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Abstract

We address the problem of autocalibration of a moving camera with unknown constant intrinsic parameters.
Existing autocalibration techniques use numerical optimization algorithms whose convergence to the correct result
cannot be guaranteed, in general. To address this problem, we have developed a method where an interval branch-
and-bound method is employed for numerical minimization. Thanks to the properties of Interval Analysis this
method converges to the global solution with mathematical certainty and arbitrary accuracy, and the only input
information it requires from the user are a set of point correspondences and a search box. The cost function is
based on the Huang-Faugeras constraint of the fundamental matrix, and a closed form expression for its Jacobian
and Hessian matrices is derived through matrix differential calculus. A recently proposed interval extension based
on Bernstein polynomial forms has been investigated to speed up the search for the solution. Finally, experimental
results on synthetic and real images are presented.
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I. I NTRODUCTION

The goal of Computer Vision is to compute properties (mainly geometric) of the three-dimensional world
from images. One of the challenging problems of Computer Vision is toreconstructa three-dimensional
model of the scene from a moving camera. Most of the earlier studies in the field assume that the
intrinsic parameters of the camera (focal length, image center and aspect ratio) are known. Computing
camera motion in this case is a well known problem for which several methods are available (see [1] for
a review). Given all the parameters of the camera, reconstruction is straightforward.

However, there are situations where the intrinsic parameters are unknown and the camera is not
accessible (e.g. when using stock footage). In these cases the only information one can exploit are contained
in the video sequence itself.

The classical approach toautocalibration(or self-calibration), in the case of a single moving camera
with constant but unknown intrinsic parameters, is based on the Kruppa equations [2], which have been
found to be very sensitive to noise [3], possibly due to the instability in the computation of the epipole
[4]. Indeed, formulations which avoid the epipole seems to be more stable [5], [4].

Other methods [6], [7], [8], based on thestratificationapproach, upgrade a projective reconstruction to
an Euclidean one without solving explicitly for the intrinsic parameters (see [9] for a review). The constant
intrinsic parameters constraint has been released in [10], [11], by assuming that some other parameters
are known.

Recently, Mendonça and Cipolla [12] presented an algorithm which directly recovers the intrinsic
parameters from fundamental matrices, like the Kruppa equations, but it is simpler and copes with varying
parameters.

Under the assumption that only the (varying) focal length is unknown, closed form and linear solutions
can be obtained [13], [14], [5], [15]. In all the other cases the parameters come from the solution of a system
of polynomial equations or from the minimization of a non-linear function. In principle, continuation
(homotopy) techniques could be applied to the former case, though—in practice—iterative minimization
techniques must be used [3], as homotopy algorithms are applicable only in the case of few displacements,
and can give rise to bifurcation phenomena. When minimizing a non-linear function by gradient descent
methods, convergence to the global minimum is not guaranteed: it depends on the initialization—for
deterministic algorithms,—or it is guaranteed only in probability—for stochastic algorithms [16]. Quasi-
linear approaches reduce the sensitivity to the initial guess [17], [8], [18], but they do not solve the
problem. The solutions of a simpler problem (only focal is unknown) have been used to initialize the
minimization in [11], [19]. In [20], a stratified approach has been proposed, based on the direct evaluation
of a dense sampling of the search space. Albeit some of these techniques are effective, none of the existing
methods is provably convergent.

In this paper we introduce a method for autocalibration that isguaranteedto converge to the global
minimum, regardless of the starting point. In the same spirit of [12], [4], [16], we compute directly
the intrinsic parameters from fundamental matrices. We assume constant intrinsic parameters, but the
technique is flexible and can be adapted to varying parameters as well.

The minimization algorithm is based on Interval Analysis (IA) [21], a branch of numerical analysis
that has received increasing attention during the last decade and has been strangely overlooked by the
computer vision community.

Classical numerical optimization methods for the multidimensional case start from some approximate
trial points and sample the objective function at only a finite number of points. There is no way to guarantee
that the function does not have some unexpectedly small values between these trial points, without making
specific assumptions. On the contrary, IA optimization algorithms [22] evaluate the objective function over
a continuum of points, including those points that are not finitely representable on the computer. They
solve the optimization problem withautomatic result verification, i.e. with the guarantee that the global
minimizers have been found.

The rest of the paper is structured as follows. The next section introduces notation and some background
notions of Computer Vision. The autocalibration problem that we address is formulated in Sec. III. In
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Sec. IV the reader is first introduced to Interval Analysis, and the specific optimization algorithm is
described. Results on synthetic and real data are reported in Sec. V, and conclusions are drawn in Sec. VI.
Appendix I is devoted to the derivation of the expressions for Jacobian and Hessian of the cost function,
whereas in Appendix II we give the details on the algorithm used for recovering scene structure.

II. BACKGROUND

Throughout this paper we will use the general projective camera model [23]. Letw = [x, y, z, 1]T be
the homogeneous coordinates of a 3D point in the world reference frame. The homogeneous coordinates
of the projected image point are given by1

m v P w, (1)

whereP , A [R|t] is the camera matrix, whose position and orientation are represented, respectively, by
the translation vectort and the3× 3 rotation matrixR. The matrixA contains theintrinsic parameters,
and has the following form:

A =




αu γ u0

0 αv v0

0 0 1


 , (2)

whereαu, αv are thefocal lengthsin horizontal and vertical pixels, respectively,(u0, v0) are the coordinates
of the principal point, given by the intersection of the optical axis with the retinal plane, andγ is the
skewfactor, that models non-rectangular pixels.

