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Abstract

This paper addresses robust feature tracking. We extend
the well-known Shi-Tomasi-Kanade tracker by introducing
an automatic scheme for rejecting spurious features. We
employ a simple and efficient outlier rejection rule, called
X84, and prove that its theoretical assumptions are satisfied
in the feature tracking scenario. Experiments with real and
synthetic images confirm that our algorithm makes good
features track better; we show a quantitative example of the
benefits introduced by the algorithm for the case of funda-
mental matrix estimation. The complete code of the robust
tracker is available via ftp.

1. Introduction

Feature tracking is an important issue in computer vision,
as many algorithms rely on the accurate computation of
correspondences through a sequence of images [9, 13, 17].
When an image sequence is acquired and sampled at a
sufficiently high time frequency, frame-to-frame disparities
are small enough to make optical-flow techniques viable
[1]. If frame-to-frame disparities are large (e.g., the images
are taken from quite different viewpoints), stereo matching
techniques [3] are used instead, often in combination with
Kalman filtering [7, 10, 16]. Robust trackingmeans de-
tecting automatically unreliable matches, oroutliers, over
an image sequence (see [8] for a survey of robust methods
in computer vision). Recent examples of such robust algo-
rithms include [15], which identifies tracking outliers while
estimating the fundamental matrix, and [14], which adopts a
RANSAC approach to eliminate outliers for estimating the
trifocal tensor. Such approaches increase the computational
cost of tracking significantly.
This paper concentrates on the well-known Shi-Tomasi-
Kanade tracker, and proposes a robust version based on an
efficient outlier rejection scheme. Building on results from
[6], Tomasi and Kanade [12] introduced a feature tracker
based on SSD matching and assuming translational frame-

to-frame displacements. Subsequently, Shi and Tomasi [11]
proposed anaffine model, which proved adequate for region
matching over longer time spans. Their system classified
a tracked feature asgood(reliable) orbad (unreliable) ac-
cording to the residual of the match between the associated
image region in the first and current frames; if the residual
exceeded a user-defined threshold, the feature was rejected.
Visual inspection of results demonstrated good discrimina-
tion between good and bad features, but the authors did not
specify how to reject bad featuresautomatically.
This is the problem that our paper solves. We extend
the Shi-Tomasi-Kanade tracker (Section 2) by introduc-
ing an automaticscheme for rejecting spurious features.
We employ a simple, efficient, model-free outlier rejection
rule, calledX84, and prove that its assumptions are satis-
fied in the feature tracking scenario (Section 3). Experi-
ments with real and synthetic images confirm that our al-
gorithm makes good features to track better, in the sense
that outliers are located reliably (Section 4). We illustrate
quantitatively the benefits introduced by the algorithm with
the example of fundamental matrix estimation. he com-
plete code of the robust tracker is available via ftp from:
ftp://taras.dimi.uniud.it/pub/sources/rtrack.tar.gz.

2. The Shi-Tomasi-Kanade tracker

In this section the Shi-Tomasi-Kanade tracker [11, 12] will
be briefly described. Consider an image sequenceI(x; t),
with x = [u; v]> ; the coordinates of an image point. If the
time sampling frequency is sufficiently high, we can assume
that small image regions are displaced but their intensities
remain unchanged:

I(x; t) = I(�(x); t + �); (1)

where�(�) is themotion field, specifying thewarping that
is applied to image points. The fast-sampling hypothesis al-
lows us to approximate the motion with a translation, that is,
�(x) = x+d, whered is a displacement vector. The track-
er’s task is to computed for a number of selected points for
each pair of successive frames in the sequence.



As the image motion model is not perfect, and because of
image noise, Eq. (1) is not satisfied exactly. The problem is
then finding the displacementd̂ which minimizes the SSD
residual:

� =
X
W

[I(x+ d; t+ �)� I(x; t)]
2 (2)

whereW is a small image window centered on the point
for whichd is computed. By plugging the first-order Taylor
expansion ofI(x+d; t+ �) into (2), and imposing that the
derivatives with respect tod are zero, we obtain the linear
system

Gd = e; (3)

where

G =
X
W

�
I2u IuIv
IuIv I2v

�
; e = ��

X
W

It [Iu Iv ]
>
;

with [Iu Iv ] = rI = [@I=@u @I=@v] andIt = @I=@u:
The tracker is based on Eq. (3): given a pair of successive
frames,d̂ is the solution of (3), that is,̂d = G�1e; and
is used to predict a new (registered) frame. The procedure
is iterated according to a Newton-Raphson scheme, until
convergence of the displacement estimates.

2.1 Feature extraction

In this framework, a feature can be tracked reliably if a nu-
merically stable solution to Eq. (3) can be found, which re-
quires thatG is well-conditioned and its entries are well
above the noise level. In practice, since the larger eigen-
value is bounded by the maximum allowable pixel value,
the requirement is that the smaller eigenvalue is sufficiently
large. Calling�1 and�2 the eigenvalues ofG, we accept
the corresponding feature ifmin(�1; �2) > �; where� is a
user-defined threshold.[11].

