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Abstract. This paper presents a new procedure for fitting multiple geo-
metric structures without having a priori knowledge of scale. Our method
leverages on Consensus Clustering, a single-term model selection strategy
relying on the principle of stability, thereby avoiding the explicit trade-
off between data fidelity (i.e., modeling error) and model complexity. In
particular we tailored this model selection to the estimate of the inlier
threshold of T-linkage, a fitting algorithm based on random sampling and
preference analysis. A potential clustering is evaluated based on a con-
sensus measure. The crucial inlier scale ε is estimated using an interval
search. Experiments on synthetic and real data show that this method
succeeds in finding the correct scale.
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1 Introduction

An ubiquitous issue in Pattern Recognition is the robust fitting of geometric
structures to noisy data corrupted by outliers. This task becomes demanding
when the data have arisen from multiple instances of the same structure, since it is
necessary to cope with the so called pseudo-outlier (i.e. “outliers to the structure
of interest but inliers to a different structure” [15]) straining robust estimation.
If in addition the number of structures is not known in advance the problem of
multiple fitting turns into a challenging model selection problem as we have to
choose, among all the possible interpretation of the data, the most appropriate
one. In general there is not a canonical way to judge the appropriateness of a
model, which may have been proposed in order to resolve the problem of multiple
fitting, most of which rely on the well known model selection principle based on
the balance between model complexity and data fidelity.

In this paper we develop a novel technique for fitting multiple geometric struc-
tures avoiding the classical model selection trade-off of two terms in favor of a
single term criterion. In particular we borrow from the Consensus Clustering
technique [9] the idea that the stability of the clustering suffices in disambiguat-
ing the correct estimate of models. The rationale behind this method is that the
“best” partition of the data is the one more stable with respect to input random-
ization. We translate this principle in the context of geometric fitting, tailoring
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the Consensus Clustering strategy to T-Linkage, a clustering-based algorithm for
fitting multiple instances of a model to noisy data possibly corrupted by outliers
[7]. This gives rise to an automatic method for multiple fitting that will be shown
to perform favorably on some simulated data and on some publicly available real
dataset.

1.1 Related works

Two main approaches can be recognized that aim at fitting multiple models: non
parametric methods and parametric ones. Among the non parametric Randomize
Hough Transform [22], Multi-RANSAC [25] and FLoSS [6] rely on the inspecting
of consensus sets of models. An alternative approach is represented by the so
called preference analysis. Originally introduced by RHA [24], these preference-
oriented methods reverse the role of data points and model typical of consensus
analysis, examining the residuals of individual data points with respect to the
models, in order to work in a conceptual space. J-Linkage [16], T-Linkage [7], in
which points are represented as preference functions, [1] and QP-MF [23], where
points are represented by the permutation that arrange the models in order of as-
cending residuals, belong to this category. Parametric methods commonly achieve
better performances than non parametric ones and have a more general applica-
bility. However their success depends critically onto the correct specification of
the inlier threshold ε (also called scale), which is usually manually tuned.

Since in many real applications selecting the correct scale is a hard problem,
several solutions for automatic scale selection have been proposed. For example
this problem is addressed in [12, 2] as regard the case of one model (i.e. in the
case of RANSAC), whereas [8, 20, 4] treat the case of inlier noise estimation for
multiple models exploiting elaborated robust statistic. Probably the approach of
StaRSaC is the most closely related prior work; In [2] Choi and Medioni demon-
strate that choosing the correct ε enforces the stability of the parameter of the
solution in the case of a single structure. We extend this result to the multiple
structures scenario, reasoning on segmentation rather than on models parame-
ters.

Multiple model fitting is usually dealt with using criteria of model selection.
The classical model selection strategies consist in striking a good balance between
fidelity to the data and model complexity (see e.g. [18]). Following the spirit
of Occam’s razor, all these methods result in minimizing an appropriate cost
function composed by two terms: a modelling error and a penalty term for model
complexity. This approach is taken also in [13, 3, 10, 11, 5] where sophisticated
and effective minimization techniques such as SA-RCM [11], ARJMC [10] have
been proposed.