Two conjugate pointsm andm′ are related by thefundamental matrixF :

m′TFm = 0 (3)

The rank ofF is in general two and, being defined up to a scale factor, it depends upon seven parameters.
Its computation requires a minimum of eight conjugate points to obtain a unique solution [24].F depends
on the intrinsic and extrinsic parameters according2 to

F v A′−T([t]×R)A−1. (4)

When conjugate points are in normalized coordinates (A−1m), i.e., intrinsic parameters are known, one
obtains theessential matrix:

E v [t]×R. (5)

The essential matrix encodes the rigid transformation between the two cameras, and it depends upon five
independent parameters: three for the rotation and two for the translation up to a scale factor.

III. PROBLEM FORMULATION

In many practical cases, the intrinsic parameters are unknown and point correspondences are the only
information that can be extracted from a sequence of images.Autocalibrationconsists in computing the in-
trinsic parameters, or—in general—recovering the Euclideanstratum, starting from point correspondences.
In this section we will see which constraints are available for autocalibration.

As we saw in Sec. II, the epipolar geometry of two views is described by the fundamental matrix, which
depends on seven parameters. Since the five parameters of the essential matrix are needed to describe
the rigid displacement, two independent constraints are available for the computation of the intrinsic
parameters from the fundamental matrix. Indeed, the essential matrix is characterized by the following
Theorem [25], [13]:

1v denotes equality up to a scale factor.
2[t]× is the skew-symmetric matrix associated with the cross-product.
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Theorem 1:A real 3× 3 matrix E can be factored as the product of a nonzero skew-symmetric matrix
and a rotation matrix if and only ifE has two identical singular values and one zero singular value.

By exploiting this constraint, Hartley [13] derived two quadratic equations in the two values of the focal
length. He also pointed out that no more information could be extracted from the fundamental matrix
without making additional assumptions (e.g. constant intrinsic parameters).

It can be shown (see Sec. III-A) that the conditions on the singular values are equivalent to:

det(E) = 0 ∧ 2 tr(EET)2 − tr2(EET) = 0, (6)

which in turn is equivalent to the Kruppa equations [3]. The second clause of (6) can be decomposed [3]
in two independent polynomial constraints.

All these constraints are algebraic interpretations of the so-calledrigidity constraint, namely the fact
that for any fundamental matrixF there exist two intrinsic parameters matrixA andA′ and a rigid motion
represented byt andR such that (4) is satisfied.

The autocalibration method by Mendonça and Cipolla is based on Theorem 1. They designed a cost
function which takes the intrinsic parameters as arguments, and the fundamental matrices as parameters,
and returns a positive value proportional to the difference between the two non-zero singular value of
the essential matrix. LetFij be the fundamental matrix relating viewsi and j (computed from point
correspondences), and letAi andAj be the respective (unknown) intrinsic parameter matrices. The cost
function is

χ(Ai, i , 1 . . . n) =
n∑

i=1

n∑
j>n

wij

1σij − 2σij

1σij + 2σij

, (7)

where1σij > 2σij are the non zero singular values of

Eij = AT
i FijAj, (8)

andwij are normalized weight factors. In the general case ofn views, then(n−1)/2 fundamental matrices
are not independent, neither are then(n−1)/2 constraints that can be derived from them. It can be shown
[11] that, if nk parameters are known andnc parameters are constant, the unknown intrinsic parameters
can be computed provided that

n(nk + nc) ≥ 8 + nc. (9)

For example, if the intrinsic parameters are constant, three views are sufficient to recover them. If the
skew is zero and the other parameters are varying, at least eight views are needed.

A. The Huang-Faugeras cost function

The use of (7) as an optimization criterion has been considered, however it has posed several problems.
First, its Hessian matrix is singular at the solution (1σij = 2σij), which can lead to higher run times of the
optimization procedure [22]. Secondly, bounding the ranges of1σij of an interval essential matrix with
wide entries is not trivial, since it requires the solution of a min-max optimization problem. For these
reasons we seek to minimize a cost function based on the equivalent constraint given by (6).

In the same spirit of the Mendonça-Cipolla algorithm, we minimize

χ(Ai),
n∑

i=1

n∑
j=i+1

wij
2 tr(EijEij

T)2− tr2(EijEij
T)

tr2(EijEij
T)

. (10)

By using the property that the trace of a square matrixX is equal to the sum of its eigenvalues and
the property that the eigenvalues ofXXT are equal to the squares of the singular values ofX, we can
write:

tr(EET)2 =
3∑

k=1

σ4
k(E). (11)
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Hence, the left hand side of (6) can be rewritten as

2 tr(EET)2 − tr2(EET) =

2(σ4
1 + σ4

2 + σ4
3)− (σ2

1 + σ2
2 + σ2

3)
2 =

(σ2
1 − σ2

2)
2 + σ2

3(σ
2
3 − 2(σ2

1 + σ2
2)). (12)

Therefore, provided thatσ3 = 0, the cost function expressed by (10) is the square of the Mendonça-Cipolla
function (7). The essential matrixE is derived from the fundamental matrix via (8); ifF is computed
with an algorithm that enforces its rank to be two, thenσ3 = 0. Since the left hand side of (6) is always
positive, we do not need to take its square, as it would be required in a generic least squares problem.
This is a very desirable property, since it reduces the order of the numerator and the denominator of the
cost function from sixteen to eight.

