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Università di Verona
Strada le Grazie 15

Verona, Italy

colombar@sci.univr.it

Marco Cristani
Dipartimento di Informatica

Università di Verona
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ABSTRACT
Most of the automated video-surveillance applications are
based on background (BG) subtraction techniques, that aim
at distinguishing moving objects in a static scene. These
strategies strongly depend on the BG model, that has to
be initialized and updated. A good initialization is crucial
for the successive processing. In this paper, we propose a
novel method for BG initialization and recovery, that merges
interesting ideas coming from the video inpainting and the
generative modelling subfields. The method takes as input
a video sequence, in which several objects move in front of
a stationary BG. Then, a statistical representation of the
BG is iteratively built, discarding automatically the moving
objects. The method is based on the following hypotheses:
(i) a portion of the BG, called sure BG, can be identified with
high certainty by using only per-pixel reasoning and (ii) the
remaining scene BG can be generated utilizing exemplars of
the sure BG. The proposed algorithm is able to exploit these
hypotheses in a principled and effective way.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Time-varying imagery ; I.5.1 [Pattern Recogni-
tion]: Models—Statistical ; I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding—Video analysis

General Terms
Algorithms, Security
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1. INTRODUCTION
Analysis and understanding of video sequences is an ac-

tive research field, whose importance is rapidly increased
in the last years, due to the availability of more and more
powerful hardware, to the development of effective real-time
techniques, and to the potential vastity of the involved ap-
plications [1, 2]. Video surveillance is undoubtedly one of
the most interesting applications of sequence analysis: hu-
man action recognition [3], semantic indexing of video [4],
and, more generally, on-line discovering of unusual activi-
ties [5] are all tasks under investigations to partially or fully
automate the surveillance. Typically, a video-surveillance
system contemplates the monitoring of a site for long peri-
ods, using a static camera whose goal is to distinguish (and
possibly classify) unusual behaviors from typical ones. To
this end, the basic operation needed is the separation of
the moving objects, the so-called foreground (FG), from the
static information [6], the background (BG). This process is
usually called background modelling.

The issues characterizing a BG modelling process are usu-
ally three: model representation, model initialization, and
model adaptation. The first describes the kind of model
(e.g., mixture of Gaussians) used to represent the BG; the
second one regards the initialization of this model, and the
third one relies to the mechanism used for adapting the
model to the BG changes (e.g., illumination changes).

Recently, several techniques have been proposed in or-
der to address the representation and the adaption issues,
whereas the model initialization has received poor atten-
tion. In the BG model initialization problem, also called
bootstrapping [7], the input is a short uncontrolled video se-
quence in which a number of moving objects may be present.
The purpose is then to produce a BG model describing the
observed scene. Actually, most of the BG models are built
on a set of initial parameters that comes out from a short
sequence, in which no FG objects are present [8]. This is



a too strong assumption, because in some situations it is
difficult or impossible to control the area being monitored
(e.g., public zones), which are characterized by a continuous
presence of moving objects, or other disturbing effects.

In the literature, the initialization problem is typically
disregarded, and only few methods are present. To the best
of our knowledge, the main methods are devoted to algo-
rithms initialization using a pixel-level analysis, disregard-
ing higher-level information. Indeed, BG analysis could be
carried out at different data-abstraction levels: pixel, re-
gion, and frame levels [7]. The pixel-level analysis processes
independently each pixel, classifying it as FG or BG, and
managing adaptation to changing BG [9]. In this modality,
the analysis is performed at a very low level, and many prob-
lems of the BG subtraction remain unsolved, such as local
or global sudden illumination changes [10]. The region-level
analysis considers a higher level representation, modelling
also inter-pixel relationships, so allowing a refinement of the
modelling obtained at the pixel level. Finally, the frame-
level analysis looks for changes in large parts of the image,
and eventually swaps in more expressive BG models [11, 12].

