
Stabilizing 3D Modelling with Geometric

Constraints Propagation

Michela Farenzena, Andrea Fusiello

Dipartimento di Informatica, Università di Verona,

Strada Le Grazie, 15 - 37134 Verona, Italy

Abstract

This paper proposes a technique for estimating piecewise planar models of objects
from their images and geometric constraints. First, assuming a bounded noise in
the localization of 2D points, the position of the 3D point is estimated as a poly-
hedron containing all the possible solutions of the triangulation. Then, given the
topological structure of the 3D points cloud, geometric relationships among facets,
such as coplanarity, parallelism, orthogonality, and angle equality, are automatically
detected. A subset of them that is sufficient to stabilize the 3D model estimation
is selected with a flow-network based algorithm. Finally a feasible instance of the
3D model, i.e. one that satisfies the geometric constraints and whose 3D vertices
lie within the associated polyhedral bounds, is computed by solving a Constraint
Satisfaction Problem. The process accommodates uncertainty in a non-probabilistic
fashion and thus provides rigorous results. Synthetic and real experiments illustrate
the approach.

Key words:

PACS:

1 Introduction

Reconstruction of accurate and photorealistic 3D models is one of the challeng-
ing tasks in Computer Vision. It often shares problems and research fields with
other communities such as Computer Graphics and Computer-Aided Design.

In this paper we address the problem of recovering 3D surface models from
images and geometric clues. It is known in fact that using only the image in-

Email addresses: farenzena@sci.univr.it (Michela Farenzena),
andrea.fusiello@univr.it (Andrea Fusiello).

Preprint submitted to Elsevier 30 April 2008



formation is often an ill-conditioned problem; defining geometric constraints
between scene primitives and incorporating them into the reconstruction sys-
tem improves the quality of the model and limits the number of required
images.

The methods proposed in literature can be mainly classified as model-based
and constraint-based.

In model-based methods [1–4], the scene is defined as in CAD systems: objects
are the assemblage of known primitive shapes. Reconstruction is carried out by
fitting a 3D model to image data, thus determining its dimension, its position
and orientation. The fact that the scene must be decomposable in primitive
shapes is the main limitation of such methods.

Constraint-based methods [5–12] are more flexible, as they do not rely on
a-priori models but use simple primitives like points and lines. Geometric
information, such as orthogonality, parallelism, or planarity, is given in the
form of constraints on 3D points and reconstruction is obtained as the solution
of an optimization process.

In most of previous works, e.g. [4–6,9,10,12], the constraints detection phase
requires the user to provide a geometrical description of the model, which
can be very time-consuming. In other cases [7,8], geometric constraints are
detected automatically thanks to prior knowledge about the model to recon-
struct.

Besides, the analysis of constraints is usually overlooked. In fact, data sets with
many points and geometric constraints do not necessarily define a consistent
and unique 3D object. Parts of the scene may not be rigidly connected, so that
there exist various shapes that verify the geometric constraints and project
to identical image points. In addition, constraints may be redundant, making
the optimization uselessly harder or even unfeasible. [10] proposes an algebraic
method to check whether a configuration of points and constraints leads to a
unique reconstruction, but it does not deal with redundancies. As far as we
know, a principled analysis of constraints has not been proposed yet.

Geometric constraints may be directly embedded into the minimization of the
reprojection error (or bundle adjustment) [5,7,8], but this causes a substantial
increase of computational costs and both convergence and exact constraint
satisfaction are not guaranteed. An alternative is to make the geometric con-
straints implicit in the parametrization of 3D points [6,10–12], so as they are
satisfied exactly at every optimization step.

Our approach avoids altogether the non-linear least-squares problem arising
in the methods above, for it casts the problem as a Constraint Satisfaction
(CSP), where the 3D point positions are bounded by 3D boxes and a feasible

2



solution is one that satisfies all selected geometric relationships and whose 3D
points lie within the associated bounds.

These bounds are obtained as the result of a triangulation procedure that
instead of producing one optimal solution, as customary, outputs the set of
all the possible solutions, given a bounded error affecting the image points.

Accommodating uncertainty is crucial when the results are to be used as
input for other processes. Albeit simple in concept, this triangulation is a
principled, efficient and reliable approach for evaluating 3D point positions
and the associated uncertainty.

Moreover, this work is enhanced by the automatic detection of constraints and
by the subsequent analysis and pruning of these constraints that permits to
verify if a unique solution can be obtained, and at the same time to prune
redundancies. A preliminary version of this work is going to appear in [13].