In the following we assume that the intrinsic parameters of the camera are constant for then views,
i.e.

χ(Ai),χ(A),
n∑

i=1

n∑
j=i+1

wij

(
2 tr(EijEij

T)2

tr2(EijEij
T)

− 1

)
. (13)

IV. I NTERVAL ANALYSIS

Interval Arithmetic [26] is an arithmetic defined on intervals, rather than on real numbers. In the
beginning, Interval Arithmetic was mainly employed for bounding the measurement errors of physical
quantities for which no statistical distribution was known. Later on it was leveraged to a broad new field
of applied mathematics, aptly named Interval Analysis, where rigorous proofs are the consequence of
numerical computations.

A. Notation and useful results

In the sequel of this section we shall follow the notation used in [27], where intervals are denoted
by boldface, scalar quantities are denoted by lower case letters and vectors and matrices are denoted by
upper case. Brackets “[·]” will delimit intervals, while parentheses “(·)” will delimit vectors and matrices.
Underscores and overscores will represent respectively lower and upper bounds of intervals. An interval
x is called degeneratewhen x = x = x. IR and IRn stand respectively for the set of real intervals
and the set of real interval vectors of dimensionn. The midpoint of an intervalx is denoted bym(x),
and the vector whose entries are midpoints of the entries ofX ∈ IRn is denoted bym(X). The width
of x is defined asw(x) = x − x. If X ∈ IRn then w(X) = max {w(xi), i = 1, . . . , n}. If f(x) is a
function defined over an intervalx thenfu(x) denotes the range off(x) over x. Similarly, the range of
F : Rn → R over X is denoted byFu(X).

Interval arithmetic is an arithmetic defined on sets of intervals. Ifx = [x,x] andy =
[
y,y

]
, a binary

operation in theideal interval arithmeticbetweenx andy is defined as:

x op y , {x op y | x ∈ y and y ∈ y} ,

for op ∈ {+,−,×,÷} .

Thus, the ranges of the four elementary interval operations are exactly the ranges of the corresponding
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real operations. The operational definitions for the four elementary interval arithmetic operations are

x + y ,
[
x + y, x + y

]
,

x− y ,
[
x− y,x− y

]
,

x× y ,
[
min

{
x y,x y,x y, x y

}
,

max
{
x y,x y,x y,x y

}]
,

1

x
,

{
[1/x, 1/x] if x > 0
[1/x, 1/x] if x < 0

(0 6∈ [x,x]),

x÷ y , x× 1/y.

The above definitions imply the ability to perform the four elementary operations with arbitrary pre-
cision. When implemented on a digital computer, however, truncation errors occur that may cause the
resulting interval not to contain the result that would be obtained with ideal interval arithmetic. In order
to avoid this effect, the lower endpoint of the interval must be rounded down to the nearest machine
number less than the mathematically correct result, and the upper endpoint must be rounded up to the
nearest machine number greater than the mathematically correct result. This mode of operation, called
direct rounding, is available on any machine supporting the IEEE floating point standard.

Our use of IA is motivated by the need to obtain bounds on the range of mathematical functions.
Definition 1 (Interval extension):A function F : IRn → IR is said to be aninterval extensionof

F : Rn → R provided
Fu(X) ⊆ F(X)

for all intervalsX ⊂ IRn within the domain ofF [27].
Thenatural interval extension of a function is obtained by replacing variables with intervals and executing
all operations according to the rule above. For instance,f 1(x) = x2 − x, f 2(x) = x(x − 1), and
f 3(x) = (x− 1/2)2 − 1/4 are all interval extensions off(x) = x2 − x = x(x− 1) = (x− 1/2)2 − 1/4.
By settingx = [0, 1] we have

f 2(x) = [0, 1] ([0, 1]− 1) = [0, 1] [−1, 0] = [−1, 0] ,

which necessarily includes the exact rangefu([0, 1]) = [−1/4, 0].
However, the bounds provided by natural interval extensions are usually too wide or pessimistic to be

of value. The following definition characterizes how sharply interval extensions enclose the range of a
function.

Definition 2 (Orderα inclusion function):Let F (X) be an interval extension ofF : Rn → R evaluated
over a boxX. We say thatF is anorder α inclusion functionfor F if there is a constantK, independent
of the boxX, such that

w(F (X))− w(Fu(X)) ≤ Kw(X)α (14)

for all boxesX with w(X) sufficiently small.
It can be shown [27] that natural interval extensions are first order. Higher-order inclusion functions are
key to the design of efficient global optimization algorithms, as we shall see in the next section.

