 camera with a fixed focal length of
6mm while the second one – one year after the first – with
a Pentax OptioE20 camera with a fixed focal length of 6
mm. Results are shown in Figure 8. While Samantha
produced a visually correct result, some cameras of Visu-
alSFM are located out of the square and some walls are
manifestly wrong.

The last set, “Navona”, contains 92 photos of the fa-
mous square in Rome, taken with a Samsung ST45 Camera
at a fixed focal length of 35mm. The dataset is publicly

8http://www.diegm.uniud.it/fusiello/demo/samantha/

Table 3: Comparison with ground control points (GCP). All mea-
sures are in mm.

RMS error avg. depth GSD
Ventimiglia 22 15 ·103 < 4
Termica 86 79 ·103 27
Herz-Jesu-P25 3.4 3.4 ·103 5

available for download9. Results are shown in Figure 9.
In this case, Samantha produced a complete and correct
model of the square while VisualSFM produced a partial
and incorrect model, as reported also in [75].

For this dataset the internal parameters of the cam-
era were also available (from off-line standard calibration),
thus allowing us to compare the focal length obtained by
autocalibration, which achieved an error of 2.3% (Tab. 4).

9.2. Comparison against control points.
In this set of experiments we tested the models ob-

tained by Samantha in a context where the position of
some “ground” control points (GCP) was measured inde-
pendently (by GPS or other techniques). These control
points was identified manually in the images and their po-
sition in space was estimated by intersection. Correspon-
dences between true and estimated 3D coordinates have
been used to transform the model with a similarity that
aligns the control points in the least-squares sense. The
root mean square (RMS) residual of this registration was
taken as an indicator of the accuracy of the model.

“Ventimiglia” (477 photos) is composed of aerial pho-
tos – nadiral and oblique – taken with a RPA10 equipped
with a 24 Mpixel Nikon D3X (full frame sensor) mount-
ing a Nikkon 50 mm lens. 23 targeted points have been
measured through topographic surveying using a Topcon
GPT-7001i total station. The (average) ground sampling
distance (GSD) is less than 4 mm. After modeling with
Samantha and least-squares alignment, the RMS error
with respect to the control points is 22 mm. Figure 11
reports the individual errors.

“Termica” (27 images) was captured with a RPA equipped
with a 12 Mpixel Canon Power Shot S100 camera (1/1.7
CMOS sensor) with nadiral attitude. 13 non-signalized
natural target points was measured by geodetic-grade GPS
receivers. The (average) GSD is 27 mm. After modeling
with Samantha and least-squares alignment, the RMS
error with respect to the control points is 86 mm, which is
well within the uncertainty affecting the measured camera
positions (reported in [76]). Individual errors are shown
in Figure 12.

“Herz-Jesu-P25” is part of a publicly available dataset
[76], it consist of 25 cameras, for which the ground truth
position and attitude had been computed via alignment
with a laser model; in this case, as GCPs we considered

9http://www.icet-rilevamento.lecco.polimi.it/
10Remotely Piloted Aircraft
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Table 2: Summary of the experiments. The “camera” column refers to the number of different cameras or to different settings of the same
camera.

#images #cameras ground truth notes
Brà 331 1 laser laser/photo inconsistencies
Duomo di Pisa 309 3 laser 3 cameras
S. Giacomo 270 2 laser 2 sets 1 year apart
Navona 92 1 internal also used in [75]
Ventimiglia 477 1 GCP nadiral/oblique
Termica 27 1 GCP nadiral
Herz-Jesu-P25 25 1 GCP, internal reference dataset [76]

Figure 6: Comparative modeling results from the “Brà” dataset. Top: VisualSFM. Bottom: Samantha. In this case both methods produced
visually correct results.
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Figure 7: Comparative modeling results from the “Duomo di Pisa” dataset. Top: VisualSFM. Bottom: Samantha. In this case both
methods produced visually correct results.

Figure 8: Comparative modeling results from the “S. Giacomo” dataset. Top: VisualSFM. Bottom: Samantha. Please note the cameras
outside the square and the rogue points in the VisualSFM model.
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Figure 9: Comparative modeling results from the “Navona” dataset. Top: VisualSFM. Bottom: Samantha. Please note that VisualSFM
modeled only half of the square and the facade is bent.

Table 4: Focal length values (in pixel) and errors [percentage]. The
value for VisualSFM on “Navona” missing due to failure.

Calib. Samantha VisualSFM
Navona 4307.5 4208.7 [2.3%] n.a.
Herz-Jesu-P25 2761.8 2756.2 [0.20%] 2752.1 [0.32%]

the camera centres. After modeling with Samantha and
least-squares alignment, the RMS error with respect to the
control points is 3.4 mm. Figure 13 reports the individual
errors.

For this dataset the internal parameters of the camera
were also available, thus allowing us to validate the pa-
rameters obtained by autocalibration, with a remarkably
low error of 0.2% on the focal length value (Tab. 4).

Figures 10 shows the models obtained for these three
datasets. As a further qualitative comparison, Figures 14
shows the models obtained by VisualSFM for the same
datasets. Both pipelines produced qualitatively correct
results, but VisualSFM discarded a group of 24 photos
in the “Ventimiglia” dataset.