2 Overview

The approach, summarized in Figure 1, consist of two stages.

���������

	
���

���������

������ ��������

�����	�������

��	�
�����


��������
���������

����������

�
����

��������� ���������

	������

���

�����
�����

���������

	��	�������

�� ���������

�
��� ����


��
������


�����

��������� ���

��������������

��
������


�������
�����

�
���

Fig. 1. Overview of the proposed method. External inputs are: camera matrices, 2D
point correspondences, 3D points connectivity.

The first stage deals Section with triangulation, i.e., reconstructing 3D points
from their corresponding image points (provided manually) and known cam-
era matrices. Assuming that the error in the localization of image points is
bounded by a rectangular region, our polyhedral triangulation (Section 3) com-
putes the polyhedron that contains all the possible 3D point positions.

3



The second stage focuses on obtaining one single model by fixing the posi-
tion of the 3D points in such a way that certain geometric relationships are
satisfied. Given a set of reconstructed 3D points, represented by the poly-
hedra provided by the above 3D triangulation, and the connectivity of the
points into triangular facets (provided manually), the method consists in a
three-steps automatic process. First the geometric relationships (coplanarity,
parallelism, orthogonality, and angle equality) are detected (Section 4); then
a set of minimal relationships that allow a unique reconstruction is selected
using the structural rigidity analysis (Section 5); finally, a feasible instance of
the 3D model, i.e. one that satisfies all selected geometric relationships and
whose 3D points lie within the associated polyhedral bounds, is computed
using a constrained optimization technique (Section 6).

Experimental validation is reported in Section 7. Finally, conclusions are
drawn in Section 8.

3 Polyhedral Triangulation

The first and most important stage of model reconstruction consists in recov-
ering the coordinates of points in 3D space given their images in two or more
views. It is usually assumed that the camera matrices are known exactly, or
at least with greater accuracy than point localization. In the absence of noise,
i.e. when correspondences are perfectly detected, the problem is trivial, involv-
ing only finding the intersection of rays in the space. If data are perturbed,
however, the rays corresponding to back-projections of image points do not
intersect, and obtaining the 3D coordinates of the reconstructed points be-
comes far from trivial, as witnessed by the renewed interest aroused by this
issue [14,15]. A statistical optimal solution, under the assumption of Gaus-
sian noise, exists for two [16] and three views [15], but seems to be unfeasible
beyond that.

This problem can be circumvented if one refrains from searching for one opti-
mal solution and computes instead a set of possible solutions (defined in terms
of errors affecting the image points) that contains the error-free solution. This
permits to bound the exact solution in the 3D space for any number of views
and to estimate, at the same time, the uncertainty of the result.

Let P i, i = 1, . . . , n be a sequence of n known cameras and mi be the im-
age of some unknown point M in 3D space, both expressed in homogeneous
coordinates. It is assumed that the localization error is bounded by a rectan-
gular region Bi centered around each image point (one can imagine a uniform
distribution inside Bi). Each region Bi bounds the possible locus of the 3D
point inside a semi-infinite pyramid Qi with its apex in the camera center (see

4



��

�� ��

Fig. 2. On the left, the semi-infinite pyramid Qi is defined from the camera centre
Ci and the bound Bi. On the right, the polyhedron D is the intersection of Q1 and
Q2.

Figure 2). The solution set is defined as the polyhedron formed by the inter-
section of the n semi-infinite pyramids generated by the intervals B1, . . . ,Bn.
Analytically, this region is defined as the following set:

D = Q1 ∩ Q2 · · · ∩ Qn ={M: ∃mi ∈ Bi, i = 1 . . . n s.t. ∀i : mi ≃ P iM}. (1)

This polyhedron is the best piece of information about the localization of the
error-free 3D point one can deduce from the bounded error in image points.
In other words, the solution set bounds the unknown probability distribution
function over the possible 3D point positions. This approach represents the
counterpoise of the max-likelihood approach using the Gaussian error model.

Instead of approximating D using Interval Analysis as in [9], it is computed
precisely using Computational Geometry techniques. The semi-infinite pyra-
mid Qi can be written as the intersection of the four negative half-spaces
Hi

1
,Hi

2
,Hi

3
,Hi

4
defined by its supporting planes. Thus, the solution set D can

be expressed as the intersection of 4n negative half-spaces:

D =
⋂

i=1...n
ℓ=1...4

Hi
ℓ (2)

The vertices and the faces of D can be enumerated in O(n log n) time, being
n the number of cameras [17].