In this paper, we propose a novel approach of BG model
initialization that detects the visual appearance of the BG,
inferring also a statistic description of each pixel of it by
using a pixel-region scheme that draws on another active
pattern recognition research field, the video completion or
video inpainting subfield [15]. The techniques belonging to
this research area try to fill-in user defined spatio-temporal
holes in a video sequence using patches extracted in the exis-
tent spatio-temporal volume, according to consistency crite-
ria evaluated both in time and space. The main application
of these techniques is the one of removing unwanted objects
in the scene, substituting them with visual patches in accord
with the rest of the sequence. In the following, we consider
a BG initialization process as an instance of video inpaint-
ing, in which we want to eliminate from the sequence all the
FG objects, using the remaining visual information to esti-
mate a statistics of the entire BG scene. Therefore, we want
to define as hole every FG object present in the sequence,
exploiting then spatio-temporal consistency to delete them
coherently. The result is a representation of the static BG in
which each pixel is modelled with a Gaussian density func-
tion that takes into account only for all the variations of the
BG scene. These estimations can be used to correctly ini-
tialize BG subtraction methods based on probabilistic mod-
elling of the pixel signals as the one proposed in [9]. The
problem is that the FG and BG visual entities can not be
so well discriminated due to several problems well known in
the video surveillance literature, as the sleeping FG as first,
the ghosting, the shadowing and so on (see [7]).

Our method tries to face to this uncertainty, using the
following BG hypotheses: (i) there is a portion of the static
BG represented with high probability by i.i.d. pixel pro-
cesses that follow a Gaussian distribution: we call this zone
as sure BG zone; (ii) the sure BG is sufficiently explaining
the visual appearance of the entire BG. The pixel locations
outside the sure BG zone form the confusion zone or re-
gion; by considering this region along time we obtain the
related confusion volume, in which FG and BG pixel values
are mixed together. The term sufficiently explaining has to
be taken in a generative modelling framework, in the sense
that the BG regions belonging to the confusion zone can be
thought as produced by sampling square patches or exem-

plars of varying size from the sure BG region. In order to ex-
ploit this hypothesis, we process the confusion volume frame
by frame, trying to discover local spatial patches maximally
similar with valid exemplars of the BG. This approach is
similar only in the spirit with the video epitomes proposed
in [13]; in facts, our approach is based on a incremental pro-
cess that define automatically the concept of FG and BG,
while in [13] this distinction is not present.

This method represents a novelty in both the fields of the
classical video inpainting literature and the video surveil-
lance field. In the video inpainting literature because the
method is able to automatically detect a zone to inpaint in
order to find the scene of the video sequence, without the
help of the user. In the video-surveillance field our method
represents an improvement in the state of the art, because
it solves a situation in which the BG is not evincible using
only per pixel statistic, being visible partially and for few
frames.

Lastly, our method can be applied in those applications
in which the appearance of the BG is the main object of in-
terest and the FG could be visual clutter to eliminate. For
example, in Fig. 1 is depicted a poster behind moving fo-
liage. In this case, the BG is intuitively the white table,
which spatial particulars (the letters, with different dimen-
sions) have to be extracted and composed together in order
to perceive the whole image, not corrupted. The result is
shown in (Fig. 2).

frame 4 frame 40

frame 80 frame 120

frame 150 frame 236

Figure 1: Few input frames from the “Sneller” se-
quence.

The rest of the paper is organized as follows. In Sec. 2,
the state of the art of the BG initialization and the video
inpainting subfields is examined. Sec. 3 is the core of this
paper, in which the proposed approach is detailed. Exper-
imental results are presented in Sec. 4 and, finally, Sec. 5
contains conclusions and future perspectives.



Figure 2: Output of the proposed approach: the
static table with the letters as estimated from the
proposed approach.

2. STATE OF THE ART

2.1 Background initialization
Actually, most of the BG models are built on a set of ini-

tial parameters that comes out from a short sequence, in
which no FG objects are present [8]. This is a too strong
assumption, because in some situations it is difficult or im-
possible to control the area being monitored (e.g., public
zones), which are characterized by a continuous presence of
moving objects, or other disturbing effects.