Definition 3 (Interval Newton method):Let f : x ⊂ R → R be a function with continuous first
derivative onx and let x ∈ x. If f ′(x) is any interval extension of the derivative off over x, then
the operator

N (f ; x, x) , x− f(x)/f ′(x) (15)

is called the univariate interval Newton method.
It can be shown that ifN(f ; x, x) ⊂ x, then there exist a unique solution off(x) = 0 in x. As any

solution within x must also be withinN(f ; x, x), the interval Newton method provides the following
(quadratically convergent) iteration

x ← N(f ; x, x) ∩ x. (16)
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If, at a certain iteration, the intersection is empty, then the starting interval contains no solutions. If
0 ∈ f ′(x) the quotient in (15) is computed using the rule of extended interval division defined in [22].
The outcome will be, in general, the union of disjoint intervals. Multivariate interval Newton methods
can be defined as well [27]. The method can be also generalized to handle continuous only (i.e, non-
differentiable) functions [27].

B. IA based Global Optimization

The ability of Interval Analysis to compute bounds to the range of functions has been most successful
in global optimization. IA algorithms are usually based on branch-and-bound schemes [22], referred to
as Moore-Skelboe or Hansen algorithm. The overall structure is:

1) store in a listL the initial boxX0 ∈ IRn containing the sought minima;
2) pick a boxX from L;
3) if X is guaranteed not to contain a global minimizer, then discard it, otherwise subdivideX and

store the sub-boxes inL;
4) repeat from step 2) until the width of the intervals inL are below the desired accuracy.

The criteria used to delete boxes are based on rigorous bounds, therefore the box containing the global
minimizer is never deleted even in the presence of rounding errors.

We employed an algorithm inspired by a recently proposed global optimization method [28], based
on the Moore-Skelboe-Hansen branch-and-bound algorithm and Bernstein polynomials for bounding the
range of the objective function. A combination of several test have been used in our implementation.

The cut-off uses an upper bound̂F of the global minimum of the objective functionF to discards an
interval X from L if F (X) > F̂ . Any value taken byF is an upper bound for its global minimum, but
the tighter is the bound, the more effective is the cut-off test. In Section IV-B.1 we describe the method
that we used to determine and updatedF̂ .

The monotonicitytest determines whether the functionF is strictly monotone in an entire sub-boxX.
Denote the interval extension of the gradient evaluated inX by G(X). If 0 6∈ G(X) then X can be
deleted.

The concavity test examines the concavity ofF , using its Hessian matrixH. Let H i,i(X) denote
the interval extension of thei−th diagonal entry of Hessian evaluated inX. A box can be deleted if
H i,i(X) < 0 for somei.

The Interval Newton stepapplies one step of the interval Newton method (16) to the non-linear system
∇F (X) = 0, X ∈ X. As a consequence we may validate thatX contains no stationary points, in which
case we discardX, otherwise we may contract or subdivideX. The complete optimization scheme can
be summarized as the following pseudocode:

GLOBAL -OPTIMIZATION ALGORITHM

U ← ∅
L ← {X0} list of boxes sorted in order of increasingF (X)
while L 6= ∅ do

remove the first boxX from L
if w(X) < EPS then U ← U ∪ {X}
else if (cut-off test:F (X) > F̂ or

monotonicity test:0 6∈ G(X) or
concavity test:H i,i(X) < 0 for somei) then Y ← ∅

else interval Newton step:Y ← X ∩N (∇F, X, m(X))
bisectY and insert the resulting boxes inL
updateF̂

end
return U
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A problem of global optimization algorithms based on IA is the so calledcluster effect: as observed in
[29], sub-boxes containing no solutions cannot be easily eliminated if there is a local minimum nearby. As
a consequence of over-estimation in range bounding, many small boxes are created by repeated splitting,
whose processing may dominate the total work spent on global search. This phenomenon occurs when the
order of the inclusion function is less than three [29], hence we shall look for sharper inclusion functions.

1) Taylor-Bernstein forms:An interesting extension of IA that reduces the over-estimation is based on
Taylor polynomials.

Definition 4 (Taylor Model):Let F : X ⊂ Rn → R be a function that is(m + 1) times continuously
partially differentiable. LetX0 be a point inX and Pm,F the them-th order Taylor polynomial ofF
aroundX0. Let Im,F be an interval such that

F (X) ∈ Pm,F (X −X0) + Im,F ∀X ∈ X. (17)

We call the pair(Pm,F , Im,F ) an m-th orderTaylor modelof F [30] .
HencePm,F + Im,F enclosesF between two hypersurfaces onX (Fig. 1).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 0 1
−2

−1

0

1

2

Fig. 1. Example of bounding a 7th order polynomial with a 3rd order Taylor model

Taylor models of any computable function can be obtained recursively using theTaylor Model Arithmetic
described in [30]. In order to bound the range of a functionF over a domainX, it is sufficient to compute
an interval extensionP m,F (X) for the polynomialPm,F , since from Definition 4 it follows that

Fu(X) ⊆ P m,F (X) + Im,F .

