
400 BMVC97
Recti�cation with unconstrainedstereo geometry �Andrea FusielloDipartimento di Matematica e InformaticaUniversit�a di Udine, Italiafusiello@dimi.uniud.itEmanuele TruccoDepartment of Computing and Electrical EngineeringHeriot-Watt University, UKmtc@cee.hw.ac.ukAlessandro VerriDipartimento di FisicaUniversit�a di Genova, Italiaverri@infm.ge.itAbstractWe present a linear recti�cation algorithm for general, unconstrainedstereo rigs. The algorithm requires the two projection matrices of theoriginal cameras, and enforces explicitly all constraints necessary andsu�cient to achieve a unique pair of recti�ed projection matrices. Wereport tests proving the correct behaviour of our method, as well as thenegligible decrease of the accuracy of 3-D reconstruction if performedfrom the recti�ed images directly. To maximise reproducibility andusefulness, we give a working, 22-line Matlab code, and a URL wherecode, example data and a user guide can be found. Stereo reconstruc-tion systems are very popular in vision research and applications, hencethe usefulness of a general and easily accessible recti�cation algorithm.1 Introduction and motivationsGiven a pair of stereo images, recti�cation determines a transformation of eachimage plane such that pairs of conjugate epipolar lines become collinear and par-allel to one of the image axes. The important advantage of recti�cation is thatcomputing correspondences, a 2-D search problem in general, is reduced to a 1-Dsearch problem, typically along the horizontal raster lines of the recti�ed images[6, 3, 7, 8, 13]. The recti�ed images can be thought of as acquired by a newstereo rig, obtained by rotating the original cameras. This is indeed the basis forcomputing the rectifying transformation, as well as the perspective projection ma-trices rectifying the images (rectifying projection matrices). This paper presents�revised February 11, 1998
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a novel algorithm rectifying a calibrated stereo rig of unconstrained geometryand mounting general cameras. The only input required is the pair of projectionmatrices of the two cameras (but not their individual intrinsic or extrinsic param-eters), which can be estimated using one of the many existing calibration methods[5, 14, 2, 10, 12]. The output is the pair of recti�ed projection matrices, which canbe used to compute the recti�ed images. Reconstruction can be performed directlyfrom the recti�ed images and projection matrices. Given the importance of rec-ti�cation as a module for stereo systems, and the shortage of easily reproducible,easily accessible and clearly stated algorithms, we have made a \recti�cation kit"(code, examples, data and user's manual) available on line. Our work improvesand extends [1], in which a matrix satisfying the constraints su�cient to guaranteerecti�cation is hand-crafted, not derived, and the constraints necessary to guar-antee a unique solution are left unspeci�ed. Instead, we enforce explicitly all theconstraints necessary and su�cient to derive a unique recti�cation matrix, andobtain the latter as the solution of the resulting system of simultaneous equations.Some authors report recti�cation under restrictive assumptions; for instance, [9]assumes a very restrictive geometry (parallel vertical axes of the camera referenceframes). Recently, [11] have introduced an algorithm which performs recti�cationwith general stereo geometry given a weakly calibrated stereo rig (fundamentalmatrix and three conjugate pairs). We do require strong calibration, which how-ever can be achieved in many practical situations and by several algorithms.This paper is organised as follows. Section 2 introduces our notations andsummarises some necessary mathematics of perspective projections. Section 3 ex-presses the rectifying image transformation in terms of projections matrices. Sec-tion 4 and 5 derive the algorithm for computing the rectifying projection matrices.Section 6 gives the compact (22 lines), working MATLAB code for our algorithm,and indicates where to �nd our recti�cation kit on line. Section 7 reports