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Abstract. A new autocalibration algorithm has been recently presented
by Mendonça and Cipolla which is both simple and nearly globally
convergent. Analysis of convergence is missing in the original article.
This paper fills the gap, presenting an extensive experimental evaluation
of the Mendonça and Cipolla algorithm, aimed at assessing both
accuracy and sensitivity to initialization. Results show that its accuracy
is fair, and – remarkably – it converges from almost everywhere. This
is very significant, because most of the existing algorithms are either
complicated or they need to be started very close to the solution.
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The classical approach to autocalibration (or self-calibration), in the case of a
single moving camera with constant but unknown intrinsic parameters and un-
known motion, is based on the recovery of the intrinsic parameters by solving
the Kruppa equations [1,2], which have been found to be very sensitive to noise
[2]. Recently new methods based on the stratification approach have appeared,
which upgrade a projective reconstruction to an Euclidean one without solving
explicitly for the intrinsic parameters (see [3] for a review). An algorithm has
been recently presented by Mendonça and Cipolla [4], which, like the Kruppa
equations, is based on the direct recovery of intrinsic parameters, but it is sim-
pler.

Apart from sensitivity to noise, the applicability of autocalibration techniques
in the real world depends on the issue of initialization. Since a non-linear min-
imization is always required, convergence to the global minimum is guaranteed
only if the algorithm is initialized in the proper basin of attraction. Unfortu-
nately, this issue was not addressed by Mendonça and Cipolla.

This paper gives an account of the experimental evaluation of the Mendonça
and Cipolla algorithm (in mine implementation), aimed at assessing its perfor-
mances, especially the sensitivity to initialization. Results are quite interesting,
as it turns out that the algorithm converges to the global minimum from almost
everywhere.
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1 Notation and Basics

This section introduces the mathematical background on perspective projections
necessary for our purposes.

A pinhole camera is modeled by its 3 × 4 perspective projection matrix (or
simply camera matrix) P̃, which can be decomposed into

P̃ = A[R | t]. (1)

The matrix A depends on the intrinsic parameters, and has the following form:

A =




αu γ u0
0 αv v0
0 0 1


 , (2)

where αu, αv are the focal lengths in horizontal and vertical pixels, respectively,
(u0, v0) are the coordinates of the principal point, given by the intersection of the
optical axis with the retinal plane, and γ is the skew factor. The camera position
and orientation (extrinsic parameters), are encoded by the 3× 3 rotation matrix
R and the translation t.

Let w̃ = [x, y, z, 1]> be the homogeneous coordinates of a 3D point in the
world reference frame (fixed arbitrarily) and m̃ = [u, v, 1]> the homogeneous
coordinates of its pojection onto the image. The transformation from w̃ to m̃ is
given by

κm̃ = P̃w̃, (3)

where κ is a scale factor.
Let us consider the case of two cameras. A three-dimensional point w is

projected onto both image planes, to points m̃ = P̃w̃ and m̃′ = P̃′w̃, which
constitute a conjugate pair. It can be shown [5] that the following equation
holds:

m̃′>Fm̃ = 0, (4)

where F is the fundamental matrix. The rank of F is in general two and, being
defined up to a scale factor, it depends upon seven parameters. In the most
general case, all the geometrical information that can be computed from pairs
of images are encoded by the fundamental matrix. Its computation requires a
minimum of eight conjugate points to obtain a unique solution [5]. It can be
shown [5] that

F = A′−>EA−1. (5)

where E is the essential matrix, which can be obtained from conjugate pairs
when intrinsic parameters are known. The essential matrix encodes the rigid
transformation between the two cameras, and, being defined up to a scale factor,
it depends upon five independent parameters: three for the rotation and two for
the translation up to a scale factor. Unlike the fundamental matrix, the only
property of which is being of rank two, the essential matrix is characterized by
the following Theorem (see [6] for a proof).
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Theorem 11 A real matrix E 3 × 3 can be factorized as product of a nonzero
skew-symmetric matrix and a rotation matrix if and only if E has two identical
singular values and a zero singular value.

2 Autocalibration

In many practical cases, the intrinsic parameters are unknown and the only infor-
mation that can be extracted from a sequence are point correspondences, which
allow to compute a set of fundamental matrices. Autocalibration consist in com-
puting the intrinsic parameters, or – in general – Euclidean information, starting
from fundamental matrices (or, equivalently, from point correspondences). In this
section we will see which constraints are available for the autocalibration.

2.1 Two-Views Constraints

As we saw in Section 1, the epipolar geometry of two views is described by
the fundamental matrix, which depends on seven parameters. Since the five
parameters of the essential matrix are needed to describe the rigid displacement,
at most two independent constraints are available for the computation of the
intrinsic parameters from the fundamental matrix.

These two constraints come from the characterization of the essential matrix
given by Theorem 11. Indeed, the condition that the matrix E has a zero sin-
gular value and two non-zero equal singular values is equivalent to the following
conditions, found by Huang and Faugeras [7]:

det(E) = 0 and trace((EE>))2 − 2trace((EE>)2) = 0. (6)

The first condition is automatically satisfied, since det(F) = 0, but the second
condition can be decomposed [5] in two independent polynomial relations that
are equivalent to the two equations found by Trivedi [8].

