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Abstract

This paper proposes a technique for the three-dimensional reconstruction of an
underwater environment from multiple acoustic range views acquired by a remotely
operated vehicle. The problem is made challenging by the very noisy nature of the
data, the low resolution and the narrow field of view. Our main contribution is a
new global registration technique to distribute registration errors evenly across all
views. Our approach does not use data points after the first pairwise registration, for
it works only on the transformations. Therefore, it is fast and occupies only a small
memory. Experimental results suggest the global registration technique is effective in
equalizing the error. Moreover, we introduce a statistically sound thresholding (the
X84 rejection rule) to improve ICP robustness against noise and non-overlapping
data.
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1 Introduction

In this paper we address the problem of the registration of many 3D point sets,
coming from an acoustic range sensor. Typically, the term registration is used
for the geometric alignment of a pair or more 3D data point sets, while the
term fusion is utilized when one wants to get a single surface representation
from registered 3D data sets.

Our data come from a high frequency acoustic camera, called Echoscope [1],
with a typical resolution of 3 cm at 500 KHz. Speckle noise is typically present
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due to the coherent nature of the acoustic signals. The final goal is to provide a
3D scene model to the human operator(s) of an underwater remotely operated
vehicle (ROV), in order to facilitate the navigation and the understanding of
the surrounding environment.

The registration of two points sets is usually performed by the Iterative Clos-
est Point (ICP) procedure [2,3]. ICP assumes that one point set is a subset
of the other; when this assumption does not hold, false matches are created,
that negatively influence the convergence of ICP to the solution. In order to
overcome this problem, many variants to ICP have been proposed, including
the search of closest points in the direction of the local surface normal [3], the
use of thresholds to limit the maximum distance between points [4], disallow-
ing matching on the surface boundaries [5], and the use of robust regression
[6,7]. In this paper we use the X84 outlier rejection rule [8] to discard false
correspondences. This is an improvement over [4], because there are no free
parameters and because it achieves a larger basin of attraction.

A widely used approach to the registration of many views is to sequentially
apply pairwise registration until all the views are combined. Chen and Medioni
[3], for instance, proposed an incremental approach in which two views are
registered and merged, building a metaview. The next view is then registered
and merged with the metaview and the process is repeated for all the views.
A similar approach was taken also by Masuda [9]. Jin et al. [10] proposed to
incrementally build a surface model onto which new views can be registered
and already registered views can be adjusted.

These schemes do not compute the optimal solution, because of the accu-
mulation of registration errors, as pointed out by [11] and [12]. They do not
use all the available information. Multiview registration, instead, must exploit
the information present in the unused overlapping view pairs, distributing
the registration error evenly between every pairwise registration. Bergevin et
al. [12] registered multiple range images simultaneously, using an extended
ICP algorithm. They converted the sequential registration relationship into
a star-shaped relationship, and then imposed the well-balanced network con-
straint. A network of range views is well-balanced when the registration error
is similar for all transformation matrices, and the transformation matrix be-
tween any two views is uniquely defined regardless of the path chosen to link
the views. Pulli [13] proposed to use the pairwise alignments as constraints
that the multiview step enforces while evenly diffusing the pairwise registra-
tion errors. In such a way, computational time is reduced as well as memory
storage. He introduces the concept of virtual mate to enforce the pairwise
alignments as constraints. Eggert et al. [14] use a force-based optimization in
which incremental pose adjustment are computed simultaneously for all point
sets, resulting in a globally optimal set of transformations. In [15], couples
of range images are incrementally registered together with a final registration
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between the first and last view, by using the inverse calibration procedure of
the range-finder.

Some works focus on computing the global registration given the correspon-
dences (i.e., the N-view point set registration problem). In [16], a force-based
optimization approach is proposed. Assuming the points’ correspondences
among the data sets are known, interconnections using springs between cor-
responding points is simulated. Pennec [17] introduces an iterative algorithm
based on the concept of mean shape. Benjemaa and Schmitt [11] use a quater-
nion approach similar to [18]. These techniques have been compared in [19],
and the result is that, not considering speed, Pennec’s method is the best one,
whereas [11] is the fastest. In a recent work, Williams and Bennamoun [20]
proposed a new technique, in which rotations are first computed iteratively,
and then translations are obtained as the solution of a linear system. The
method has been integrated into a generalized multiview ICP.