tests onsynthetic and real data. Section 8 is a brief discussion of our work.2 Notation and basicsFollowing [4], we consider a stereo pair composed of two pinhole cameras, eachmodelled by its optical center c and its retinal plane (or image plane) R. In eachcamera, a point w in 3-D space is projected into an image point m, which is theintersection of the line wm with R. The transformation from w to m is modelledby the linear transformation ~P in projective (or homogeneous) coordinate:~m = ~P ~w; (1)where ~m = 0@ UVS 1A ~w = 0BB@ xyz1 1CCA m = � U=SV=S � (if S 6= 0): (2)The points w for which S = 0 de�ne the focal plane and are projected to in�nity.The projection matrix ~P can be decomposed into the product ~P = TiTe. Te mapsfrom world to camera coordinates and depends on the extrinsic parameters of the
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stereo rig only; Ti, which maps from camera to pixel coordinates and depends onthe intrinsic parameters only, has the following form:Ti = 0@ �fku 0 u00 �fkv v00 0 1 1A (3)where f is the focal length in millimeters, ku; kv are the scale factors along theu and v axes respectively (the number of pixels per millimiter), and �u = �fku,and �v = �fkv are the focal lengths in horizontal and vertical pixels, respectively.If we write the projection matrix as~P = 0@ q>1 q14q>2 q24q>3 q34 1A = (Pj~p); (4)we see that the plane q>3 w + q34 = 0 (S = 0) is the focal plane, and the twoplanes q>1 w + a14 = 0 and q>2 w + a24 = 0 intersect the retinal plane in the vertical(U = 0) and horizontal (V = 0) axis of the retinal coordinates, respectively.The optical center, c, is the intersection of the three planes introduced in theprevious paragraph; therefore ~P (c 1)> = 0, and c = �P�1~p. The optical rayassociated to an image pointm is the line cm, i.e. the set of points fw : ~m = ~P ~wg.The equation of this ray can be written in parametric form as w = c+ �P�1 ~m.3 The recti�cation transformationWe now show that, if ~Pn is the projection matrix which recti�es one of the twoviews, the linear transformation (in projective coordinates) that maps the retinalplane of ~Po = (Poj~po) onto the recti�ed retinal plane is given by the matrixPnP�1o . For any 3-D point w we can write� ~mo = ~Po ~w~mn = ~Pn ~w: (5)We know that the equation of the optical ray associated to m0 isw = co + �P�1o ~mo; (6)hence~mn = ~Pn1� co + �Po�1 ~mo1 � = ~Pn1 � co1 �+ ~Pn1� �Po�1 ~mo0 � =~Pn1 � cn1 �+PnP�1o ~mo: (7)Assuming that recti�cation does not alter the optical center (cn = co), we obtain~mn = PnP�1o ~mo: (8)This is a clearer and more compact result than the one reported in [1], in whichP�1o is not written as the inverse of a projection matrix.
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4 Constraining the rectifying projectionmatricesTo compute the rectifying projection matrices ~Pn1 and ~Pn2, we set up a linear,homogeneous system of equations formed by the constraints su�cient to guaranteerecti�cation [1], and incorporate explicitly quadratic constraints on the entries of~Pn1 and ~Pn2 to ensure a nontrivial solution. The constrained system and itsequations are detailed in this section. In the following, we shall write ~Pn1; ~Pn2as follows: ~Pn1 = 0@ a>1 a14a>2 a24a>3 a34 1A ~Pn2 = 0@ b>1 b14b>2 b24b>3 b34 1A : (9)Scale factor. Projection matrices are de�ned up to a scale factor. The commonchoice to block the latter is a34 = 1 and b34 = 1 [1], unfortunately, brings abouttwo problems: �rst, the intrinsic parameters become dependent on the choice ofthe world coordinate system [5]; second, the resulting projection matrices do notsatisfy the conditions guaranteeing that meaningful calibration parameters can beextracted from their entries of the matrices [4], that is (for example for ~Pn1),jja3jj = 1 (a1 ^ a3)>(a2 ^ a3) = 0: (10)To obviate the problems mentioned, we enforcejja3jj = 1 jjb3jj = 1: (11)The second equation in (10) and its equivalent for ~Pn2 are actually implied by thesystem de�ning our algorithm (proof omitted for reasons of space).Position of the optical centers. The optical centers of the recti�ed projec-tions, c1 and c2, must be the same as those of the original projections:~Pn1 � c11 � = 0 ~Pn2 � c21 � = 0: (12)Eq. (12) gives six linear constraints:8>>>>>><>>>>>>: a>1 c1 + a14 = 0a>2 c1 + a24 = 0a>3 c1 + a34 = 0b>1 c2 + b14 = 0b>2 c2 + b24 = 0b>3 c2 + b34 = 0: (13)Common focal plane. The two recti�ed projections must share the same focalplane, i.e. a3 = b3 a34 = b34: (14)