Most of the recent BG initialization methods discard the
solution of computing a simple mean over all the frames,
because it produces an image that exhibits blending pixel
values in areas of FG presence. A general analysis regarding
the blending rate and how it may be computed is present
in [17]. In [18], the BG initial values are estimated by cal-
culating the median value of all the pixels in the training
sequence, assuming that the BG value in every pixel loca-
tion is visible more than 50% of the time during the training
sequence. Similarly, in [19] authors use median to model the
BG of panning sequences where frames are aligned to form a
mosaic of the BG. Even if those methods avoid the blending
effects of the mean, the output of the median will contains
large error when this assumption is false. Another proposed
work [20], called adaptive smoothness method, avoids the
problem of blending finding intervals of stable intensity in
the sequence. Then, using some heuristics, the longest sta-
ble value for each pixel is selected and used as the value
that most likely represents the BG. This method is similar
to the recent Local Image Flow algorithm [16], which gener-
ates BG values hypotheses by locating intervals of relatively
constant intensity, and weighting these hypotheses by using
local motion information. Unlike most of the approaches,
this method does not treat each pixel value sequence as an
i.i.d. (independent identically distributed) process, but it
considers also information generated by the neighboring lo-
cations. The problem of such approach is that, using a per
pixel motion analysis, the problem of the sleeping FG is not
faced, and whatever object visible for the most of the se-
quence is erroneously detected as BG, even if it has moved
in few frames.

2.2 Video inpainting
Video-inpainting techniques can be evaluated as temporal

development of the image inpainting techniques [14], that

consist in substituting holes in an image choosing patches
from the neighborhood and substituting them in the hole,
in order to preserve spatial consistency, i.e. color smoothing
and edge continuation.

Our approach belongs to those techniques that use small
image patches or exemplar to account for high order statis-
tic in image and video data. Similar to our approach is
the video epitomes [13], in which the spatio-temporal vol-
ume is approximated using a smaller spatio-temporal vol-
ume, formed by local spatio-temporal cubes, that generated
all the video data. The method is appealing, but the defini-
tion of BG and FG is not present. In [15] global consistency
is captured by posing the problem of video inpainting as
a global optimization problem with a well-defined objective
function that assures spatio-temporal coherency, and solving
it appropriately.

3. PROPOSED APPROACH
The proposed method takes as input a sequence of T

frames, each one formed by N pixel values, ordered in raster
scan. The output is a set of uni-modal Gaussian distribu-
tions, one for each pixel pi, written as

N (µi, σi), i = 1, . . . , N (1)

The algorithm consists in an iterative process that can be
synthesized as follows:

1. Initialization

2. Patch-level BG expansion

3. Pixel-level BG expansion

4. Repeat steps 2 and 3 until the confusion zone is empty
or it is not possible to proceed

In the following, we give an intuitive idea of the algorithm in
order to fix the needed notation and to ease the reading of
the next sections, where each single step is deeply described.

3.1 Overview of the method

3.1.1 Initialization

In this phase, we provide a partition of the scene in two
regions: a region Φ, the sure BG zone, where pixel values
satisfy the BG per-pixel hypothesis1 and a region Ω, the con-
fusion zone, where FG and the BG (pixel) values are mixed
together in the sequence. Pixels in Φ are modelled by the
set of Gaussian distributions {N (µi, σi)}pi∈Φ. Moreover,
for each pi ∈ Φ we have the membership index Gi that in-
dicates how many pixel values in the sequence are modelled
by N (µi, σi). In the following, we call the spatio-temporal
volume spanned by all the pixels in Ω as the volume relative
to Ω. These two regions are divided by a curve C belonging
to Ω (see Fig. 3).

3.1.2 Patch-level BG expansion

In this step, we look in the confusion volume relative to
Ω for a patch of BG. Starting from a pixel pi ∈ C, we define
a squared region Ψi,s centered in pi and with size 2s + 1.
Given a frame t, pixel values corresponding to the spatial
locations in Ψi,s form a patch Ψi,s(t) (notice that the frame

1The first BG hypothesis mentioned in the Introduction and
deeply explained in Sec. 3.2.



Ω
Φ

Ω
volume

Sure BG

Confusion 

relative to

zone

Confusion

t

Figure 3: Definition of the sequence to analyze as
spatio-temporal volume: note that only the confu-
sion region determines a volume, in which the FG
and BG pixels values are mixed together.

index t is used to specify a set of pixel values, otherwise we
refer to an atemporal spatial location).