As an example, Figure 3 shows the polyhedral triangulation result obtained
from nine calibrated images of a toy object. Twenty-six points are manually
matched in the sequence and a uniform error in the 2D point location bounded
by a 10-pixel wide square is assumed. The mean volume of the polyhedra is
(5.8mm)3, with respect to a volume of (2.6dm)3 of the object.

5



Fig. 3. Thumbnails of the nine images of the Toy sequence (left) and the polyhedral
triangulation result (right). The small polyhedra bound the corners of the object.
Dashed lines are added for visualization purpose.

4 Constraints Detection

From the polyhedral triangulation a bounded estimation of the position of
reconstructed 3D points is obtained. Any random choice of 3D points inside
the bound is an approximation of the exact 3D reconstruction. Considering
one of these approximations, its points are connected (manually) into a trian-
gular mesh, obtaining a piecewise planar surface model. This section describes
how geometric constraints such as coplanarity, parallelism, orthogonality and
angles equality are automatically detected on the approximate model.

4.1 Planes Detection

Planes in the model are extracted using a Mean Shift clustering procedure [18]
on the triangular facets. The proposed technique is composed by a two-step,
hierarchical strategy.

(1) First facets are clustered according to their normal, thereby grouping
together (approximately) coplanar and (approximately) parallel facets.

(2) Then, within each group, the clustering is refined by taking into account
also the distance to the origin of the plane containing the facet. In this
way facets belonging to parallel planes are separated.

We adopted in both cases the uniform kernel, i.e., a multidimensional unit
sphere, with bandwidth automatically selected as described in the following.

6



4.1.1 Bandwidth Automatic Estimation

The bandwidth parameter h defines the level of detail of the clustering anal-
ysis. Large bandwidth values lead to global but coarse separation, whereas
small bandwidth values better identify local modes, but at the risk of over-
partitioning the data space. Good segmentation results could be obtained after
an accurate parameters tuning. In line with the concept of stable segmenta-
tion [19] we use the strategy developed in [20]. We single out extreme values
for h, we uniformly sample the range [hmin, hmax] and perform a Mean Shift
clustering for each value of h. Finally, we consider the plot of the number of
clusters obtained versus h and we choose the centre of the largest plateau as
the optimal bandwidth (see Figure 4).

������� �	����


� �������� ��	
��

�
�
�
�
	
�
�
�
�
�

� � ������ ����� ��	
�

Fig. 4. Example of automatic bandwidth selection: on the graph of the number of
clusters obtained from each trial with a h value, from the interval [0.05, 0.3], the
centre of the largest plateau is selected.

Please note that the process clusters together facets belonging to the same
plane, regardless of their distance.

4.2 Constraints Extraction

Geometric constraints involving planes can now be automatically inferred.

Facets belonging to the same group after the second clustering step are related
by coplanarity constraints. Each plane is identified by one reference facet. As
to parallelism constraints, if two different reference facets belong to the same
group after the first clustering step, their respective planes are parallel. Finally,
angular constraints are deduced from grouping heuristics: if two or more planes

7



nearly satisfy a constraint then they are forced to satisfy it. Orthogonality is
checked for every pair of reference facets: whenever two of them are found
to be approximately orthogonal (within 5 degrees), then they are linked by
an orthogonality constraint. Likewise, equality of angles is checked for every
quartet of reference facets.

The constraints form a hierarchy (Figure 5): at the bottom level there are
facets, grouped into planes by coplanarity constraints, then planes, grouped
into equivalence classes modulo parallelism, and, finally, these equivalence
classes related by angular constraints.

������

������� ��

	
��������

	
��������

������

������� ��

����������

	
��������

	
��������

������� ������

����������� �������

�� �������

	
��������

Fig. 5. The hierarchy induced by constraints detection.

At the highest level the position of the planes does not matter, as only the
orientation is considered. This is consistent with the fact that 3D point’s
positions are not determined by the polyhedral triangulation.

Carrying on with the Toy model, the 26 polyhedra are manually connected
into triangular facets. Then, 13 planes are automatically correctly extracted by
the algorithm, as depicted in Figure 6. This clustering process implies 8 paral-
lelism constraints after the first clustering step (middle level of the hierarchy)
and 29 coplanarity constraints on the triangular facets after the second step
(bottom level of the hierarchy). At the higher level of the constraints hierarchy
five equivalence classes modulo parallelism are found. Automatic constraints
detection identifies 6 orthogonality and 3 angle equality constraints; labelling
the reference planes as in Figure 6, these constraints are the following:

Perpendicularity: 1-2, 1-3, 1-4, 1-5, 2-5, 3-4;
Angle Equality: (5 4)-(5 3), (5 4)-(2 3), (5 3)-(2 3).