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Alignment of conjugate epipolar lines. The vertical coordinate of the pro-jection of a 3-D point onto the recti�ed retinal plane must be the same in bothimage, i.e: a>2 w + a24a>3 w + a34 = b>2 w + b24b>3 w + b34 : (15)Using Eq. (14) we obtain the constraintsa2 = b2 a24 = b24: (16)Notice that the equations written to this point are su�cient to guarantee recti-�cation (indeed some authors stop here, e.g. [1]), but not a unique solution: theorientation of the recti�ed retinal plane and the intrinsic parameters are still free.Our algorithm constrains these quantities explicitly, as follows.Orientation of the recti�ed retinal plane. We choose the recti�ed focalplanes to be parallel to the intersection of the two original focal planes, i.e.a>3 (f1 ^ f2) = 0; (17)where f1 and f2 are the third rows of Po1 and Po2 respectively. Notice that thedual equation b>3 (f1 ^ f2) = 0 is redundant thanks to Eq. (14).Orthogonality of the recti�ed reference frames. The intersections of theretinal plane with the planes a>1 w+a14 = 0 and a>2 w+a24 = 0 correspond to thev and u axes, respectively, of the retinal reference frame. As this reference frameto be orthogonal, the planes must be perpendicular, hence, using Eq. (16),a>1 a2 = 0 b>1 a2 = 0: (18)Principal points. Given a full-rank 3�4 matrix satisfying constraints (10), theprincipal point (u0; v0) is given by [4]:u0 = a>1 a3 v0 = a>2 a3: (19)We set the two principal points to (0; 0) and use Eqs. (14) and (16) to obtain theconstraints 8<: a>1 a3 = 0a>2 a3 = 0b>1 a3 = 0: (20)Focal lengths in pixels. The horizontal and vertical focal lengths in pixels,respectively, are given by�u = jja1 ^ a3jj �v = jja2 ^ a3jj: (21)By setting the values of �u and �v , for example, to the values extracted from ~Po1,we obtain the constraints 8<: jja1 ^ a3jj2 = �2ujja2 ^ a3jj2 = �2vjjb1 ^ a3jj2 = �2u; (22)
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which, by virtue of the equivalence jjx ^ yjj2 = jjxjj2jjyjj2 � (xTy)2 and Eq. (20),can be rewritten as 8<: jja1jj2jja3jj2 = �2ujja2jj2jja3jj2 = �2vjjb1jj2jja3jj2 = �2u: (23)5 Solving for the rectifying projection matricesWe organise the constraints introduced in the previous section in the followingfour systems:8><>: a>3 c1 + a34 = 0a>3 c2 + a34 = 0a>3 (f1 ^ f2) = 0jja3jj = 1 8><>: a>2 c1 + a24 = 0a>2 c2 + a24 = 0a>2 a3 = 0jja2jj = �v 8><>: a>1 c1 + a14 = 0a>1 a2 = 0a>1 a3 = 0jja1jj = �u 8><>: b>1 c2 = �b14b>1 a2 = 0b>1 a3 = 0jjb1jj = �u (24)Each system is a linear homogeneous system subject to a quadratic constraint,that is, Ax = 0 subject to jjx0jj = k; (25)where x0 is a vector composed by the the �rst three components of x, and k is areal number. The four systems above are solved in sequence; the solution of eachcan be computed using the decomposition of A suggested by [4], or casting theproblem as a generalised eigenvector problem.6 Summary of the algorithmGiven the high di�usion of stereo in research and applications, we have endeav-oured to make our algorithm as easily reproducible and usable as possible. Tothis purpose, we give below our working MATLAB code, which is simple andcompact (22 lines). The comments provided should make it understandable with-out knowledge of MATLAB. Moreover, a \recti�cation kit" including code, datasets, and instructions on how to use the algorithm can be downloaded fromftp://taras.dimi.uniud.it/pub/sources/rectif m.tar.gz.function [T1,T2,Pn1,Pn2] = rectify(Po1,Po2)% RECTIFY computes the rectified projection matrices% Pn1, Pn2, and the rectifying transformation of% the retinal plane T1 and T2 (in homog. coords.)% Po1 and Po2 are the original projection matrices.% focal length (extp(a,b) is external product of vectors a,b)au = norm(extp(Po1(1,1:3)', Po1(3,1:3)'));av = norm(extp(Po1(2,1:3)', Po1(3,1:3)'));% optical centersc1 = - inv(Po1(:,1:3))*Po1(:,4);c2 = - inv(Po2(:,1:3))*Po2(:,4);% unit vectors of retinal planesfl = Po1(3,1:3)'; fr = Po2(3,1:3)';nn = extp(fl,fr);