As depicted in Fig. 4 Ψi,s(t) is partitioned in two parts:
ΨΩ

i,s(t), located in the confusion zone, and ΨΦ
i,s(t), located

in the sure BG zone. Pixels pi ∈ C are processed one by
one following an order determined by a priority value. This
ranking is based on the idea of processing first that pixel
pi for which the associated region ΨΦ

i,s has been built us-
ing a large amount of confident data. Then, we extract
a patch Ψi,s(tBest) (the “best hypothesis”) at frame tBest,
formed by two fragments ΨΦ

i,s(tBest) and ΨΩ
i,s(tBest), such

that ΨΦ
i,s(tBest) is similar to the existent BG model in that

region, and the entire patch Ψi,s(tBest) has to be maximally
similar to a somewhat patch (the “source”) in the sure BG
model. The similarity criteria will be detailed in the fol-
lowing. In a generative sense, it is appropriate to consider
the best hypothesis as generated from the source. If this
hypothesis holds, is again licit that the best hypothesis in-
herits also the statistical properties of the source. There-
fore, the best hypothesis assumes as initial mean the values
ΨΩ

i,s(tBest), and as initial standard deviation the correspond-
ing standard deviation values of the source. The obtained
statistics is called per-patch statistic of ΨΩ

i,s(tBest).

3.1.3 Pixel-level BG expansion

In this step, we fit the initial per-patch statistics of
ΨΩ

i,s(tBest) in the spatio-temporal volume relative to ΨΩ
i,s at

pixel-level. In this way, we will obtain for each pixel loca-
tion in ΨΩ

i,s a per-pixel statistics. This statistics models the
likelihood of all the pixel values at a single pixel location
pj ∈ ΨΩ

i,s wrt to the per-patch statistics in the same loca-

tion. The final pixel-region statistics of ΨΩ
i,s will be formed

combining the two statistics, generating a set of Gaussian
distributions N (µj , σj), with pj ∈ ΨΩ

i,s. Finally, for each
pixel pj we obtain the number Gj of pixel values that are
properly modelled by N (µj , σj). After this step, the region
Φ grows up and the spatial knowledge about the visual BG
augments.

The last two steps are iterated until the confusion zone
has been entirely processed, or when the similarity criteria
has not being able to be satisfied for each pixel belonging to
the contour C ∈ Φ.

i,s

i,s

i,s
Ψ(t)

Φ

2s+1

p
i

(t)
Ω

(t)
Φ

Ψ

Ψ

C

Ω

Figure 4: The patch-level BG expansion step: at
iteration step m, we build a local patch Ψi,s, which
value for each frame is indicated as Ψi,s(t) and fur-
ther divided in ΨΩ

i,s and ΨΦ
i,s.

3.2 Step 1: Initialization
The initialization step is useful to build an initial parti-

tion of the scene in Φ and Ω. As stated in the Introduction,
we define as BG pixels those pixels that shown a strictly
uni-modal behavior. In order to find this characteristic, we
tried two different approaches. First, we calculate for all the
pixels signals pi(t), t = 1 . . . T of the sequence the median µ̂i,
and the MAD σ̂i (a robust estimate of the standard devia-
tion) in the sense that does not give undue weight to the tail
behavior of the distribution. After this, we evaluate as BG
pixel values all those median values which MAD estimates
were lower than a threshold σ̂, supposing this one as near as
possible to the sensor noise standard deviation. This thresh-
old was built evaluating a set of training sequences depict-
ing only BG scenes. For each training sequence a particular
standard deviation was found. At the end of the training
session, the mean of all the σ’s was evaluated, building the
threshold σ̂Thresh. We built a set of thresholds for a set of
different environment (indoor, outdoor with stable weather).
Experimentally we found that this way was too strict, espe-
cially in the outdoor environment, being the BG subjected
to other kind of noise, other than the sensor noise, due to
weather visual fluctuations, shadows, etc.

Alternatively, we modelled each pixel signal as a mixture
of Gaussians, which parameters are estimated using the Ex-
pectation Maximization (EM) algorithm [21], with number
of component chosen automatically using the BIC criteria,
derived from the most general MDL principle [22]. This pa-
rameter estimation process starts evaluating the likelihood
of the observed pixel values given a starting maximally com-
plex model (i.e. formed by a large number of components).
Subsequently, the MDL principle is used in order to prune
away the useless components, repeating the estimation pro-
cess iteratively until convergence. At the end of the process,
we obtain for each pixels sequence pi(t) a mixture of Gaus-
sians (MoG) {N}i, composed by Ki Gaussian components
Ni,k, k = 1, . . . , Ki, with µi,k, σi,k, πi,k indicating respec-
tively the mean, the standard deviation and the mixing co-
efficient, that is proportional to the number of frames that
the k-th component has been observed in the sequence.