All the multiview alignment methods need to keep data of all – or at least
some – views in memory at the same time, reducing drastically performance,
especially when aligning large data sets. Our global registration approach dif-
fers from all the others because we enforce the constraints arising from the
pairwise registration directly on the transformation matrices, without the need
to go over data points again, after the initial pairwise registration between all
the overlapping views. The idea comes from [21] where it was applied to the
construction of planar mosaics from video (2D) images. Here we propose to
extend the technique to the registration of multiple 3D point sets. In our case
we end up with a non-linear system of equations (because of the parametriza-
tion of the rotations) that we solve with the Gauss-Newton algorithm. In the
context of medical imaging Roche et al. [22] proposed a similar method for
the registration of 3D ultrasound images and magnetic resonance images. This
technique differs from ours in the formulation of the objective function and
in the representation of rotations. Following [23,18,11] we used quaternions to
represent rotations, because of their well-known good properties [24]. In the
field of 3D registration, the closest work to our is [13], because both are based
on the simultaneous satisfaction of constraints provided by the pairwise regis-
tration, and neither relies on the solution of the N-view point set registration
problem. Our work differs in the formulation of the constraints, which do not
involve data points.

We would like to stress that none of the works on multiple views registration
present in the literature deals with the particular kind of 3D data we are
using. In fact: i) the resolution is never better than some centimeters, unlike
classical range data; ii) the motion of the sensor is quite unstable, and cannot
be controlled with precision, so acquired images from a fixed position may be
different due to speckle noise and sensor floating.
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2 Robust pairwise registration

Pairwise registration was addressed using the classical Iterative Closest Point
(ICP) algorithm [2] to which we added an outlier rejection rule (called X84)
in order to cater for non-overlapping areas between views.

2.1 Two view point set registration

Let us suppose that we have two sets of 3-D points, V i and V j, which corre-
spond to a single shape but are expressed in different reference frames. The
registration consist in finding a 3-D transformation which, when applied to
V j, minimizes the distance between the two point sets. In general point cor-
respondences are unknown.

For each point yi from the set V j, there exists at least one point on the
surface of V i so that no other point in V i is closer to yi. This is the closest
point, xi. The basic idea behind the ICP algorithm is that, under certain
conditions, closest points are a reasonable approximation to the true point
correspondences. The ICP algorithm can be summarized as follows:

(1) For each point in V j, compute the closest point in V i;
(2) With the correspondence from step 1, compute the incremental transfor-

mation (Ri,j, ti,j);
(3) Apply the incremental transformation from step 2 to the set V j;
(4) If the change in total mean square error is less than a threshold, terminate.

Else goto step 1.

Besl and McKay [2] proved that this algorithm is guaranteed to converge
monotonically to a local minimum of the Mean Square Error. As for step 2,
efficient, non-iterative solutions to this problem (known as the point set regis-
tration problem) were compared in [25], and the one based on Singular Value
Decomposition was found to be the best in terms of accuracy and stability.

ICP can give very accurate results when one set is a subset of the other, but
results deteriorate with outliers, created by non-overlapping areas between
views. In this case, the overlapping surface portions must start very close
to each other to ensure convergence, making the initial position a critical
parameter.

Modifications to the original ICP have been proposed to achieve accurate reg-
istration of partially overlapping point sets [4–7]. We implemented a variation
similar to the one proposed by Zhang [4], using outlier diagnostics to limit the
maximum allowable distance between closest points.
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2.2 Robust outlier rejection

As pointed out by Zhang, the distribution of the residuals for two fully overlap-
ping sets approximates a Gaussian, when the registration is good. The non-
overlapped points skew this distribution: they are outliers. Therefore, good
correspondences can be discriminated by applying outlier diagnostics on the
distribution of closest point distances ε. To this end,we employ a simple but
effective, model-free rejection rule, called X84 [8], which uses robust estimates
for location and scale (i.e., the spread of the distribution) to set a rejection
threshold. The median is a robust location estimator, and the Median Abso-
lute Deviation (MAD), defined as

MAD = med
i
{|εi −med

j
εj|}. (1)

is a robust estimator of the scale. The X84 rule prescribes to reject values
that are more than k MADs away from the median. Under the hypothesis of
Gaussian distribution, a value of k=5.2 is adequate in practice, as the resulting
threshold contains more than the 99.9% of the distribution.