8



�

�

�

�

�

Fig. 6. Automatic extraction of planes for the Toy model (left and centre image).
Each plane is identified by a different colour. The right image shows the five planes
representative of the equivalence classes modulo parallellism.

5 Constraints Analysis

In this section we will discuss how the angular constraints, which – in general
– are redundant, can be pruned while maintaining their capacity of stabilizing
the estimation of the 3D model.

The concept of rigidity (or constriction) for geometric systems, has been stud-
ied in several scientific fields like Computational Geometry and Structural
Topology, with application mainly in Computer-Aided Design (CAD). We are
applying here the notion of structural rigidity to systems of planes (mod-
ulo parallelism) in order to remove redundant constraints while keeping the
“rigidity” of the system. Some definitions, taken from [21], are in order here
to introduce notation and concepts.

Definition 1 (Geometric Constraint System) A Geometric Constraint Sys-
tem (GCS) is a pair S = (O, C), where O is a set of geometric objects (repre-
sented by some variables), and C is a set of constraints.

Our geometric objects are equivalence classes of planes modulo parallelism.
They are identified by their direction (the normal vector). The constraints are
orthogonality and angle equality.

Definition 2 Let S = (O, C) be a GCS. A solution to S is an evaluation
θO of the variables in O such that every predicate in C is true. The set of
solutions to S is denoted by Sol(S).

Definition 3 (Constriction) 1 A GCS S is well-constrained if Sol(S) is
finite, over-constrained if Sol(S) = ∅ and under-constrained if Sol(S) is infi-
nite.

1 In fact, this is the definition of global [22] or generic [23] constriction.

9



In practice, a GCS can be under-constrained, but its solutions be identical
modulo a geometric transformation (e.g., translation, rotation). Constriction
modulo direct isometries (also called rigidity) is the type of constriction usu-
ally sought in CAD. In our case, translations are factorized out by the paral-
lelism equivalence, hence only rotations are left. As a consequence, we consider
constriction modulo orthogonal transformations.

Constriction depends on the number of solutions, but computing all of them
is intractable. Hence, approximate characterizations that can be checked in
polynomial time are frequently used. A characterization known as structural
constriction is based on the degrees of freedom abstraction of the geometric
constraints and objects.

Definition 4 The number of degrees of freedom (DOFs) of a geometric object
is the number of independent parameters used to represent it. The number of
DOFs of a geometric constraint is the number of independent equations needed
to represent it.

In the following, we denote by dof(·) the number of DOFs of an object or a
constraint.

In our case, geometric objects have 2 DOF, because normals are unit vectors,
and angle constraints have 1 DOF.

Definition 5 (Structural G-constriction) Let S = (O, C) be a GCS. Let
G be an invariance group of dimension D. The system S is structurally G-
over-constrained if there exists a subsystem S ′ = (O′, C ′) of S such that∑

x∈O′ dof(x)−
∑

c∈C′ dof(c) < D.

The system S is structurally G-well-constrained if it is not structurally G-
over-constrained and

∑
x∈O dof(x)−

∑
c∈C dof(c) = D.

The system S is structurally G-under-constrained if it is not structurally G-
over-constrained and

∑
x∈O dof(x)−

∑
c∈C′ dof(c) > D.

In our case, structural constriction modulo orthogonal transformations can be
checked using D = 3.

Definition 6 (Constraint graph) Let S = (O, C) be a GCS. Its constraint
graph, denoted by GS = (V, E), is a bipartite undirected graph where V = O∪C

(every object in S and every constraint in C is a vertex in GS) and an edge
connects each constraint to each entity it constrains.

Hoffmann et al. in [23] introduced the Dense algorithm that checks structural
constriction in polynomial time, considering a flow-network derived from the
bipartite constraint graph. The source is linked to each constraint, and each

10



object is linked to the sink. The capacities correspond to the DOFs of the
constraints (edges from the source to constraints) and to the DOFs of the
objects (edges from objects to the sink). Edges from constraints to objects
have infinite capacity. A maximum flow in this network represents an optimal
distribution of the constraints DOFs onto the objects DOFs. To identify over-
rigid subsystems, the method adds an additional D capacity to one constraint
at a time.