Several alternatives have been explored for encoding model complexity. PEaRL
[5] for example, optimizes a global energy function that balances geometric er-
rors and regularity of inlier clusters, also exploiting spatial coherence. In [17], an
iterative strategy for estimating the inlier-threshold, the score function, named
J-Silhouette, is composed by a looseness term, dealing with fidelity, and a sepa-
ration one, controlling complexity.
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The idea of exploiting stability appears in the context of clustering validation.
In particular in [9] the authors propose Consensus Clustering, a strategy that
succeeds in estimating the number of clusters in the data with a single term model
selection criterion based on stability. The next section is devoted to present the
Consensus Stability approach and to summarize the T-linkage.

2 Background material

2.1 Stability and Consensus Clustering

In some cases the thorny problem of correctly tradeoff data fidelity for model
complexity (a.k.a. bias-variance dilemma) can be bypassed introducing a different
model selection principle based exclusively on the stability of models. The key
idea of this method is that good models should be found among the ones that are
stable with respect to small perturbations of the data. This very general principle
with the necessary specifications can be applied in many contexts, and can be
exploited also in the classical segmentation problem.

In [9] the authors develop this idea and present the Consensus Clustering ap-
proach to determine the correct number of clusters by maximizing the consensus,
i.e., the agreement of clustering after perturbation of the data.

More in detail, the Consensus Clustering approach consists in assuming a
clustering algorithm, for example k-means, and a resampling scheme (e.g. boot-
strapping) in order to perturb the data. Then for each possible clusters number
k = 2, 3, . . . , kmax the data are subsampled several times and processed by the
clustering algorithm. The corresponding results are described for each k by means
of a consensus matrix Mk which is intended to capture the mutual consensus of
attained clusters. The consensus matrix Mk is defined as follows: the element
(Mk)ij stores the number of times points i and j are assigned to the same cluster
divided by the total number of times both items are selected by the resampling
scheme. In other words, the consensus matrix records the proportion of clustering
runs in which the two points i, j have been clustered together. For this reason
(Mk)ij ∈ [0, 1] and perfect consensus corresponds to a clean consensus matrix
with all the entries equal to either 0 or 13, whereas a deviation from this case
should be explained with lack of stability of the estimated clusters. Exploiting
this observation, the k that yields the cleanest consensus matrices according to
an ad hoc measure, is selected as the optimal estimate of number of model.

2.2 T-Linkage

T-Linkage [7] is a clustering-based algorithm for fitting multiple instances of a
model to noisy data (possibly) corrupted by outliers. The method is based on
random sampling, and, along the same line of J-Linkage [16], follows a preference
oriented approach: fixed an inlier threshold ε, rather than taking models and see
which points match them, T-Linkage uses the model hypotheses each point “likes
better” to determine which points belong to the same cluster.

3 If the data points were arranged so that points belonging to the same model are
adjacent to each other, perfect consensus would translate into a block-diagonal matrix
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Choosing the scale in T-Linkage: a model selection problem. Since
T-linkage does not have any scale selection strategy, the inlier threshold ε has to
be manually specified by the user (as in RANSAC). If some prior knowledge of
the noise in the data is available, ε can be easily tuned, otherwise the scale turns
out to be a free parameter onto which T-Linkage depends critically.

It is important to observe that ε plays a crucial role in both the two steps
of T-Linkage. At first, in conceptual representation step, the inlier threshold ε
explicitly defines which points belong to which model (a point belongs to a model
if its distance is less than ε). If the scale is underestimated the models do not
fit all their inliers; on the contrary, if the scale is overestimated, the models are
affected by outliers or pseudo outliers. As regards the clustering step, points are
linked together by T-Linkage until their vectorial representations are orthogonal.
Here again, since ε controls the orthogonality between these vectors, also the final
number of models depends on this parameter.