Our task was to find for each pixel that Gaussian compo-
nent that better depicts the BG, i.e. the component with



maximal mixing coefficient (that measures the persistency
of a pixel value) and minimum standard deviation (the in-
verse of the precision). We combine these two components
forming the stability coefficient ρi,k, for each pixel i and each
component k, i.e.:

ρi,k = πi,k (1− σ̃i,k) (2)

where σ̃i,k is the standard deviation of the k-th Gaussian
component, normalized by the sum of all the K standard
deviations. This measure is similar to what used in [9],
in order to choose those Gaussian components better mod-
elling the BG of a battery of i.i.d pixel signals. Using this
coefficient, we estimate the components that most proba-
bly model the BG appearance of the scene, by choosing
Ni,k̂ = argmax

k
ρi,k. Given this operation, the next step

is to examine all the components selected by considering as
BG those ones for which ρi,k̂ > τ , where τ is a threshold
fixed experimentally to 0.6. Lastly, we build for each pi its
membership index Gi, obtained by enumerating the pixel
values for which hold

pi(t) ∈ N (µj , σi) t = 1, . . . , T (3)

that is satisfied when pi(t) falls in the range [µi−3.5σi, µi +
3.5σi]. In the experiments, we show that this initialization
method is able to model correctly portions of the scene de-
picting the static BG.

3.3 Step 2: Patch-level BG expansion
This step can be performed at each iteration m until no

confusion zone is present in the scene. The estimated BG
region and the confusion region at iteration m should cor-
rectly be called Φ(m) and Ω(m) respectively, but we omit
the (m) notation for clarity, if it is not explicitly needed.
Together with the two regions, we obtain a corresponding
contour that separates the zones C ∈ Ω. The next step is
the choice of the pixel pi ∈ C, around that the squared re-
gion Ψi,s is built (with starting maximal size s = sInit), with
which we explore the relative confusion volume.

The order with which the pixel pi is chosen is determined
by a priority queue. The basic idea of this ranking is that we
want to process first that pixel pi which associated region
BGΨi,s has been built using a large amount of data. In order
to do this, we want to privilege the pixel pi, which associated
region ΨΦ

i,s is supported by the largest amount of pixel values
with small variance. Therefore, we rank in descending order
all the pi ∈ C by a per-patch stability coefficient δ̂i,k:

δ̂i,k =
X

j∈ΨΦ
i,s

δj,k (4)

with

δj,k =
Gj

T
(1− σ̃j,k) (5)

where Gj in the number of pixel value used previously to
the estimation of pj . Once we selected the starting pixel pi,
we select the best frame tBest for which

Ψ
Φ(m)
i,s (tBest) ∈ Φ(m) ∧ (6)

tBest = argmin
t,i′

d(Ψi,s(t), Ψi′,s) (7)

where Ψi′,s is a squared region centered in i′ and such that
(Ψi′,s ∪ Ω(m) = ∅) and d is a whatever distance function.

The condition of Eq. 6 is satisfied when each one of the pixel
values pj(t) ∈ Ψi,s(t) falls in the range [µj − 3.5σj , µj +
3.5σj ], where µj and σj model the region ΨΦ

i,s.
In other words, in this step we are looking for a frame tBest

in which the BG portion of the patch is conform with the
corresponding sure BG model (Eq. 6), and the entire patch
is maximally similar with a patch of the sure BG (Eq. 7); if
both of the equations above hold, we found a spatial patch
intersecting the confusion area where the component pixel
values discarded as BG during the initialization, here are re-
evaluated. This re-evaluation is due to their joint similarity
with a patch of sure BG. At this point, the patch fragment
ΨΩ

i,s(tBest) inherits from the BG region Ψi′,s the standard

deviation value PPσj for each pixel pj ∈ ΨΩ
i,s, as depicted

in Fig, maintaining as mean values PPµj the pixel values
ΨΩ

i,s(tBest) (“near” the values of the means that model Ψi′,s).