If a maximum flow distribution cannot saturate all the edges from the sink to
the constraints, this means that some constraints DOFs cannot be absorbed
by the objects. Thus there exists a subsystem with less DOFs than D, and the
GCS is over-constrained (Figure 7). Please note that, being structural constric-
tion an abstraction, a GCS is deemed over-constrained as soon a redundant
constraints are detected, regardless of the fact that they are consistent or not.

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 7. Constraint network for the Toy example (left). The capacity of the arcs
connecting the constraint and the object vertices is infinite. On the right a case
of flow distribution on the network, when the first constraint edge is overloaded
(right). The GCS is over-constrained, because not all the arcs from the sink to
the constraints are saturated. ⊥ indicates the orthogonality constraint and ⊲⊳ the
equality of angles.

We exploit over-rigidity in order to detect redundancies. Dense returns the
over-constrained subsystem S ′ if the system is over-constrained, or an empty
set otherwise. This S ′ is the subsystem induced by the objects traversed dur-
ing the last search for an augmenting path, in the max flow computation.
Constraints binding the objects in S ′ can be removed until the system it-
self becomes structurally well-constrained. This is implemented in the Prune
procedure:

11



Algorithm 1 Prune

Input S = (O, C): GCS
Output So = (O, Co): GCS such that Co ⊆ C and
So is structurally well-constrained

S ′ = (O′, C ′)← Dense(S)
if isEmpty(S ′)

Return S

else
select c ∈ C ′

S ← S(O, C\{c})
Prune(S)

end

The selection of c is random, provided that its removal do not leave any object
node with less inbounding arcs than the object’s DOFs in the constraint graph.

The correctness of Prune is proven by the following:

Theorem 1 (Object Condition) Necessary condition for a constraint graph
GS = (V, E) to be structurally rigid is that the sum of DOFs of the constraints
bounding each object vertex is greater or equal to the object’s DOFs.

Proof. Let oj ∈ V be an object vertex and c1, . . . ck ∈ V be the constraints
vertices bounding oj. Let dof(oj) = n, and dof(ci) = mi, for i = 1, . . . k. The
condition

∑k
i=1

dof(ci) < dof(oj) means that not all the parameters in oj are
constrained. Thus, the system can not be rigid.

In our case, since all constraints have one DOF it is sufficient to check the
number of inbounding arcs.

Then, if one starts from an over-rigid constraint graph that satisfies the Object
Condition of Theorem 1 and executes Prune on that graph such that after
each constraint removal the Object Condition is verified, it is guaranteed to
obtain as output a structurally rigid constraint system.

As shown in Figure 7 (left), the constraints analysis on the Toy model correctly
reveals that the constraint system is over-rigid. The Prune algorithm on
the constraint graph eliminates two constraints, one perpendicularity and one
angle equality. The resulting constrained system has then 7 angular constraints
and

∑
x∈O dof(o)−

∑
c∈C dof(c) = 10− 7 = 3 = D.

12



6 Finding a Feasible Solution

Finally, a feasible instance of the 3D model, i.e. one that satisfies all selected
geometric constraints and whose 3D points lie within the associated poly-
hedral bounds, is computed. This is formalized in the following Constraint
Satisfaction Problem (CSP):

find X

subject to XL ≤ X ≤ XU

cL ≤ c(X) ≤ cU (3)

where X is the variables vector, i.e. the 3D points of the model; XL and XU

delimit the domain of each variable, and they derive from polyhedral triangu-
lation; c(X) are algebraic equations containing the non linear constraints on
X, with bounds cL and cU .

The geometric constraints must then be translated into constraints among
points and formalized as algebraic equations.

For each equivalence class modulo parallelism a plane is chosen as the refer-
ence one. Angular constraints are applied among the reference planes. These
are then linked to each other plane in the same equivalence class by a paral-
lelism constraint. Each constraint among planes (i.e. parallelism and angular
constraints) is translated into a constraint on the normals of the reference
facets, as shown in Table 1. The normal vector, in turn, is a function of the
three vertices of the facet, in Cartesian coordinates. In order to simplify the
complexity of the algebraic equations, in the orthogonality and parallelism
constraints the normal vector is not normalized.

Table 1
Translation of constraints among facets {fi}i=1,...,n of the model into algebraic equa-
tions among points.