The sharpness of the bounds depends on the method used to obtain the inclusion function forPm,F . More
precisely, if P u

m,F (X) is the exact range ofPm,F , then P u
m,F (X) + Im,F is an m + 1 order inclusion

function for F over X, wherem is the degree of the Taylor polynomial [28].
A Taylor-Bernstein formis a Taylor model where the polynomial is expressed in the Bernstein basis

rather than in the canonical power basis. The advantage is that the Taylor-Bernstein form allows to compute
the exact range of the polynomial part. Hence, withn ≥ 2, the cluster effect is avoided. A Bernstein
polynomial has the form (in one dimension):

p(x) =
n∑

i=1

ai

(
n
i

)
xi(1− x)n−i. (18)

An important property of these polynomials is thatp(x) on x is a convex combination ofai’s, so that the
coefficients of the Bernstein form provide lower and upper bounds to the range:

pu(x) ⊆ [min{ai}, max{ai}].
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If the polynomial is monotone over a domainx then the Bernstein form gives the exact range since the
minimum and maximum occurs respectively ata1 andan, a1 = p(x) andan = p(x). This suggests that the
exact range of a polynomialp on x can be obtained by transforming the polynomial into Bernstein form
and then repeatedly subdividing it the until the bounds of all sub-boxes are exact. The subdivision can be
easily done with De Casteljau algorithm, well known in Computer Graphics [31]. Bernstein polynomials
can be easily extended to the multivariate case, where analogous properties hold.

The knowledge of the exact range ofPm,F helps to make the cut-off test more effective. Indeed, if
P u

m,F (X) is the exact range, thenP u
m,F (X) = min{Pm,F} and the minimum ofF over X is contained

in P u
m,F (X)+Im,F . ThenP u

m,F (X)+Im,F is an upper bound of the minimum ofF overX. The cut-off
value F̂ is the smallest upper bound for all the boxes in the list.

The advantages and limits of Taylor models are widely discussed in [32], where the author also points
out that the Taylor-Bernstein form is well suited to low dimension problems.

As seen above, the minimization algorithm makes use of the Jacobian and Hessian matrix of the cost
function, that we derive in closed form in Appendix I.

V. EXPERIMENTAL RESULTS

The algorithm was tested on both synthetic and real data.

A. Synthetic data

Synthetic data consisted of 50 points randomly scattered in a sphere of unit radius, centered at the
origin. Views were generated by placing cameras at random positions, at a mean distance from the center
of 2.5 units with a standard deviation of 0.25. The orientations of the cameras were chosen randomly with
the constraint that the optical axis should point toward the center. The intrinsic parameters were given a
known value:αu = αv = 800, u0 = v0 = 256. As customary it was assumedγ = 0. Image points were
(roughly) contained in a512× 512 image. Fundamental matrices were computed using the linear 8-point
algorithm with data normalization as described by Hartley in [33]. The weightwij has been defined as
the residual of the estimation ofFij [12]. We used Taylor models of degree four. The required accuracy
was10−10; using this value we typically get a box width of 2.5 pixels.

0 0.5 1 1.5 2 2.5 3 3.5 4
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Fig. 2. Relative RMS error on intrinsic parameters versus image noise standard deviation (left) and number of views (right).

In order to assess the accuracy of the method, Gaussian noise with variable standard deviation was
added to image points and the number of views was varied as well (the minimum number of views
required to achieve autocalibration is three, according to (9)). The algorithm was started with the box
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[0, 60]4 centered on the true solution. Since the fundamental matrices are affected by image noise, the
minimizer of the cost function does not coincide with the actual intrinsic parameters. The relative RMS
error is reported in Fig. 2. Each point is the average of 50 independent trials.

Number of views 3 5 7 10
Time [min] 1.2 6.6 8.0 17.1

TABLE I

COMPUTATION TIMES VERSUS NUMBER OF VIEWS. THE INITIAL BOX WAS [0, 60]4.

Computation times were recorded for varying number of views, initial box width and number of
unknowns. Table I reports computation times versus number of views. Table II reports computation times
versus box width (5 views) starting from a reference box of[300, 1700] × [300, 1700] × [156, 356] ×
[156, 356]. In the first column all the four parameters were considered unknown, in the second one only
focal lengths were unknown, whereas the principal point was set at (256, 256). These figures refers to
our implementation in MATLAB and C++, on a Pentium III 900 MHz processor.

Box Time [min] Time [min]
Width (4 unknowns) (2 unknowns)
Ref. 23.2 9.1
-10% 16.6 8.8
-20% 15.3 7.2
+10% 28.3 11.9
+20% 32.0 14.8

TABLE II

COMPUTATION TIMES VERSUS INITIAL BOX WIDTH. IN THE RIGHTMOST COLUMN THE PRINCIPAL POINT WAS KNOWN.

In order to compare our minimization with a standard gradient method, we used the quasi-Newton
method implemented by thefminunc function in theMATLAB Optimization Toolbox. The algorithm was
initialized by randomly choosing a point in the domain[300, 1700]× [300, 1700]× [156, 356]× [156, 356].
After performing 100 trials we recorded how many times the algorithm converged to the correct solution,
which was assumed to be the one to which it converged when initialized with the true intrinsic parameters
(within a 10% tolerance). The quasi-Newton method converged in the 86% of cases, with 5 views and
1.0 pixel noise. Average running time was 0.9 sec.