In other words the tuning of ε is a typical model selection problem: If ε is too
small, we are stuck in under-segmentation: multiple similar structures explain
the same model in a redundant way. On the contrary, if ε is too large, we run
into the problem of over-segmentation obtaining fewer structures than necessary
that poorly describe the data.

For these reasons by tuning the single free parameter ε we are able at the
same time to implicitly balance between both the complexity of the obtained
models and their fidelity to the data.
In the next Sections we will show how stability can be fruitfully exploited for
automatically selecting a reasonable scale.

Refinement step and outlier rejection. T-Linkage, as any hierarchical clus-
tering method, is a greedy algorithm that fits models to all the data points,
outliers included. In this section we propose some adjustment on T-Linkage in
order to alleviate its greediness and introduce an outlier rejection criterion nec-
essary, if outliers are present, to filter out bad models.

The problem of multiple fitting can be regarded from two alternative points of
view usually coexisting: we want to faithfully segment the data and at the same
time to obtain an accurate estimate of the underlying models. Each of these two
tasks can not be undertaken without the other. T-Linkage concentrates on the
first task segmenting the data in the conceptual space and extracting model only
at the end via least-squares fitting. Once models have been obtained, we propose
to perform an additional refinement step: points are reassigned to their nearest
model – if it has distance smaller than ε – and finally models are re-estimated ac-
cording to this new segmentation. In this way not only the segmentation and the
model estimation step can take advantages from each other, but we also gain the
benefit of mitigating the greedy behavior of T-Linkage since the final clustering
depends less critically on the order in which points were merged together.

As outliers are concerned, T-Linkage is agnostic about the strategy for di-
chotomizing inliers and outliers and an outlier rejection criterion has to be spec-
ified at the end of the algorithm. In [7] a simple strategy has been proposed,
which we refine here by proposing the following criterion. The procedure starts
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Fig. 1: The proposed method in a nutshell. Different ε values are used for running
multiple times T-Linkage on the perturbed data. The corresponding consensus
matrices are employed for defining the stability index. The more stable clustering
is selected. (Best viewed in color)

rejecting all those clusters that have less than |h|+ 1 elements where |h| denotes
the cardinality of a minimal sample set. Then we aim at recognizing and dis-
carding those models that “happen by chance” and do not reflect an authentic
structure in the data. More precisely, under the assumption that outliers are in-
dependently distributed [14], it is possible to estimate how much it is likely that
a cluster is entirely composed by outliers according to its cardinality and the
model it defines. Consequently we retain only the groups with high confidence of
being inliers and discard the others.

In practice at first the probability p that an outlier belongs to a specific
model is estimated with Monte-Carlo simulation. Then the probability that k
points belong to the same given model is computed as α(k) = 1 − F(k, n, p),
where n is the total number of data points, and F is the binomial cumulative
distribution function. For each model we compute kmin = α−1(0.01) the minimum
cardinality necessary to be not considered mere coincidence, if the considered
model is supported by less than kmin points is rejected as outlier.

This outlier rejection criterion differs from the one adopted in [7], since here we
compute the values of p (and consequently kmin) for every specific model attained
by T-Linkage at the end of the clustering, instead of estimating in advance a single
probability value for a generic model. In this way our approach takes into account
the fact that in general models are not all equiprobable and avoids to consider a
fixed minimum cardinality and to reason about cardinality drop of clusters.
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3 Method

In this Section we shall concentrate on a method (henceforth referred to as TLCC)
for automatically fitting multiple models tailoring Consensus Clustering to T-
Linkage algorithm without having a priori knowledge of the scale ε conceiving a
single term model selection criterion based on consensus stability.

In the case of T-Linkage we do not have to select the number of clusters (that
is automatically determined by T-Linkage clustering) but we shall concentrate
on the scale ε which, as explained in Section 2.2, is a sensitive input parameter
that implicitly tunes the balance between the complexity of the obtained clusters
and their fidelity to the data.