Constraint Algebraic equation

Orthogonal(f1, f2) n1 · n2 = 0

SameAngle(f1, f2, f3, f4) (n1 · n2)− (n3 · n4) = 0

Parallel(f1, f2) (n1 × n2) = 0

The reference facets are linked to all the other facets belonging to the same
plane by coplanarity constraints. Let C = {M1, M2, . . . , Mn} be the vertices
of a group of coplanar facets, then all these points must lie on the same plane.
This can be translated into a set of overlapping coplanarity constraints among

13



four points at a time:

Coplanar(M1, M2, M3, M4)∧

Coplanar(M2, M3, M4, M5) ∧ . . .

Coplanar(Mn−3, Mn−2, Mn−1, Mn) (4)

where Coplanar(M1, M2, M3, M4) is equivalent to:

[(M1 −M2)× (M1 −M3)]
T · (M1 −M4) = 0. (5)

Once all constraints are translated into algebraic equations, a solution can be
found using a constraint solver. In our case we use SNOPT [24], a general-
purpose system for solving optimization problems involving many variables
and constraints. It is suitable for large-scale linear and quadratic program-
ming and for linearly constrained optimization, as well as for general nonlinear
programs.

Fig. 8. A top view of the Toy model before (left) and after (right) constraints
propagation.

Table 2
[Min,Max] deviation from the constraints in the Toy model before and after propa-
gation (in degrees). Legend: ⊥ is orthogonality, ⊲⊳ is angle equality, 2 is coplanarity
and ‖ is parallelism.

⊥ ⊲⊳ 2 ‖

Before [0.26, 2.47]◦ [0.002, 0.09]◦ [0.0, 0.02]◦ [0.83, 6.55]◦

After [0.0, 0.48]◦ [0.0, 0.01]◦ [0, 0]◦ [0.12, 3.87]◦

As to the Toy model, the formalization of the problem into algebraic equations
yields 62 non linear constraints. The results are summarized in Table 2 and
Figure 8. As the reader can notice, the whole pipeline described throughout
the paper leads to an accurate 3D model. The fact that the constraints are not
exactly satisfied is due to the optimizer, that stops when it deems the solution
cannot improved further.

14



7 Experimental Results

Synthetic experiments. Constraints detection and analysis was tested on
the synthetic models shown in Figure 9. The 3D points were replaced by boxes
to simulate the output of polyhedral triangulation. The size of the box varied
from 0.5% to 3.0% of a “size gauge” computed as the median over the model’s
points of the farthest point distance. For each value, 20 perturbed models
were generated using a uniform random distribution inside the boxes. Planes
and constraints were automatically detected by our algorithm, the constraints
were cut down using Prune, and a feasible solution of the resulting CSP was
found using SNOPT.

Fig. 9. The four objects used for the synthetic experiments, here referred as (from
the left) Test, Boxhole, Cutcube and House.

The number of planes correctly extracted is 22 for Test, 10 for Boxhole, 7
for Cutcube, and 11 for House. Table 3 shows the constraints extracted, before
and after the structural rigidity analysis. Please note that at each step Prune
chooses randomly which constraint to eliminate, so the final set of constraints
varies from time to time; here, the most common case is reported. The solution
of the CSP took about 20 s for Cutcube and Boxhole, 50 s for House and 90
s for Test.

Real experiments. The whole method was tested on real images.

The Palmanova set is composed by 15 calibrated images of a monument (Fig-
ure 10). Polyhedral triangulation was carried out, considering a uniform error
in the 2D point location bounded by a 10-pixel wide square (Figure 11). The
mean volume of the polyhedra is (13cm)3, with respect to a volume of (5.2m)3.
Then, we selected the centre of each polyhedra as a point-wise approximate so-
lution and we connected them manually. Plane detection algorithm extracted
34 planes. Constraints detection and analysis were performed, and the results
are outlined in Table 3. As the reader can notice, in this case constraints prun-
ing is essential to simplify the problem. The CSP solver (SNOPT) produced,
in a few minutes, the result shown in Figure 12, with the errors reported in
Table 4.

15



Table 3
Number of constraints automatically detected and number of remaining constraints
after the structural rigidity analysis for the 3D models. The rightmost column re-
ports the total number final of constraints.

Automatic constraints Pruning

⊥ ⊲⊳ 2 ‖ ⊥ ⊲⊳ Total

Test 22 61 60 8 9 16 93

Boxhole 12 1 24 4 9 0 37

Cutcube 0 3 40 5 0 3 48

House 9 6 25 4 7 4 40

Palmanova 21 1460 134 4 4 53 195

Pozzoveggiani 59 2043 100 5 1 58 164

Tribuna 29 799 478 34 2 51 565

Fig. 10. Three of the 16 images of the Palmanova set.