The X84 rejection rule has a breakdown point of 50%: any majority of the
data can overrule any minority. The computational cost of X84 is dominated
by the cost of the median, which is O(N), where N is the size of the data
point set. The most costly procedure inside ICP is the establishment of point
correspondence, which costs O(N log N). Therefore X84 does not increase the
asymptotic complexity of ICP.

3 Multiview Registration

Assume that there are M overlapping point sets (or views) V 1 . . . V M , each
taken from a different viewpoint. The objective is to find the best rigid trans-
formations G1 . . .GM to apply to each set, bringing them into a common
reference frame where they are seamlessly aligned. Let Gi,j be the rigid trans-
formation matrix (in homogeneous coordinates) that registers view j onto view
i, i.e.,

V i = Gi,jV j (2)

where the equality holds only for the overlapping portions of the two points
sets V i and Gi,jV j. If we choose (arbitrarily) view k as the reference one, then
the unknown rigid transformations G1 . . .GM are respectively Gk,1 . . .Gk,M .
As customary, we will take k = 1.

These rigid transformations are not independent of each other, being linked
by a composition relationship. We can therefore estimate the alignment Gj of
image V j on the reference view (defined by the image V 1), by first registering
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V j onto any view V i and then using Gi to map the result into the space of
V 1

Gj = GiGi,j. (3)

This relationship can be used to compute Gi when all the matrices Gi−1,i . . .G1,2

are known, by simply chaining them

Gi =
i∏

j=2

Gj−1,j. (4)

The global registration matrix Gi will map V i into the space of V 1 (the
reference view).

As it is well known, the combination of pairwise registration does not yield
the optimal result. For example, if Gk,i and Gi,j are optimal in the sense that
they minimize the mean square error distance between the respective sets,
then Gk,j computed by composition does not necessarily minimize the mean
square error between views V j and V k. Moreover, small registration errors
accumulate so that views near the end of a sequence have a large cumulative
error.

3.1 Global transformations adjustment

In order to improve the quality of global registration, let us suppose we have
locally registered all spatially overlapping view pairs, in addition to those that
are adjacent in the image sequence. As the ROV moves back and forth, we can
obtain good alignment also between distant views in the temporal sequence.

The aim of the proposed method is to optimize the information coming from
every pairwise registrations, obtained by the alignment of all overlapped range
images. The innovative contribution consists in obtaining a global registra-
tion introducing algebraic constraints on the transformations, instead of data
points.

We first perform pairwise registration between every view and each of its over-
lapping views, thereby computing the Gi,j matrices whenever it is possible.
By considering many equations as (3), we can build a system of equations
in which the Gi,j are known quantities obtained by pairwise image registra-
tion, and the matrices G1,i = Gi (2 ≤ i ≤ M) are the sought unknowns.
By decomposing the homogeneous transformation matrices into rotation and

translation, as G =


 R t

0 1


 , Eq. (3) becomes:





Rj = RiRi,j

tj = Riti,j + ti
(5)
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where R is a rotation matrix and t is a translation vector. Although this system
of equations is essentially linear, a number of problems arise when formulating
solutions that account for the non-linear constraints on the components of R.
In order to respect these constraints, the rotation matrices must be suitably
parametrized, ending up with a system of non-linear equations.

This non-linear least squares problem can be cast as the minimization of the
following objective function:

min
∑

i,j

((
angle(RiRi,j(Rj)>)/σα

)2
+

(
||Riti,j + ti − tj||/σt

)2
)

(6)

where angle(·) is an operator that takes a rotation matrix and returns the
angle of rotation 1 , σα and σt are normalization factors. Starting from the
global registration obtained by chaining pairwise transformation (Eq. (4)), a
least squares solution is iteratively sought, using a a standard Gauss-Newton
algorithm.

The estimated transformations G2 . . .GM are influenced by all the measured
pairwise transformations, and the registration error is distributed over all the
estimated transformations. In this sense, the final registration graph is very
close to a well balanced graph as defined in [12]. As the objective function in-
cludes only the matrix components, the complexity of the proposed algorithm
is independent on the number of points involved, and depends only on the
number of available pairwise registrations.