The estimation of ε is iteratively laid out as follows. At first the interval search
[εL, εR] has to be defined, ensuring that the correct ε belongs to the interval. For
this reason a sound choice of εL is a small scale value that surely over-segments
the data, whereas εR has to give rise to under-segmentation (for example it can
be estimated fitting a single model to all the data point and taking the maximum
of their residuals). For each ε value belonging to the interval search, T-Linkage
is run t times t = 1, . . . , tmax on the data properly perturbed.

Rather than bootstrapping in advance the raw data as in [9], we perturb
their representation in the conceptual space inside T-Linkage by bootstrapping
the generated hypothesis. After the data have been processed we obtain tmax

clustering outputs for each ε value. The intuition is that, at the correct scale, there
will be consistency between the partitions produced by T-linkage. For each scale
the consistency of the partitions is hence tabulated via the consensus clustering
matrix Mε introduced in Section 2.1.

Now we measure the consensus stability of each matrix boiling down each Mε

to a single consensus stability value σ per scale. If we were to plot a histogram
of the entries of (Mε)ij , perfect consensus would translate into two bins centered
at 0 and 1 and, in general, a histogram skewed toward 0 and 1 indicates good
clustering. With this idea in mind, consider the following change of variable:

F (x) =

{
x if x < 0.5
x− 1 if x ≥ 0.5.

(1)

F redistributes the entries of Mε from the [0, 1] range to the interval [−0.5, 0.5].
The effect is to rearrange the histogram symmetrically around the origin. In
this way stable entries are concentrated around 0 whereas unstable ones are
accumulated at the tails of the histogram. For this reason measuring how far the
entries of F (Mε) are spread out accounts for the consensus stability of a given
scale ε. For this purpose we propose to employ the variance4 of the vectorized
upper triangular part of F (Mε) and define a consensus stability index as

σ(ε) = Var(vech(F (Mε))), (2)

where vech returns the vectorization of the upper triangular matrix it receives
in input. Then, assuming to deal with authentic multiple structures, the scale

4 We also tested the entropy and other dispersion indices with comparable results.
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is selected between the tested ε that segment the data in almost two clusters.
Within these ε we retain as correct the smallest one obtaining the lower score of
σ:

ε? = min

(
argmin

ε : # cluster>1
σ(ε)

)
. (3)

The most stable solution (the one obtained with ε?) is then returned.
The procedure can be summarized in Algorithm 1.

Algorithm 1 TLCC

Input: the set of data points X;
an interval search [εL, εH ];

Output: scale ε?;
clusters of point belonging to the same model.

Generate hypotheses H;
for ε ∈ [εL, εH ] do

for t = 1, . . . , tmax do
H̃ = Bootstrapping(H);

end for
Ct = T-Linkage(X, ε, H̃);
Mε= Consensus Matrix(C1, . . . , Ctmax);
Compute σ(ε);

end for
ε? = min(argminε : # cluster>1 σ);
C? = T-Linkage(X, ε?, H);

As regards the computational complexity of this method, if c is the execution
time of T-linkage, k1 the threshold values tested and k2 the number of bootstrap-
ping trials, the total execution time of TLCC is k1k2c to which the time needed
for computing the consensus matrices has to be added. Even if the number of
bootstrap iterations is small (k2 = 4 in our experiments suffices in providing
good results), there is space for improvement by replacing exhaustive search on
the interval [εL, εR] with a suitable (direct) minimization strategy.

4 Experimental results

This section is devoted to evaluating the proposed method on both simulated
and real data, proving that consensus stability σ can be exploited as a single
term model selection criterion for automatically fit multiple structures. The mis-
classification error (ME) is employed for assessing clustering results, defined as
the percentage of misclassified points, where a point is misclassified when it is
assigned to the wrong model, according to the ground-truth.

First we compare TLCC with T-linkage + “oracle”, where the “oracle” guesses
always the optimal scale according to the ME, in the interval search:

εopt = argmin
ε∈[εL,εR]

ME(ε), (4)
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in other words εopt is the global minimum of ME. For each experiments we com-
pare the ME(ε?) achieved by the scale ε∗ estimated by TLCC with the ME(εopt)
of the optimal scale.