Fig. 11. Polyhedral triangulation for Palmanova.

The Pozzoveggiani set is composed by 16 calibrated images of a church (Fig-
ure 13). Polyhedral triangulation was performed, assuming a uniform error
in the 2D point location bounded by a 7-pixel wide square (Figure 14). The
mean volume of the resulting polyhedra is (13cm)3, with respect to a vol-
ume of (16.88m)3. Then, starting from the approximate solution obtained by
randomly choosing one point inside each polyhedron, and connecting them

16



Fig. 12. Final geometric reconstruction of Palmanova after the constraints propa-
gation. Each plane is identified by a different colour.

Table 4
[Min,Max] deviation from the constraints in the initial and final model (in degrees).

⊥ ⊲⊳ 2 ‖

Palmanova
Before [0.15, 3.78]◦ [0.0, 0.02]◦ [0.0, 0.0]◦ [1.45, 3.68]◦

After [0.0, 2.61]◦ [0.0, 0.02]◦ [0.0, 0.0]◦ [0.05, 1.25]◦

Pozzoveggiani
Before [2.05, 2.05]◦ [0, 0.04]◦ [0, 0.19]◦ [1.2, 6.8]◦

After [1.73, 1.73]◦ [0, 0.03]◦ [0, 0.13]◦ [1.2, 4.7]◦

Tribuna
Before [0.03, 3.3]◦ [0, 0.03]◦ [0, 0.15]◦ [0.9, 10.4]◦

After [0.03, 0.3]◦ [0, 0.17]◦ [0, 0]◦ [0.9, 7.9]◦

manually, 36 planes were automatically extracted. Results from constraints
detection and analysis are outlined in Table 3. The CSP solver (SNOPT) pro-
duced, after less than one minute, the result shown in Figure 15, with the
errors reported in Table 4.

Fig. 13. Three of the 16 images of the Pozzoveggiani set.

The Tribuna set consists of 10 calibrated images of an apse (Figure 16). Poly-
hedral triangulation was performed, assuming a uniform error in the 2D point
location bounded by a 2-pixel wide square (Figure 17). The mean volume
of the resulting polyhedra is (2cm)3, with respect to a volume of (4.05m)3.
Then, starting from the approximate solution obtained by randomly selecting
one point inside each polyhedron, and connecting them manually, 62 planes
were automatically extracted. Constraints detection and analysis results are

17



Fig. 14. Polyhedral triangulation for Pozzoveggiani.

Fig. 15. Final geometric reconstruction of Pozzoveggiani after the constraints prop-
agation. Each plane is identified by a different colour.

summarized in Table 3. The CSP solver (SNOPT) produced, after a few min-
utes, the result shown in Figure 18, with the errors reported in Table 4.

8 Conclusions

In this paper we presented a new approach to constrained modeling from
many calibrated views. We demonstrated how polyhedral triangulation and a
suitable constraint analysis and propagation can be used to obtain an accurate
geometric model of a scene.

18



Fig. 16. Three of the 10 images of the Tribuna set.

Fig. 17. Polyhedral triangulation for Trubuna.

The final model satisfy the geometric constraints and its reprojection onto the
images is guaranteed to fall within the bounds set on the points localization
error.

Experiments show the effectiveness and the accuracy of the approach.

Future work will aim at removing the need for manually entering points and
connectivity, thereby making the system fully automatic. Preliminary results
in this direction are reported in [25].

Acknowledgments

We are grateful to P. Sturm for valuable comments and to L. Corazza for
contributing to the implementation of the software. Some of the 3D models

19



Fig. 18. Final geometric reconstruction of Tribuna after the constraints propagation.
Each plane is identified by a different colour.

shown in Figure 4 are courtesy of Mountaz Hascoët 2 . The SNOPT solver is
available inside TOMLAB.

References

[1] P. E. Debevec, C. J. Taylor, J. Malik, Modeling and rendering architecture from
photographs: A hybrid geometry- and image-based approach, in: H. Rushmeier
(Ed.), SIGGRAPH: International Conference on Computer Graphics and
Interactive Techniques, New Orleans, Louisiana, 1996, pp. 11–20.

[2] D. Jelinek, C. J. Taylor, Reconstruction of linearly parametrized models from
single images with camera of known focal length, IEEE Transactions on Pattern
Analysis and Machine Intelligence 23 (7) (2001) 767–774.