3.2 Dealing with rotations

One of the most convenient way to represent rotations are quaternions. They
have a number of mathematical properties that make them particularly well
suited to the requirements of iterative gradient-based search for rotation and
translation [24]. Rotations are represented by unit quaternions. Instead of
requiring the quaternion q = [u, v, w, s] to be a unit vector, following [24], we
enforce the constraint that the rotation matrix is orthonormal by dividing the
matrix by the squared length of the quaternion:

R(q) =
1

q · qRu(q) (7)

where Ru(q) is the rotation matrix associated to the quaternion. This con-
straint is necessary in general to ensure the gradient accurately reflect the
differential properties of a change in the quaternion parameters.

1 Any (non zero) rotation in 3D space has a unique representation as a rotation
angle about an (oriented) axis.
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3.3 Summary of the algorithm

Step 1. for each overlapping view pair, compute the pairwise registration
matrix Gi,j, using ICP + X84. Accept Gi,j only if the final registration
error is below a certain threshold;

Step 2. compute a starting guess for each Gi by chaining pairwise transfor-
mations as in Eq. (4);

Step 3. solve the system of equations defined in Eq. (5) with Gauss-Newton 2 .
At each step enforce orthogonality of the rotation matrix with Eq. (7);

Step 4. apply the transformations Gi to the view V i, i = 2, ..., M .

Registered sets of points must be fused in order to get a single 3D model.
Surface reconstruction from multiple range images can be addressed as the
problem of surface reconstruction from a set of unorganized 3D points, disre-
garding the original 2.5D nature of the data. We used the algorithm by Hoppe
et al. [26], for which a public domain implementation exists.

4 Results description

In synthetic experiments we simulated the movement of an underwater ROV
around the external part of an offshore rig using the OpenGL library to gener-
ate synthetic range images. Given a 3D model of part of the rig, range images
were obtained by moving a (virtual) camera and extracting the z-buffer for
each view. In order to asses the final registration, we made the last view to
coincide with the first one.

(a) (b) (c)

Fig. 1. In Figure (a) the two point sets are in the start position, Figure (b) shows
the result of Zhang’s ICP algorithm and Figure (c) shows the result of ICP+X84.

In Fig. 1, we show an example of two point sets that Zhang’s ICP fails to
align. Instead, our ICP algorithm with X84 rejection rule recovers the correct
rigid transformation.

2 We used the MATLAB lsqnonlin function, which implements a Quasi-Newton
method with a mixed quadratic and cubic line search procedure, with numerical
Jacobian.
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(a) (b) (c)

Fig. 2. Experiment 1. Alignment between view 1 and view 29 for chained pair-
wise registration (a) and global registration (b). Histogram of the differences of the
registration error (c). A positive value corresponds to an improvement.

As for the global registration, in order to evaluate the performance of our
technique, we computed the registration error of a view as the mean square
distance between its points and their closest points in the mosaic composed
by all the already registered views (outliers were discarded according to the
X84 rule). The improvement over the chained pairwise alignment is shown as
a histogram depicting, for each view, the difference between the registration
errors of the two techniques (a positive value means an improvement of our
method).

Experiment 1 consists of a synthetic sequence of 29 range images. The benefit
brought by the global registration can be appraised in Fig. 2a-b. The histogram
in Fig. 2c shows that the global registration improves especially near the end
of the sequence (as expected).

In experiment 2, we generated a sequence composed by 37 range images. We
wanted to test the performance of the global registration algorithm in the pres-
ence of an incorrect pairwise registration (view 35). In this case the chaining
of pairwise transformations inevitably propagates the error. In our global mul-
tiview registration, thanks to the information coming from the other pairwise

(a) (b) (c)

Fig. 3. Experiment 2. Alignment between view 1 and view 37 for chained pair-
wise registration (a) and global registration (b). Histogram of the differences of the
registration errors (c).
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(a) (b)

Fig. 4. Surface reconstruction using Hoppe and DeRose algorithm. Chained pairwise
registration (a) and global multiview registration (b).

transformations linking (indirectly) views 35 and 34, the correct registration is
achieved, and the error is distributed over the whole sequence. Fig. 3c shows
the improvement obtained by optimal global registration, which is concen-
trated on view 35, as expected. The benefit brought by the global registration
is also clearly visible in the Fig. 3a-b and also in Fig. 4 where the reconstructed
surfaces are shown for both techniques.