This is an algebraic interpretation of the so-called rigidity constraint, namely
the fact that for any fundamental matrix F there exist two intrinsic param-
eters matrix A and A′ and a rigid motion represented by t and R such that
F = A′−>([t]∧R)A−1. By exploiting this constraint, Hartley [6] devised an algo-
rithm to factorize the fundamental matrix that yields the five motion parameters
and the two different focal lengths. He also pointed out that no more informa-
tion could be extracted from the fundamental matrix without making additional
assumptions (e.g. constant intrinsic parameters).

2.2 N-Views Constraints

The case of three views is not a straightforward generalization of the two-views
case. The epipolar geometry can be described using the canonical decomposition
[9] or the trifocal tensor, both of which use the minimal number of parameters,
that turns out to be 18. The rigid displacement is described by 11 parameters:
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6 for 2 rotations, 4 for two directions of translation and 1 ratio of translation
norms. Therefore, in this case there are seven constraints available on the intrin-
sic parameters. If they are constant, three views are sufficient to recover all the
five intrinsic parameters.

In the general case of n views, Luong demonstrated that at least 11n − 15
parameters are needed to describe the epipolar geometry, using his canonical
decomposition. The rigid displacement is described by 6n−7 parameters: 3(n−1)
for rotations, 2(n−1) for translations, and n−2 ratios of translation norms. There
are, thus, 5n − 8 constraints available for computing the intrinsic parameters.
Let us suppose that nk parameters are known and nc parameters are constant.
Every view apart from the first one introduces 5 − nk − nc unknowns; the first
view introduces 5 − nk unknowns, therefore the unknown intrinsic parameters
can be computed provided that

5n − 8 ≥ (n − 1)(5 − nk − nc) + 5 − nk, (7)

which is equivalent to the following equation reported in [10]:

nnk + (n − 1)nc ≥ 8. (8)

As pointed out in [9], the n(n − 1)/2 fundamental matrices are not indepen-
dent, hence the n(n − 1) constraints like (Eq. 6) that can be derived from them
are not independent. Nevertheless they can be used for computing the intrinsic
parameters, since redundancy improves stability, as mentioned in [4].

2.3 The Mendonça and Cipolla Algorithm

Mendonça and Cipolla method for autocalibration is based on the exploitation
Theorem 11. A cost function is designed, which takes the intrinsic parameters as
arguments, and the fundamental matrices as parameters, and returns a positive
value proportional to the difference between the two non-zero singular value of
the essential matrix. Let Fij be the fundamental matrix relating views i and j,
and let Ai and Aj be the respective intrinsic parameters matrices. Let 1σij > 2σij

be the non zero singular values of Eij = A>
i FijAj . The cost function is

C(Ai i = 1 . . . n) =
n∑

i=1

n∑
j>n

wij

1σij − 2σij

2σij
, (9)

where wij are normalized weight factors.

3 Experiments

In these experiments, intrinsic parameters were kept constant, hence the follow-
ing cost function was actually used:

C(A) =
n∑

i=1

n∑
j>n

wij

1σij − 2σij

1σij + 2σij
(10)
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Fig. 1. Relative RMS error on intrinsic parameters versus image noise standard devi-
ation (left) and number of views (right).

As customary it was assumed γ = 0. The weight wij was the residual of the
estimation of Fij , as suggested by [4]. The minimum number of views required
to achieve autocalibration in this case is three, according to (8). Fundamental
matrices were computed using the linear 8-point algorithm with data normal-
ization.

The algorithm was tested on synthetic data, which consisted of 50 points
randomly scattered in a sphere of radius 1 unit, centered at the origin. Ran-
dom views were generated by placing cameras at random positions, at a mean
distance from the centre of 2.5 units with a standard deviation of 0.25 units.
The orientations of the cameras were chosen randomly with the constraint that
the optical axis should point towards the centre. The intrinsic parameters were
given a known value: αu = αv = 800, u0 = v0 = 256. Image points were (roughly)
contained in a 512x512 image.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

40

45

R
M

S
 p

ix
el

 e
rr

or

image noise (pixels)

5 views

2 4 6 8 10 12 14 16
7.5

8

8.5

9

9.5

10

10.5

11

R
M

S
 p

ix
el

 e
rr

or

# views

1.0 pixels image noise

Fig. 2. Reconstruction residual RMS pixel error versus image noise standard deviation
(left) and number of views (right).

I used the Nelder-Meads simplex method (implemented in the fmins function
of matlab), to minimise the cost function. This methods does not use gradient
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information and is less efficient than Newton methods, particularly if the function
is relatively smooth as in our case.