Finally we also compare indirectly TLCC with several other methods on some
real datasets that have been used in the literature [21, 19].

(a) Circle6. 50% of outliers,
ME=1.61%

(b) Stair4. 60% of outliers,
ME=11.02%

(c) Star5. 75% of outliers,
ME=14.67%

Fig. 2: Synthetic examples: models returned by TLCC are color coded, black
crosses are outliers.

4.1 Experiments with simulated data

Some synthetic experiments are carried on in order to asses the proposed ap-
proach. In particular, as shown in Fig. 2, we address the problem of fitting circles
(Fig. 2a) and lines (Fig. 2b, 2c) to noisy data contaminated by gross outlier. The
scale selected by TLCC always corresponds to the optimal one; the outlier rejec-
tion criterion works properly filtering out bad models with different percentage
of outliers.

4.2 Experiments with real data

In this section we deal with three applications of geometric multi model fitting on
real data: video motion segmentation, two views motion segmentation and two
views plane segmentation.

Video motion segmentation. In video motion segmentation the input data
consist in a set of features trajectories across a video taken by a moving camera,
the goal consists in recovering the multiple rigid-body motions contained in the
dynamic scene.

Segmentation of motion in a video can be seen as a subspace segmentation
problem under the modeling assumption of affine cameras as explained in [19].
We evaluate TLCC on the seven Traffic sequence (Fig. 2) with three motion of
the Hopkins 155 motion dataset [19]. All the trajectories are inherently corrupted
by noise, but no outliers are present. Our algorithm succeeds for all the sequences
in estimating optimal segmentations as shown in Tab. 1, for the estimated scale
always achieves the same ME as the optimal one.
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Table 1: ME (%) for
video motion segmen-
tation.

Sequence TLCC Optimal

cars10 3.07 3.07
cars2B 0 0
cars2 06 0 0
cars2 07 0 0
cars3 0 0
cars5 0 0
cars9 0 0

 

 

(a) Cars10
 

 

(b) Cars9

Table 2: Sample results of TLCC in video motion
segmentation (point membership is color coded).

Two-views segmentation. In two views segmentation experiments, given two
images of the same scene composed by several objects moving independently, the
aim is to recognize and segment the motions by fitting fundamental matrices. The
datasets used in these experiments consist of matching points in two uncalibrated
images corrupted by gross outliers.

 

 

(a) breadcartoychips
 

 

(b) breadtoycar

 

 

(c) dinobooks

Fig. 3: Sample results of TLCC in two-view motion segmentation (point mem-
bership is color coded, red dots are points rejected as outliers)

We tested our method on image pairs correspondences taken from the Ade-
laideRMF dataset[21].

According to Tab. 3 TLCC succeeds in estimating the optimal ε in six cases
(marked in bold) and misses the global optimum in two cases, for which we plot
the ME and the stability index in Figures 5a and 5b. It can be appreciated that
the profile of the ME is fairly flat near the optimum, and that the minimum of
the stability index is fairly close to the optimum of ME anyway.

Our conjecture for such a behavior is that the models have mutual inter-
sections (or close to), and the ME does not measure properly the quality of a
clustering.

Using the data reported in [11] we are able to compare indirectly TLCC
with other state of the art algorithms inspired to the classical model selection
approach, results are presented in Tab. 4.

In all but two cases TLCC achieves the best result, and it is the best algorithm
if the mean ME is considered. These two cases are reported in Fig. 3 where it
can be appreciated that the resulting segmentation is reasonable anyway.
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oldclassicswing−Groundtruth

 

 

(b) oldclassicswing (c) johnsonb

Fig. 4: Sample results of TLCC in two-view plane segmentation (point mem-
bership is color coded, outliers are colored in red)

Table 3: ME (%) for two-
view motion segmenta-
tion.

Sequence TLCC Optimal

biscuitbookbox 2.71 0.39
breadcartoychips 5.19 5.19
breadcubechips 2.17 2.17
breadtoycar 4.27 4.27
carchipscube 1.22 1.22
cubebreadtoychips 4.46 3.50
dinobooks 13.86 13.86
toycubecar 3.03 3.03

Table 4: ME (%) comparison for two views motion
segmentation.