B. Real data

We tested our algorithm on the same real sequences used in other works on autocalibration [16], [34],
[4], [35]. The starting box was chosen as follows: the midpoint for(u0, v0) is the image center and the width
is 20% of the image size; the interval for the focal lengths is always[300× 1700]. Point correspondences
were obtained manually. Table III compares our results with those previously published, when available.
Please note that the values reported by other articles are the result of different autocalibration algorithms,
and must not be taken as ground truth.

In order to obtain a more meaningful evaluation we compared the results of our algorithm with those
obtained by a standard calibration technique [36]. Table IV reports the result for three sequences taken
in Verona with the same photocamera.

In all the real experiments the final interval width was around one pixel. Computation times for the
real sequences are shown in Table V. All the sequences consists of five frames.

C. 3-D Reconstruction

Using the midpoint of intrinsic parameters computed by autocalibration, and the fundamental matrices,
structure was recovered by first factorizing out the motion from the essential matrices [13], then recovering
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Our algorithm Previous results
Sequence αu αv u0 v0 αu αv u0 v0

Valbonne [34] 619 699 234 372 681 679 259 383
ETL [35] 800 831 405 352 837 837 (378) (252)
Nekt [4] 720 600 410 191 713 605 378 314

TABLE III

M IDPOINTS OF INTRINSIC PARAMETERS COMPUTED WITH OUR ALGORITHM VERSUS PREVIOUS RESULTS. VALUES IN BRACKETS WERE

GUESSED, NOT COMPUTED.

Sequence αu αv u0 v0

Calibration 1463 1459 636 498
Castel Vecchio 1486 1446 699 432
Scala Ragione 1439 1482 605 477
Piazza Dante 1436 1407 612 561

TABLE IV

M IDPOINT OF INTRINSIC PARAMETERS COMPUTED WITH OUR ALGORITHM VERSUS CALIBRATION.

the projection matrices [34] and finally computing 3-D structure by triangulation [37]. As customary, results
are refined by bundle adjustment, in order to obtain a maximum likelihood solution with respect to the
underlying measures. More details can be found in Appendix II.

As shown in Fig. 3 and 4, the projection of the reconstructed points coincides with the original image
points.

In order to assess quantitatively the metric accuracy of the reconstruction, as the absolute dimensions
of the objects are unknown, we computed the angles between 3D segments that are known to be parallel
or orthogonal in the real scene (Table VI). This segments are a subset of those shown in Fig. 3 and 4.

Test sequences and more results can be found on the World Wide Web at
http://www.sci.univr.it/˜fusiello/demo/autocal .

VI. CONCLUSIONS AND FUTURE WORK

Global optimization based on Interval Analysis has been applied to the autocalibration problem, ob-
taining a technique that is guaranteed to converge to the global solution with mathematical certainty and
arbitrary accuracy. The result shows that our implementation is correct and achieves the global minimum
in a reasonable time. The choice of the initial box is not critical for the successful termination of the
algorithm – provided that it contains the global minimizer – because it only influences the computation
time.

The accuracy of the method is in agreement with the figures reported in [12], [16], as we use basically
the same cost function.

Future work will aim at reducing computation time by testing several variations to the present model.

Sequences Time [min]
Valbonne 77
ETL 97
Nekt 65
Scala Ragione 50
Castel Vecchio 27
Piazza Dante 46

TABLE V

COMPUTATION TIMES FOR REAL SEQUENCES.
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Fig. 3. Valbonne church. Left:the projection of reconstructed points (cyan× mark) are shown superimposed onto the original feature points
(magenta+ mark). Right: segments joining selected features.

Fig. 4. Castel Vecchio. Left: the projection of reconstructed points (cyan× mark) are shown superimposed onto the original feature points
(magenta+ mark). Right: segments joining selected features.
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Segments Computed True
21-22 90.73◦ 90◦

20-22 1.52◦ 0◦

20-18 0.82◦ 0◦

21-17 2.97◦ 0◦

19-22 0.79◦ 0◦

17-19 88.59◦ 90◦

20-22 89◦ 90◦

21-18 88.46◦ 90◦

Segments Computed True
17-1 87.74◦ 90◦

1-2 89.61◦ 90◦

5-6 89.16◦ 90◦

6-7 88.45◦ 90◦

7-10 1.7◦ 0◦

15-16 2.01◦ 0◦

14-15 89.52◦ 90◦

14-17 87.59◦ 90◦

13-14 87.32◦ 90◦

TABLE VI

ANGLES BETWEEN SELECTED SEGMENTS OFVALBONNE CHURCH (LEFT) AND CASTEL VECCHIO (RIGHT).

Fig. 5. Views of the 3D reconstruction of Valbonne church (left) and Castel Vecchio (right). To improve readability, only selected points
joined by segments are shown.

We also plan to explore the use IA tools to automatically detect degenerate configurations, which are
known to afflict autocalibration [38], [17].

APPENDIX I
DERIVATIVES OF THE COST FUNCTION

Instead of reverting to subscript notation for computing the derivatives of the cost function, we per-
form the entire operation using matrix algebra, and in particular the elegantmatrix differential calculus
introduced by Magnus and Neudecker [39].