9.3. Comparison against laser data
Thanks to the availability of a laser survey for two

datasets (“Brà” and “Duomo di Pisa”) we have been able
to further assess the accuracy of our results, by aligning
the 3D point produced by Samantha with the laser point
cloud using iterative closest point (ICP) and looking at
the residuals (using “CloudCompare” software [79]).

Results are reported in Tab. 5 and Fig.15 (for “Duomo
di Pisa” and “Brà” only).

The laser data relative to the “Duomo di Pisa” is a
triangular mesh with an average resolution of 30 mm rep-
resenting a subset of the area surveyed by the photograph
(the abside). After registering the point cloud produced
by Samantha onto this mesh, the residual average point-
mesh distance is 73 mm.

The laser data for “S. Giacomo” is a point cloud resam-
pled on a 20 mm grid. After registering the point cloud
produced by Samantha onto this mesh, the residual av-
erage point-point distance is 140 mm.

The laser data for “Brà” covers a larger part of the
Piazza Brà site, including the interior of the Arena, and
comes as a point cloud with an average resolution of 20
mm. Unfortunately the laser survey contains Christmas
decoration (including a huge comet star rising from in-
side the Arena) and market stalls that were not present
during the photographic surveys. A detailed comparison
would entail the manual trimming of all the inconsisten-
cies, which would be too cumbersome. This fact, together
with a larger GSD might be the cause of the higher residual
distance obtained in this case (360 mm).

9.4. Running Times.
The overall running times for both pipelines are re-

ported in Table 6. All the experiments were carried out
on a workstation equipped with a Intel Xeon W3565 cpu
@ 3.20 Ghz, 36 Gb of RAM and a Nvidia Geforce 640 GT
video card.
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Figure 10: From left to right: results for “Ventimiglia”, “Termica”, “Herz-Jesu-P25” obtained with Samantha

Figure 14: From left to right: results for “Ventimiglia”, “Termica”, “Herz-Jesu-P25” obtained with VisualSFM

Figure 15: Results of point cloud comparison between laser and Samantha for “Brà” and “Duomo di Pisa”. The colour of the Samantha’s
point cloud encodes the residual distance, consistently with the histogram shown in the insert (this figure is best viewed in colour). Units are
in meters.
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Figure 11: Top: Distance of computed 3D points to ground control
points for the “Ventimiglia” image-set. Bottom: Differences on each
dimension (X-Y-Z).
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Figure 12: Top: Distance of computed 3D points to ground control
points for the “Termica” image-set. Bottom: Differences on each
dimension (X-Y-Z).
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Figure 13: Top: Distance of computed camera centers to reference
positions for the “Herz-Jesu-P25” image-set. Bottom: Differences
on each dimension (X-Y-Z).

Table 5: Comparison with laser data. Mean and standard deviation
of closest-points distance after registration. All measures are in mm.

Mean Std Dev GSD
Brà 360 300 ≈ 10
S. Giacomo 140 220 ≈ 4
Duomo di Pisa 73 185 ≈ 2.8

It should be noted that, in general, the running times
are comparable. VisualSFM is faster when the dataset is
composed of a small amount of images, while Samantha
seems to scale better when the number of image increases.
This is mostly due to the matching phase, where by default
VisualSFM consider all the possible pairwise matches.
Please note also that the running time does not depend
only on the number of images and the image resolution,
but also on unpredictable factors such as the amount of
overlap among the images or their content. For example,
“Ventimiglia” is composed of many overlapping and high
resolution images and the higher running time of Saman-
tha can be probably lead back to this.

Table 6: Running times [min] for Samantha and VisualSFM.

Samantha VisualSFM
Brà 136 327

Duomo di Pisa 149 316
S. Giacomo 103 122

Navona 29 19
Ventimiglia 681 657

Termica 6 3
Herz-Jesu-P25 5 3

10. Conclusions

In this paper we have described several improvements
to the current state of the art in the context of uncalibrated
structure-and-motion from images. Our proposal was a
hierarchical framework for structure-and-motion (Saman-
tha), which was demonstrated to be an improvement over
the sequential approach both in computational complexity
and with respect to the overall error containment. Saman-
tha constitutes the first truly scalable approach to the
problem of modeling from images, showing an almost lin-
ear complexity in the number of tie-points and images.

Moreover, we described a novel self-calibration approach,
which coupled with our hierarchical pipeline (Samantha)
constitutes the first published example of uncalibrated struc-
ture-and-motion for generic datasets not using external,
ancillary information. The robustness of our approach has
been demonstrated on 3D model datasets both qualita-
tively and quantitatively.

This technology has now been transferred to a company
(3Dflow srl) which produced an industry grade implemen-
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tation of Samantha that can be freely downloaded11.

Appendix A. Edge-connectedness of G′.

Thesis: the subgraph G′ produced by the method re-
ported in Sec. 2.2 is m-edge-connected, provided that m
independent spanning tree can be extracted from G.

To prove the thesis we rely upon the following obser-
vation. Consider an undirected graph G with the capacity
of all edges set to one; G is k-edge-connected if and only
if the maximum flow from u to v is at least k for any node
pair (u, v).

Since our G′ is the union of m independent (disjoint) 1-
edge-connected graphs, each of them adds an independent
path with unit capacity from every node pair (u, v), so the
maximum flow from every pair (u, v) in G′ is m.
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