PEARL QP-MF FLOSS ARJMC SA-RCM TLCC

biscuitbookbox 4.25 9.27 8.88 8.49 7.04 2.71
breadcartoychips 5.91 10.55 11.81 10.97 4.81 5.19
breadcubechips 4.78 9.13 10.00 7.83 7.85 2.17
breadtoycar 6.63 11.45 10.84 9.64 3.82 4.27
carchipscube 11.82 7.58 11.52 11.82 11.75 1.22
cubebreadtoychips 4.89 9.79 11.47 6.42 5.93 4.46
dinobooks 14.72 19.44 17.64 18.61 8.03 13.86
toycubecar 9.5 12.5 11.25 15.5 7.32 3.03

Mean 7.81 11.21 11.68 11.16 7.07 4.62

Plane segmentation. In the third case (plane segmentation) the setup is sim-
ilar to the previous one: given two uncalibrated views of a scene, the aim is to
recover robustly the multiplanar structures fitting homography to points corre-
spondences. Results on the dataset taken from the AdelaideRMF dataset [21],
are collected in Tab. 5.

In five cases (marked in bold) the proposed method estimate an optimal scale
according to ME.

For the johnsonb image pairs the attained segmentation by TLCC is slightly
less accurate than the optimal one, however from Fig. 5c, where the ME and
the stability index are shown, it can be appreciated that the value achieved by
TLCC correspond to a plateau of ME. The segmentation produced by TLCC
is presented in Fig. 4. Notice that the actual global optimum of ME can be
conditioned by arbitrary tie-breaking of disputed points between models.

Tab. 6 compares TLCC with state of the art methods (results for all the
methods but TLCC are taken from [11]). Our method achieves in all cases, but
one, the best ME and a reasonable segmentation and it scores first on the average.

In summary, results show that TLCC places in the same range as the state
of the art competing algorithm adopting a classical two-term model selection
strategy, with a free balancing parameter. Experiments show that this method
succeeds in estimating the scale parameter of T-linkage and provide evidence
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Table 5: ME (%) for plane
segmentation.

Sequence TLCC Optimal

johnsona 3.12 3.12
johnsonb 8.33 8.81
ladysymon 6.17 6.17
neem 4.78 4.78
oldclassicswing 1.65 1.65
sene 0.42 0.42

Table 6: ME (%) comparison for plane segmen-
tation.

PEARL QP-MF FLOSS ARJMC SA-RCM TLCC

johnsona 4.02 18.5 4.16 6.88 5.9 3.12
johnsonb 18.18 24.65 18.18 21.49 17.95 8.33
ladysymon 5.49 18.14 5.91 5.91 7.17 6.17
neem 5.39 31.95 5.39 8.81 5.81 4.78
oldclassicswing 1.58 13.72 1.85 1.85 2.11 1.65
sene 0.80 14 0.80 0.80 0.80 0.42

Mean 5.91 20.16 6.05 7.62 6.62 4.08
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(a) biscuitbookbox
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(b) cubebreadtoychips
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0.2

0.3

0.4

0.5

0.6

(c) johnsonb

Fig. 5: Stability index σ (blue) and ME (red) as a function of the scale ε pa-
rameter for some image pairs of the motion segmentation (5a, 5b) and plane
segmentation experiments (5c). The estimated scale is marked with a diamond
on the σ curve.

that stability has a minimum in the “right” spot, ideally the same spot where
the misclassification error (ME) achieves its minimum.

5 Conclusion

In this paper we presented an automatic approach aimed at estimating the scale
in the context of multiple structure geometric fitting. Our method exploits a sin-
gle term model selection strategy relying on the principle of stability, thereby
avoiding the tricky trade-off between data fidelity and model complexity. Ex-
perimental evaluation on both simulated and real data provides evidence that
consensus stability succeeds in producing accurate and reliable multiple models.
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