Moreover, for each pixel pj we extract PPGj as the number of
pixels values with which the estimation of the corresponding
value of the source p′j has been built. This statistics is called

initial per patch statistics relative to ΨΩ
i,s(tBest). Anyhow,

this statistics will be updated in the next step, in order to
improve the modelling of all the pixel values in the volume
relative to ΨΩ

i,s(tBest). If one of the equations (6) and (7)
does not hold for all the pixels pi ∈ C, the process is repeated
decreasing the size of the squared patch i.e. using s′ <
sInit, until a minimum size smin is reached. If no one match
occurs even with the minimal patch size, this means that
the BG present in the confusion zone is too much different
wrt the sure BG, therefore no similarity criteria holds, and
the process stops.

3.4 Pixel-level BG expansion
At this point, we have a patch Ψi,s(tBest) most similar

with respect to ΨΦ
i,s for what concerns the BG fragment and

most similar with respect to a certain Ψi′,s (the “source”).
But Ψi,s(tBest) is only one spatial configuration of pixel val-
ues that, considered alone, can be present in more than one
frame. Therefore, the aim of this step is to build a per-pixel
statistics that takes into account for this consideration. In
order to do this, we first find all the pixel values {pj(t)} in
the volume relative to ΨΩ

i,s such that pj(t) ∈ N (PPµj ,
PP σj)

(as defined in Eq. 3) and their related membership number
PpGj . Once this membership function has evaluated, for
each pixel we estimate the final per-pixel mean and standard
deviation Ppµj ,

Pp σj . This estimation represents a strictly
local estimation of the single pixel values in accord with
the per-patch statistic. As last step, we want to fuse the
per-pixel statistic with the per-patch statistic. Therefore,
we learn the final Gaussian parameters that, for each pixel
pj , are a weighted sum that takes into account for PPGj ,
i.e. the number of pixels with which pj has been derived in
the per-patch statistics, and the number of pixels PpGj . In
formulae:

µj =
PPGj

PPµi +Pp Gj
Ppµj

PPGj +Pp Gj
(8)

σj =
PPGj

PPσj +Pp Gj

PPGj +Pp Gj

Ppσj (9)

Lastly we calculate the number of pixels Gj with which the
pixel-region statistic has been built as

Gj =
PPGj +Pp Gj

2
(10)



With these incremental learning we drift the Gaussian com-
ponents of the new pixel of BG taking into account for the
patch with which Ψi,s is generated and the local statistic in
which the patch Ψi,s is immersed.

4. EXPERIMENTS
We show here four experiments performed on different

kind of sequences in order to give an idea of both the po-
tentialities and the limits of the proposed method. The al-
gorithm is written in MATLAB code and has been ran on
a Pentium IV 3GHz CPU with 1Gb of RAM. The mean
elapsed time for a computation is around 1 hour and half.

The first sequence, the “Sneller” sequence, depicts a white
poster with letters of different dimensions. In front of this
poster there is moving foliage that occludes a wide region
(Fig. 1). As explained in Sec. 3.2, we first apply the initial-
ization step that finds the sure BG region. In order to vali-
date this step, we apply also the median based initialization.
In Fig. 5 (a) is depicted the median of the sequence, over
which we have to choose the sure BG region. In Fig. 5 (b), is
depicted the mean of the component with highest stability
coefficient, found by the Gaussian clustering. This compar-
ison is enough to state that the second method outgoes the
first one, by (correctly) depicting on the left side white pix-
els values, while in the median the corresponding values are
gray because influenced by the leaves gray level. The selec-
tion of the sure BG performed by our method is depicted in
Fig. 5 (c). Once the initialization is performed, the inpaint-

(a) (b) (c)

Figure 5: Initialization method: (a) median based;
(b) mixture based; (c) sure BG zone detected from
the initialization step, opposed to the black-masked
confusion zone.

ing process can be ran. In Fig. 6 a sketch of the process is
shown. In the first column, the reader can see the inpainting
process evolution, in which the sure BG is enlarged at each
step using the squared patch highlighted by a red solid line.
This patch results maximally similar to the one highlighted
by a dashed blue line. It is interesting to note that the
patch size decreases during the process. In fact, as reader
can notice, from iteration m = 152 the patch size is smaller
(25 × 25) than the previous size (31 × 31). This is because
with the initial size no similarity is discovered along all the
contour that divides the sure BG zone and the confusion
zone. In the central column standard deviation values are
shown. The column on the right shows the number of pixels
that are involved in the statistics that models the sure BG
identified up to now: the brighter the color is, the more the
pixel values involved are. The final results, obtained after
319 iterations, are depicted in Fig. 2 (mean pixel values) and
in Fig. 7 (standard deviation values).