A. Notation and useful results

We will now introduce a notation and some related results on matrix differential calculus, which are
used to compute the Jacobian and the Hessian matrix of (13).

Definition 5: Let F be a differentiablep× q real matrix function of an×m matrix of real variables
X. The Jacobian matrix ofF at X is thepq × nm matrix

D F (X) , ∂ vec F (X)

∂(vec X)T
. (19)

wherevec(A) is thenm× 1 vector obtained by stacking the columns ofA. Thevec operator has some
interesting properties in connection with theKronecker product⊗. It is possible to prove that:

vec ABC = (CT ⊗ A) vec B. (20)
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Theorem 2:Let F be ap × q matrix function of ann × m matrix X, andG(Y ) be ar × s matrix
function of anp × q matrix Y . If the composite functionH(X) , G(F (X)) is differentiable atX0, its
Jacobian matrix is

DH(X0) = (DG(Y0))(D F (X0)). (21)

whereY0 , F (X0).
Theorem 3:The identification theorem of Jacobian matrices states that:d vec F (X) = A(X) d vec X

is equivalent toD F (X) = A(X).
This theorem is extremely useful in the applications of matrix differential calculus since it transforms the
problem of finding the Jacobian matrix of a matrix function into the problem of finding its differential,
which is generally easier.

Definition 6: The Hessian matrix of ap × q matrix functionF of a n × m matrix variableX is a
block-partitioned matrix formed bypq symmetric matrices of ordernm stacked vertically, defined by

HF (X) , D(D F (X))T. (22)
Theorem 4:Let F be ap × q matrix function of ann × m matrix X, andG(Y ) be ar × s matrix

function of anp× q matrix Y . If the composite functionH(X) , G(F (X)) is twice differentiable atX0,
its Hessian matrix is

HH(X0) = (Ir×s ⊗ D F (X0))
THG(Y0)D F (X0) + (DG(Y0) ⊗ In×m)HF (X0), (23)

whereY0 , F (X0).
1) Miscellaneous properties:

• Given an ×m matrix A, the commutation matrixKnm is the permutation matrix that transforms
vec A into vec AT:

vec AT = Kn,m vec A. (24)

For square matrices we use the notationKn instead ofKn,n.
• The Jacobian matrix of the function

F (X) = XXT,

whereX is a n× n matrix, is
D F (X) = 2Nn(X ⊗ In), (25)

whereNn , 1
2
(In2 + Kn). The Hessian matrix is

HF (X) = (Kn2,n ⊗ In)(In ⊗ (2Nn ⊗ In)(In ⊗ vec In)) , Qn. (26)

• The Jacobian matrix of the scalar function

φ(X) = tr(XXT)

is
D φ(X) = vecT(2X). (27)

and its Hessian matrix is
H φ(X) = 2In2 . (28)
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B. Jacobian matrix of the cost function

Let us rewrite the cost function (13) as the composite function

χ(A) =
n∑

i=1

n∑
j=i+1

wijψ(S(Eij(A))), (29)

where

ψ : M2×1 → R, ψ(C) =
(

c2
c1
− 1

)
, C =

[
c1

c2

]
(30)

S : M3×3 →M2×1, S(B) =

[
tr2

(
BBT

)
2 tr((BBT)2)

]
(31)

Eij : M3×3 →M3×3, Eij(A) = ATFijA (32)

andMn×m denotes the set of realn × m matrices. Since the derivative is a linear operator, we will
concentrate on the expression of the Jacobian matrix of a single term of the cost function. ¿From now
on, theij superscripts will be omitted for simplicity.

By applying twice Theorem 2 to the composite function (ψ ◦ S ◦ E), we obtain

D ψ(A) = D ψ(C)D S(B)DE(A), (33)

whereB , E(A) andC , S(B).
Let us concentrate onDE(A). Using (8),

d E(A) = d AT(FA) + ATF d A. (34)

For the linearity of thevec operator,

d vec E(A) = vec(d AT(FA)) + vec(ATF d A). (35)

Using (20), (24) and Theorem 3, we obtain

DE(A) = ((ATFT)⊗ I3)K3 + (I3 ⊗ (ATF )). (36)

We now proceed to computeD S(B). Using Theorem 2 and (25),(27) we can write

D S(B) =

[
4 tr

(
BBT

)
vecT(B)

8 vecT(BBT)Nn(B ⊗ In).

]
(37)

Finally,
D ψ(C) =

[
− c2

c21

1
c1

]
. (38)

C. Hessian matrix of the cost function

By applying twice Theorem 4 to the composite function (ψ ◦ S ◦ E) we get,

Hψ(A) = (D S(B)DE(A))THψ(C)D S(B)DE(A)

+ (D ψ(C)⊗ I9)(I2 ⊗DE(A))THS(B)DE(A) + (D S(B)⊗ I9)HE(A). (39)

All the Jacobian matrices occurring in (39) have been already computed in Sec. I-B. In the rest of this
section we will find expressions for the three Hessian matricesHψ(C), HS(B) andHE(A).