2.2 Affine Model

The translational model cannot account for certain transfor-
mations of the feature window, for instance rotation, scal-
ing, and shear. Anaffine motion fieldis a more accurate
model [11], that is,

�(x) = Ax+ d; (4)

whered is the displacement, andA is a 2 � 2 matrix ac-
counting for affine warping, and can be written asA =
1+D, withD=[dij ] a deformation matrix and1 the identity
matrix. Similarly to the translational case, one estimates the
motion parameters,D andd, by minimising the residual

� =
X
W

[I(Ax + d; t+ �) � I(x; t)]
2
: (5)

By plugging the first-order Taylor expansion ofI(Ax +
d; t + �) into (5), and imposing that the derivatives with
respect toD andd are zero, we obtain the linear system

Tz = a; (6)

in which z = [d11 d12 d21 d22 d1 d2]
> contains the un-

known motion parameters, and

a = ��
X
W
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with
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Again, Eq. (6) is solved forz using a Newton-Raphson it-
erative scheme. If frame-to-frame affine deformations are
negligible, the pure translation model is preferable (the ma-
trix A is assumed to be the identity). The affine model is
used for comparing features between the first and the cur-
rent frame in order to monitor the quality of tracking.

3. Robust Monitoring

To monitor the quality of the features tracked, the tracker
checks the residuals between the first and the current frame:
high residuals indicate bad features which must be rejected.
Following [11], we adopt the affine model, as a pure trans-
lational model would not work well with long sequences:
too many good features are likely to undergo significant ro-
tation, scaling or shearing, and would be incorrectly dis-
carded. Non-affine warping, which will yield high resid-
uals, is caused by occlusions, perspective distorsions and
strong intensity changes (e.g. specular reflections). This
section introduces our method for selecting a robust rejec-
tion thresholdautomatically.

3.1 Distribution of the residuals

We begin by establishing which distribution is to be ex-
pected for the residuals when comparing good features,
i.e, almost identical regions. We assume that the intensity
I(�(x); t) of each pixel in the current-frame region is equal
to the intensity of the corresponding pixel in the first frame
I(x; 0) plus some Gaussian noisen'�(0; 1). Hence

I(�(x); t) � I(x; 0) ' �(0; 1):



Since the square of a Gaussian random variable has a chi-
square distribution, we obtain

[I(�(x); t) � I(x; 0)]
2
' �2(1):

The sum ofn chi-square random variables with one degree
of freedom is distributed as a chi-square withn degrees of
freedom (as it is easy to see by considering the moment-
generating functions). Therefore, the residual computed ac-
cording to (2) over aN�N windowW is distributed as a
chi-square withN2 degrees of freedom:

� =
X
W

[I(�(x); t)� I(x; 0)]
2
' �2(N2): (7)

As the number of degrees of freedom increases, the chi-
square distribution approaches a Gaussian, which is in fact
used to approximate the chi-square with more than 30 de-
grees of freedom. Therefore, since the windowW associ-
ated to each feature is at least7� 7, we can safely assume a
Gaussian distribution of the residual for the good features:
� ' �(N2; 2N2):

3.2 The X84 rejection rule

When the two regions over which we compute the residual
are bad features (they are not warped by an affine trans-
formation), the residual is not a sample from the Gaussian
distribution of good features: it is an outlier. Hence, the
detection of bad features reduces to a problem of outlier de-
tection, which is equivalent to the problem of estimating the
mean and variance of the corrupted Gaussian distribution.
To do this, we employ a simple but effective model-free
rejection rule, X84 [5], which achieves robustness by em-
ploying median and median deviation instead of the usual
mean and standard deviation. This rule prescribes to reject
values which are more thank Median Absolute Deviations
(MADs) away from the median:

MAD = med
i
fj�i �med

j
�j jg: (8)

In our case,�i are the tracking residuals between thei-
th feature in the last frame and the same feature in the
first frame. A value ofk=5:2, under the hypothesis of
Gaussian distribution, is adequate in practice, as it cor-
responds to about 3.5 standard deviations, and the range
[��3:5�; �+3:5�] contains more than the 99.9% of a Gaus-
sian distribution [5]. The rejection rule X84 has a break-
down point of 50%: any majority of the data can overrule
any minority.

3.3 Photometric normalisation

Our robust implementation of the Shi-Tomasi-Kanade
tracker incorporates also anormalized SSD matcher for

residual computation. This limits the effects of intensity
changes between frames, by subtracting the average grey
level in each of the two regions considered:

� =
X
W

[(J(Ax + d)� �J)� (I(x) � �I)]
2
; (9)

whereJ(�)=I(�; t+1) , I(�)=I(�; t), and �J , �I are the aver-
age grey levels in the two regions considered. A more elab-
orate normalization is described in [2]; [4] reports a modi-
fication of the Shi-Tomasi-Kanade tracker based on explicit
photometric models.