The second sequence, the “Classroom” sequence, depicts
two persons that are walking and staying in front of a written
board (Fig. 8). In this case, the details on the board imply
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Figure 6: Sketch of the inpainting process.
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Figure 7: Final standard deviation values detected
for the BG of the “Sneller” sequence.

frame 61 frame 76 frame 103

frame 200 frame 264 frame 280

Figure 8: Few frames of the “Classroom” sequence.

the use of smaller patches (13×13 in average). The satisfying
results are displayed in Fig. 9.
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Figure 9: “Classroom” sequence results: BG (a)
mean values and (b) standard deviation values.

The third sequence, the “Car” sequence (Fig. 10), is char-
acterized by a highly irregular BG and moving foliage. In
this case, the algorithm is very slow because of difficulties
to find similarity between the sure BG and the BG in the
confused zone. And in fact, it stops at iteration m = 1627,
because the similarity criteria does not hold for any pixel of
the contour C, and for any size of the patch. The problem
here is that the sure BG is not able to explain the BG in
the remaining confused zone and consequently the second
BG hypothesis mentioned in the Introduction falls and the
method stops. Anyhow, the result obtained (see Fig. 11,
(a) and (b)) shows that the partial BG estimation models
the car behind the foliage in a good way. Fig. 12 shows
which part of the initial confused zone has been processed
and which part has not.

frame 1 frame 30 frame 60

frame 90 frame 120 frame 130

Figure 10: Few frames of the “Car” sequence.
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Figure 11: “Car” sequence results: BG (a) mean
values and (b) standard deviation values.

Figure 12: Too irregular BG (“Car” sequence): the
not processed confused zone is shown in white whilst
the shadowed area represents the processed con-
fused zone and the rest of the image represents the
initial sure BG.

The last sequence, the “Phone” sequence, is an example
of when the proposed method terminates, but the result is
not very good. The sequence depicts an almost uniform BG
with a moving person that stays almost still for a long time
in the center of the scene for a phone call (See Fig. 13).
As we see from the results (Fig. 14), the moving person
has been removed, but the visual appearance of the BG
is not smooth as expected since the person silhouette can
be recognized in the phone-call zone. This is because the
mean values computed in that zone differ from the rest of
the BG (and the low variance witnesses this). In fact, the
number of pixel values involved in the person substitution
are inferior wrt the rest of the scene, in which the BG has
been built using more evidence, taking into account for more
BG fluctuations.

frame 30 frame 60 frame 90

frame 120 frame 150 frame 180

Figure 13: Few frames of the “Phone” sequence.

5. CONCLUSIONS
In this paper we proposed a novel method for BG initial-

ization and recovery. The method takes as input a video
sequence in which several moving objects can be present,
possibly for long time, and builds a per-pixel statistical rep-
resentation of the static BG. The iterative method here ex-
plained represents an improvement in the video surveillance
literature, because is able to give a statistics of the static
BG appearance even for that zones in which the scene is
visible for few frames. This estimation is built by exploit-
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Figure 14: “Phone” sequence results: BG (a) mean
values and (b) the standard deviation values.

ing some hypotheses: a spatial portion of the BG has to be
visible with high per-pixel certainty (forming the sure BG),
and this portion visually should explain in a generative way
the visual appearance of the rest of the scene (the confusion
zone). These two hypotheses are combined and used by a
method similar to a video inpainting technique. The basic
idea is that those visual patches in the confusion zone highly
similar to some visual exemplars of the sure BG are them-
selves evaluated as sure BG. The approach is valid, in the
sense that finds good estimations of the BG visual appear-
ance, even if some heuristic is present. A future perspective
is to find a more elegant and formal way to describe the novel
proposed approach, for example finding a generative model
similar to the one proposed in [13] in which is embedded the
definition of FG and BG.
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