In order to determine the accuracy of the algorithm, Gaussian noise with vari-
able standard deviation was added to image points. The algorithm was started
from the true values of the intrinsic parameters and always converged to a nearby
solution. Since the fundamental matrices are affected by the image noise, the
minimum of the cost function does not coincide with the actual intrinsic param-
eters. The relative RMS error is reported in Figure 1. Each point is the average
of 70 independent trials.
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Fig. 3. Reconstruction RMS error versus image noise standard deviation (left) and
number of views (right).

Using the intrinsic parameters computed by autocalibration, and the fun-
damental matrices, structure was recovered by first factorizing out the motion
from the essential matrices, then recovering the projection matrices and finally
computing 3-D structure from projection matrices and point correspondences by
triangulation. More details and references can be found in [11].

The pixel error is the distance between the actual image coordinates and the
ones derived from the reconstruction. The reconstruction error is the distance
between the actual and the reconstructed point locations. Figures 2 and 3 report
RMS errors, averaged over 70 independent trials.

In order to evaluate the sensitivity to the initialization, I ran an experiment in
which the algorithm was initialized by perturbing the actual value of the intrinsic
parameters with uniform noise with zero mean and increasing amplitude. For
each standard deviation value I ran 70 independent trials and recorded how
many times the algorithm converged to the correct solution, which was assumed
to be the one to which it converged when initialized with the actual intrinsic
parameters. Perturbation was obtained with the following formula (in matlab
syntax):

a0 = a_true + pert * a_true.*(rand(1,4)-0.5)

where a0 is the initialization, a true is a vector containing the true intrinsic
parameters, and pert is a value ranging from 0 to 10 (corresponding to 1000%!).
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Figure 4(a) shows the result with 5 views and 1.0 pixels image noise. The same
experiment with 15 views yielded very similar result, not shown here. In another
experiments I used only positive uniform noise:

a0 = a_true + pert * a_true.*(rand(1,4))

and the results are shown in Fig 4(b).
Finally, the algorithm was initialized with a random point in the 4D cube

[0, 2000] × [0, 2000] × [0, 2000] × [0, 2000] and it converged in the 86% of cases,
with 5 views and 1.0 pixels image noise.
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(a) Zero-mean uniform noise
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(b) Positive uniform noise

Fig. 4. Percentage of convergence vs initial value perturbation (percentage) for 5 views.

On the average, it takes 5 seconds of CPU time on a Sun Ultra 10 running
matlab to compute intrinsic parameters with 5 views.

The matlab code used in the experiments is available on the web from
http://www.sci.univr.it/˜fusiello/demo/mc.

4 Discussion

Intrinsic parameters are recovered with fair, but not excellent, accuracy. The
error consistently increases with image noise and decreases with the number of
views. With 1.0 pixel noise no appreciable improvement is gained by using more
than seven views, but this number is expected to increase with the noise. It is
not advisable to use the minimum number of views (three).

As for the reconstruction, the residual pixel error depends only on the image
noise and not sensibly on the number of views (excluding the three views case).
The reconstruction error, consistently decreases with the number of views. With
5 views and image noise of 1.0 pixel, the accuracy is about 30%. This figure
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depends only partially on the computation of the intrinsic parameters. It also
depends on the recovery of motion parameters and on the triangulation. In both
cases linear algorithm were used. Improvements can be expected by using non-
linear refinement.

The algorithm shows excellent convergence properties. Remarkably, even
when true values are perturbed with a relative error of 200% convergence is
achieved in the 90% of the cases (Figure 4(a)). Results suggest that failure
occurs when the sign of the parameters is changed. Indeed, figures improve dra-
matically when perturbation is a positive uniform random variable: in this case
the algorithm converges from almost everywhere (Figure 4(b)).

In summary, the algorithm is fast and converges in a wide basin, but accuracy
is not its best feature. If accuracy is a concern, it is advisable to run a bundle
adjustment, which is known to be the most accurate method, but very sensitive
to initialization.

References

1. Maybank, S.J., Faugeras, O.: A theory of self-calibration of a moving camera.
International Journal of Computer Vision 8(2) (1992) 123–151

2. Luong, Q.T., Faugeras, O.: Self-calibration of a moving camera from point corre-
spondences and fundamental matrices. International Journal of Computer Vision
22(3) (1997) 261–289

3. Fusiello, A.: Uncalibrated Euclidean reconstruction: A review. Image and Vision
Computing 18(6-7) (May 2000) 555–563

4. Mendonça, P.R.S., Cipolla, R.: A simple technique for self-calibration. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (1999) 500–
505

5. Luong, Q.T., Faugeras, O.D.: The fundamental matrix: Theory, algorithms, and
stability analysis. International Journal of Computer Vision 17 (1996)

6. Hartley, R.I.: Estimation of relative camera position for uncalibrated cameras.
Proceedings of the European Conference on Computer Vision. Santa Margherita
L. (1992) 579–587

7. Huang, T.S., Faugeras, O.D.: Some properties of the E matrix in two-view mo-
tion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence
11(12) (Dec 1989) 1310–1312

8. Trivedi, H.P.: Can multiple views make up for lack of camera registration? Image
and Vision Computing, 6(1) (1988) 29–32
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