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% select the first 3 componentsL = [1 1 1 0 ]';% lagra(A,L,k) computes the minimum of the norm of Ax,% with the constraint "norm of x(L) equal to k"A = [ [c1' 1]' [c2' 1]' [nn' 0]' ]'a3 = lagra(A,L,1) ;A = [ [c1' 1]' [c2' 1]' [a3(1:3)' 0]' ]';a2 = lagra(A,L,av) ;A = [ [c1' 1]' [a2(1:3)' 0]' [a3(1:3)' 0]' ]';a1 = lagra(A,L,au) ;A = [ [c2' 1]' [a2(1:3)' 0]' [a3(1:3)' 0]' ]';b1 = lagra(A,L,au);% adjustment transformationT = [1 0 00 1 00 0 1 ];% rectifying projection matricesPn1 = T * [ a1 a2 a3 ]'; Pn2 = T * [ b1 a2 a3 ]';% rectifying image transformationsT1 = Pn1(1:3,1:3)* inv(Po1(1:3,1:3));T2 = Pn2(1:3,1:3)* inv(Po2(1:3,1:3));This MATLAB code receives in input two 3�4 projection matrices, and returnstwo 3� 3 image transformation matrices (to be applied to image points) and two3 � 4 rectifying projection matrices (to be used to perform reconstruction fromrecti�ed images).Reconstruction. Reconstruction is performed through Eq. (1). Given two con-jugate points,m1 = (u0; v0)> andm2 = (u00; v00)>, and the two projection matrices~Pn1 and ~Pn2, we can write the overconstrained linear systemAw = y; (26)where A = 0BB@ (a1 � u0a3)>(a2 � v0a3)>(b1 � u00b3)>(b2 � v00b3)> 1CCA y = 0BB@ �a14 + u0a34�a24 + v0a34�b14 + u00b34�b24 + v00b34 1CCA ; (27)and w gives the position of the 3-D point projected to the conjugate points. Noticethat di�erent sizes or centers can be obtained, if required, by pre-multiplyingboth rectifying projection matrices by a suitable matrix T, set to identity in ourMATLAB code, of the same structure as (3).7 Experimental ResultsWe ran tests to verify that the algorithm performed recti�cation correctly, andalso to check that the accuracy of the 3-D reconstruction did not decrease whenperformed from the recti�ed images directly.
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Figure 1: Reconstruction error vs noise levels in the image coordinates (left) and calibra-tion parameters (right) for a synthetic stereo rig with camera translation �[100 20 30] mmand rotation angles roll=19o pitch=32o and yaw=5o. Crosses refer to reconstruction fromrecti�ed images, circles to reconstruction from unrecti�ed images.Correct recti�cation. The tests used both synthetic and real data. Each setof synthetic data consisted of a cloud of 3-D points and a pair of projection ma-trices; both points and matrices were chosen randomly, to cover a range of verydi�erent stereo geometries and camera parameters. For reasons of space, we donot show examples. Real-data experiments used several calibrated stereo pairsavailable from the INRIA-Syntim WWW site, which include the cameras' pro-jection matrices [12]. Figure 2 shows an example. The right image of each pairshows three epipolar lines corresponding to the points marked by a cross in the leftimage. The output images are cropped to the size of the input images for displaypurposes only; the pixel coordinates of the recti�ed images are not constrained tolie in any special part of the image plane.Accuracy of reconstruction. In order to evaluate the errors introduced byrecti�cation on reconstruction, we compared the accuracy of 3-D reconstructioncomputed from original and recti�ed images. We used synthetic, noisy imagesof random clouds of 3-D points and random stereo geometries, as explained inthe previous subsection. Imaging errors were simulated by perturbing the imagecoordinates, and calibration errors by perturbing the intrinsic and extrinsic pa-rameters, both with additive, Gaussian noise. As an example, Figure 1 showsthe average (over the set of points) relative error measured on 3-D point position,plotted against noise, for one of the several synthetic stereo rigs used for testing.Each point plotted is an average over 100 independent trials. The abscissa is thestandard deviation of the relative error on coordinates of image point or calibrationparameters. It can be seen that the accuracy does not su�er when reconstructingdirectly from the recti�ed images.8 DiscussionStereo matching is greatly simpli�ed if the epipolar lines are parallel and horizon-tal in each image, i.e. if the images are recti�ed. We have developed a recti�ca-tion algorithm which imposes explicitly all the constraints su�cient to obtain two