In experiment 3 and 4 we added Gaussian white noise with different standard
deviation (σ = 0.02 and σ = 0.045, respectively) to the synthetic images of
experiment 1. The relative histograms are shown in Fig. 5.

(a) (b)

Fig. 5. Histogram of the differences between the registration errors for the chained
pairwise registration and the global registration, in exp. 3 (a) and 4 (b).

Real acoustic data were acquired by an underwater ROV using the Echoscope
camera[1], which outputs a 64×64 range image. The noise corrupts the acoustic
signals and decreases the reliability of the estimated 3D measures. Resolution
depends on the frequency of the acoustic signal (it is about 3 cm at 500 KHz):
the higher the frequency, the higher the resolution, and the narrower the field
of view.

In experiment 5 we used a sequence of 15 real acoustic range images that are
partial views of a tubular structure. Figures 6a-b show the overlay of the first

10



(a) (b) (c)

Fig. 6. Experiment 5. Alignment between first view and last view for chained pair-
wise registration (a) and global registration (b). Histogram of the differences of the
registration errors (c).

and last views for both pairwise registration and global multiview registration.
Even if the images are rather noisy and quite difficult to understand, it can
still be noticed that our technique yields a better alignment. The histogram
shown in Fig. 6c confirms this improvement. The light worsening at the be-
ginning of the sequence is compensated by the good improvement near the
end. A more accurate evaluation is not possible in the real case because true
correspondences (as in synthetic experiments) are not known.

Experiment Chained pairwise reg. Global registration % difference

exp 1 0.24095 0.19258 20.1 %

exp 2 0.28960 0.19630 32.2 %

exp 3 0.36328 0.32936 9.3 %

exp 4 0.50290 0.47200 6.1 %

exp 5 15.47955 15.01574 3.0 %

Table 1
Average registration errors. The synthetic and real images are not the same scale.

Tables 1 and 2 summarize the numerical results obtained in all the exper-
iments. Table 1 reports the average (over the views) registration errors for
both algorithms. In Table 2 a more meaningful evaluation is obtained by cal-
culating the registration error (misalignment) between the first and the last
view (which should coincide), knowing the correct point correspondences.

Our global multiview registration algorithm always improves over pairwise
registration. When the noise level was increased in the experiments on syn-
thetic data, our algorithm continued to perform better. Improvements were
also seen in the experiment involving real data. The typical computing time in
these experiments was 25s for each pairwise registration and about 3 minutes
for the subsequent global optimization. The code was written in MATLAB
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Experiment Chained pairwise reg. Global registration % difference

exp 1 1.9584 0.1340 93.2 %

exp 2 29.8662 0.1362 99.5 %

exp 3 4.0279 2.1979 45.4 %

exp 4 13.8420 11.1094 19.7 %

Table 2
Misalignment between the last and the first view (cm).

and run on a PII 350MHz PC with Linux.

5 Conclusions

In this paper we propose a technique for 3D object reconstruction from multi-
ple acoustic range views, acquired by an underwater acoustic sensor. As data
is noisy, low resolution, and the field of view is narrow, we want to provide the
human operator(s) with a synthetic 3D model of the scene, in order to facil-
itate the navigation and the understanding of the surrounding environment.
To this end, we address the problem of registering many 3D views, starting
from pairwise registration between all the overlapping views.

Our contribution is twofold. First we modified Zhang’s ICP by introducing the
X84 rejection rule, which does not depend on user specified thresholds and is
more effective in achieving a larger convergence basin. Moreover, we propose
a new global multiview registration technique to distribute registration errors
evenly across all views. Our approach differs from all the others because we
enforce the constraints arising from the pairwise registration directly on the
transformations, and we do not rely on the solution of the N-view point set
registration problem. The complexity of our technique does not depend on the
number of points involved, but only on the number of views.

The drawback is that the error is only spread among the views, but does not
get reduced significantly. Consequently, this technique is well suited for all the
applications where speed can be traded for accuracy.

Future work will be aimed at automatically detecting the degree of overlap
between views and introducing a weight for each term of Equation (6), de-
pending on the amount of overlap. Moreover, we are starting to convert the
software in C++ and to make some optimization to the ICP implementation.
At the end of the process we expect a speed-up of a factor 20 when running
on a state-of-the-art computer.
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