[3] D. Lowe, Fitting parameterized three-dimensional models to images, IEEE
Transactions on Pattern Analysis and Machine Intelligence 13 (5) (1991) 441–
450.

[4] M. Wilczkowiak, P. Sturm, E. Boyer, Using geometric constraints through
parallelepipeds for calibration and 3D modeling, IEEE Transactions on Pattern
Analysis and Machine Intelligence 27 (2) (2005) 194–207.

[5] M. I. A. Lourakis, A. A. Argiros, Enforcing scene constraints in single view
reconstruction, in: Proceedings of EuroGraphics 2007, Prague, Czech Republic,
2007.

[6] A. Bartoli, P. Sturm, Constrained structure and motion from multiple
uncalibrated views of a piecewise planar scene, International Journal of
Computer Vision 52 (1) (2003) 45–64.

2 http://www.lirmm.fr/ mountaz/Ens/DessTni/OpenGL/Exemples/tutors/data/

20



[7] H. Cantzler, R. B. Fisher, M. Devy, Improving architectural 3D reconstruction
by plane and edge constraining, in: British Machine Vision Conference, Cardiff
(UK), 2002, pp. 43–52.

[8] A. R. Dick, P. H. S. Torr, S. J. Ruffle, R. Cipolla, Combining single view
recognition and multiple view stereo for architectural scenes, in: Proceedings
of the International Conference on Computer Vision, Vol. 1, 2001, p. 268.

[9] M. Farenzena, A. Fusiello, A. Dovier, Reconstruction with interval constraints
propagation, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2006, pp. 1185–1190.

[10] E. Grossman, J. Santos-Victor, Least-square 3D reconstruction from one or
more views and geometric clues, Computer Vision and Image Understanding
99 (2005) 151–174.

[11] M. Wilczkowiak, G. Trombettoni, C. Jermann, P. Sturm, E. Boyer, Scene
modelling based on constraint system decomposition techniques, in: Proceedings
of the International Conference on Computer Vision, Vol. II, IEEE, IEEE, 2003,
pp. 1004–1010.

[12] S. Cornou, M. Dhome, P. Sayd, Architectural reconstruction with multiple views
and geometric constraints.

[13] M. Farenzena, A. Fusiello, 3d surface models by geometric constraints
propagation, to appear in CVPR 2008.

[14] F. Kahl, Multiple view geometry and the l∞-norm, in: Proceedings of the IEEE
International Conference on Computer Vision, Beijing, China, 2005, pp. 510–
517.

[15] H. Stewenius, F. Schaffalitzky, D. Nister, How hard is 3-view triagulation
really?, in: Proceedings of the International Conference on Computer Vision,
Beijing, China, 2005, pp. 510–517.

[16] R. I. Hartley, P. Sturm, Triangulation, Computer Vision and Image
Understanding 68 (2) (1997) 146–157.

[17] F. P. Preparata, M. I. Shamos, Computational Geometry. An Introduction, 1st
Edition, Springer-Verlag, 1985, Ch. 2, pp. 72–77.

[18] D. Comaniciu, P. Meer, Mean shift: A robust approach toward feature space
analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence
24 (5) (2002) 603–619.

[19] K. Fukunaga, Statistical Pattern Recognition, Academic Press, second edition,
1990.

[20] M. Cristani, U. Castellani, V. Murino, Adaptive feature integration for
segmentation of 3D data by unsupervised density estimation, in: Proceedings of
the International Conference on Pattern Recognition, Vol. 4, 2006, pp. 21–24.

21



[21] C. Jermann, G. Trombettoni, B. Neveu, P. Mathis, Decomposition of geometric
constraint systems: a survey, Internation Journal of Computational Geometry
and Applications 16 (5-6) (2006) 379–414.

[22] B. N. C. Jermann, G. Trombettoni, A new structural rigidity for geometric
constraint systems, in: Fifth International Workshop on Automated Deduction
in Geometry, Linz (Hagenberg), 2002.

[23] C. M. Hoffmann, A. Lomonosov, M. Sitharam, Finding solvable subsets of
constraint graphs., in: Constraint Programming, 1997, pp. 463–477.

[24] W. M. P. E. Gill, M. A. Sauders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM J. Optimization 12 (2002) 979–1006.

[25] M. Farenzena, A. Fusiello, R. Gherardi, R. Toldo, Towards unsupervised
reconstruction of architectural models, submitted to SGP 2008.

22