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Left image Right image

Rectified left image Rectified right image

Figure 2: Original \Color" stereo pair (top) and recti�ed pair (bottom). The left picturesplot the epipolar lines corresponding to the point marked in the right pictures.unique projection matrices as the solution of four constrained, homogeneous lin-ear systems; the resulting algorithm is quite simple. The correct behaviour of thealgorithm has been demonstrated with both synthetic and real images. Interest-ingly enough, reconstruction can be performed directly from the disparities of therecti�ed images, using the recti�ed projection matrices. Our tests show that thisprocess does not introduce appreciable errors compared with reconstructing fromthe original images. We believe that a general recti�cation algorithm, togetherwith the material we have made available from the URL given in Section 6, canprove a useful resource for the research and application communities alike.AcknowledgementsThis work bene�ted from discussions with Bruno Caprile, and was partially sup-ported by grants from the British Council-MURST/CRUI and EPSRC (GR/L18716).The real stereo pairs are available from INRIA-Syntim under Copyright(http://www-syntim.inria.fr/syntim/analyse/paires-eng.html).References[1] N. Ayache. Arti�cial Vision for Mobile Robots: Stereo Vision and Multisen-sory Perception. The MIT Press, 1991.[2] B. Caprile and V. Torre. Using vanishing points for camera calibration. In-ternational Journal of Computer Vision, 4:127{140, 1990.
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[3] I. J. Cox, S. Hingorani, B. M. Maggs, and S. B. Rao. A maximum likelihoodstereo algorithm. Computer Vision and Image Understanding, 63(3):542{567,May 1996.[4] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint.The MIT Press, Cambridge, 1993.[5] O. Faugeras and G. Toscani. Camera calibration for 3D computer vision. InProceedings of the International Workshop on Machine Vision and MachineIntelligence, Tokyo, Japan, February 1987.[6] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and binocular stereo.International Journal of Computer Vision, 14(3):211{226, April 1995.[7] S. S. Intille and A. F. Bobick. Disparity-space images and large occlusionstereo. In Jan-Olof Eklundh, editor, European Conference on Computer Vi-sion, pages 179{186, Stockholm, Sweden, May 1994. Springer-Verlag.[8] T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptivewindow: Theory and experiments. IEEE Transactions on Pattern Analysisand Machine Intelligence, 16(9):920{932, September 1994.[9] D. V. Papadimitriou and T. J. Dennis. Epipolar line estimation and rec-ti�cation for stereo images pairs. IEEE Transactions on Image Processing,3(4):672{676, April 1996.[10] L Robert. Camera calibration without feature extraction. Computer Vision,Graphics, and Image Processing, 63(2):314{325, March 1995. also INRIATechnical Report 2204.[11] L. Robert, C. Zeller, O. Faugeras, and M. H�ebert. Applications of non-metric vision to some visually-guided robotics tasks. In Y. Aloimonos, editor,Visual Navigation: From Biological Systems to Unmanned Ground Vehicles,chapter 5, pages 89{134. Lawrence Erlbaum Associates, 1997.[12] Jean-Philippe Tarel and Andr�e Gagalowicz. Calibration de cam�era �a based'ellipses. Traitement du Signal, 12(2):177{187, 1995.[13] C. Tomasi and R. Manduchi. Stereo without search. In B. Buxton andR. Cipolla, editors, European Conference on Computer Vision, pages 452{465, Cambridge (UK), April 1996.[14] R. Tsai. A versatile camera calibration technique for high-accuracy 3d ma-chine vision metrology using o�-the-shelf tv cameras and lenses. IEEE Journalof Robotics and Automation, 3(4):323{344, August 1987.