HE(A) = D(DE(A))T. (40)
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After some rewriting, using Theorem 3 we get

HE(A) = (I9 ⊗KT
3 )(I3 ⊗K3 ⊗ I3)(I9 ⊗ vec I3)(I3 ⊗ F )

+ (I3 ⊗K3 ⊗ I3)(vec I3 ⊗ I9)(I3 ⊗ FT). (41)

We now proceed to find an expression forHS(B):

HS(B)=

[
8 vec E vecTE + 4 tr(EET)I9

16(ET⊗ I3)N3(E ⊗ I3)+4(vecT(EET)⊗ I9)Q3

]
(42)

whereNn andQn are defined in Sec. I-A.1. Finally, we can write:

Hψ(C) =

[
2 c2

c31
− 1

c21− 1
c21

0

]
. (43)

APPENDIX II
COMPUTING CAMERA MOTION AND STRUCTURE

In this section we will briefly describe the algorithms used in the experiments to recover the motion
of the camera and the scene structure, after autocalibration. They are quite standard algorithms, therefore
we shall omit many details and demonstrations and go straight to the final formulae.

A. Camera motion

If the essential matrix can be computed (which entails the knowledge of the intrinsic parameters), a
theorem due to Hartley [13] allow to factorize it like in (5), therefore to recover camera motion.

Theorem 5:Let E be 3× 3 matrix satisfying the hypotheses of Theorem 1, and letE = UDV T be its
Singular Value Decomposition, whereD = diag(σ, σ, 0). Then, up to a scale factor, the factorization of
Theorem 1 is one of the following four:

S = U(±Z1)U
T (44)

R = det(UV T)UZ2V
T or (45)

R = det(UV T)UZT
2 V T, (46)

where

Z1 ,




0 −1 0
1 0 0
0 0 0


 Z2 ,




0 1 0
−1 0 0
0 0 1


 . (47)

The choice between the four displacements is determined by the requirement that the visible points be
in front of both cameras, i.e., the depth of each point, with respect to both cameras must be positive.

B. Reconstruction

In the autocalibration scenario no metric information about the scene is available. Therefore, we can
compute the displacement between two cameras only up to an unknown scale factor. The projection
matrices for the first two views are (the choice of the first camera fixes the world reference frame):

P 1 = A[I | 0] P 2 = A[R12 | t12]. (48)

whereR12 is the rotation andt12 is the direction of translation, recovered from the factorization ofE12.
While in the case of two views it is appropriate to use the direction of translation, since this results in
a global scene scale factor, if we want to perform reconstruction from three views (or more), we have
to obtain three coherent projection matrices. Using the direction of translation in computingP 3 (like we
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did for P 2) would yield an incorrect result, in which the epipolar constraint between view 1 and 3 is not
satisfied. As pointed out in [34], the correct projection matrixP i for any view i > 2 is

P i = A[R1i | µ1it1i]. (49)

with

µ1i , ||(R2it12 × t2i)||2
(t1i × t2i)T(R2it12 × t2i)

. (50)

In this way, there is only one global scale factor left, corresponding to the unknown norm of the translation
1-2.

Three-dimensional (3D) structure is recovered from projection matrices and point correspondences by
triangulation. Each image point defines a ray in space. The intersection of rays of corresponding points
gives the position of the 3D point. In the presence of noise these rays cannot be guaranteed to intersect,
and a number of solutions have been proposed (see [40] for a review). A commonly suggested method
[37] is to compute the 3D point which minimizes the sum of the square distances of the 3D point to each
ray. In the case of two views, this is the mid-point of the common perpendicular to the two rays.

Consider a 3D pointw which projects intomi in view i = 1 . . . n; its 3D position is given by [37]

w =

(
n∑

i=1

(I − did
T
i )

)−1 (
n∑

i=1

(ci − (cT
i di)di

)
, (51)

where ci is the optical center of camerai and di = (Q−1
i mi)/||Q−1

i mi||. This is called themid-point
method.

Finally, the projection matrices and the structure computed in this way are refined using a technique
similar to thebundle adjustment, as suggested by [34].

Consider a set of three-dimensional points viewed by N cameras with matrices{P i}i=1...N . Let mi
j v

P iwj be the (homogeneous) coordinates of the projection of thej-th point onto thei-th camera. Given
the set of pixel coordinates{mi

j}, find the set of camera matrices{P i} and the scene structure{wj} such
that

mi
j v P iwj. (52)

This is done by minimizing the image reprojection error:
n∑

j=1

∑
i∈Ij

((
ui

j −
qi
1wj

qi
3wj

)2

+

(
vi

j −
qi
1wj

qi
3wj

)2
)

(53)

whereIj is the set of camera indices where the pointwj is visible,

P i ,




qi
1

qi
2

qi
3


 and mj

i ,




uj
i

vj
i

1


 .

The cost function (53) is minimized over the set of projection matrices{P i}, using the MATLAB
implementation of the Levenberg-Marquardt algorithm. At each evaluation the point coordinates{wj}
are updated by triangulation. The unknowns are the five intrinsic parameters, a rotation and a translation
for each camera. Rotations are represented by unit quaternions, normalized at each evaluation.
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