4. Experimental results

We evaluated our tracker in a series of experiments, of
which we report some.
Platform (Fig. 1,256� 256 pixels). A 20-frame synthetic
sequence, created at the Heriot-Watt Computer Vision Lab-
oratory, simulating a camera rotating in space while ob-
serving a subsea platform sitting on the seabed (real seabed
texture-mapped onto a plane).
Hotel (Fig. 2,480� 512 pixels). The well-known Hotel se-
quence from the CMU VASC Image Database (59 frames).
A static scene observed by a moving camera rotating and
translating.
Stairs (Fig. 5,512� 768 pixels). A 60-frame sequence of
a white staircase sitting on a metal base and translating in
space, acquired by a static camera. The base is the platform
of a translation stage operated by a step-by-step motor under
computer control.
Artichoke (Fig. 6,480�512 pixels). A 99-frame sequence,
the most complex one shown here (see later on). The cam-
era is translating in front of the static scene. This sequence
was used by [13].

4.1 Experiment discussion

Platformis the only synthetic sequence shown here. No fea-
tures become occluded, but notice the strong effects of the
coarse spatial resolution on straight lines. We plotted the
residuals of all features against the frame number (Fig. 3).
All features stay under the threshold computed automati-
cally by X84, apart from one which is corrupted by the in-
terference of the background. InStairs, some of the features
picked up in the first frame are specular reflections from the
metal platform, the intensity of which changes constantly
during motion. The residuals for such features become
therefore very high (Fig. 7). All these features are rejected
correctly. Only one good feature is dropped erroneously
(the bottom left corner of the internal triangle), because of
the strong intensity change of the inside of the block. In the
Hotel sequence (Fig. 4), all good features but one are pre-
served. The one incorrect rejection (bottom centre, corner



Fig. 1. First (left) and last frame of thePlatformsequence. In the last frame, filled windows indicate features rejected by the robust tracker.

Fig. 2. First (left) and last frame of theHotel sequence. In the last frame, filled windows indicate features rejected by the robust tracker.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

# frame

re
si

du
al

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

# frame

re
si

du
al

Fig. 3. Residuals magnitude against frame number forPlatform. The
arrows indicate the threshold set automatically by X84 (0.397189).

Fig. 4. Residuals magnitude against frame number forHotel. The
arrows indicate the threshold set automatically by X84 (0.142806).



Artichoke Hotel Stairs Platform
All 1.40 0.59 0.66 1.49
X84 0.19 0.59 0.15 1.49

Table 1. RMS distance of points from epipolar lines. The first row gives
the distance using all the features tracked (non-robust tracker), the second
using only the features kept by X84 (robust tracker).

of right balcony) is due to the warping caused by the cam-
era motion, in this case too large to be accommodated by
the affine model. The only spurious feature present (on the
right-hand side of the stepped-house front) is rejected cor-
rectly. All features involved in occlusions in theArtichoke
sequence (Fig. 8) are identified and rejected correctly. Four
good features out of 54 are also rejected (on the signpost
on the right) owing to a marked contrast change in time be-
tween the pedestrian figure and the signpost background.

4.2 Quantifying improvement: an example

To illustrate quantitatively the benefits of our robust tracker,
we used the feature tracked by robust and non-robust ver-
sions of the tracker to compute the fundamental matrix be-
tween the first and last frame of each sequence, then com-
puted the RMS distance of the tracked points from the cor-
responding epipolar lines, using Zhang’s code [17] (if the
epipolar geometry is estimated exactly, all points should lie
on epipolar lines). The results are shown in Table 1. In
all cases, the robust tracker brings a decrease in the RMS
distance. Notice the limited decrease and high residual for
Platform; this is due to the significant spatial quantization
and smaller resolution, which worsen the accuracy of fea-
ture localization.

5. Conclusions

We have presented a robust extension of the Shi-Tomasi-
Kanade tracker, based on the X84 outlier rejection rule. The
computational cost is much less than that of schemes based
on robust regression and random sampling like RANSAC or
LMedSq [8, 14], yet experiments indicate excellent reliabil-
ity in the presence of non-affine feature warping (most right
features preserved, all wrong features rejected). Our ex-
periments have also pointed out the pronounced sensitivity
of the Shi-Tomasi-Kanade tracker to illumination changes.
We believe that our robust tracker can be useful to the
large community of researchers needing efficient and reli-
able trackers.
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Fig. 5. First (left) and last frame of theStairssequence. In the last frame, filled windows indicate features rejected by the robust tracker.

Fig. 6. First (left) and last frame of theArtichokesequence. In the last frame, filled windows indicate features rejected by the robust tracker.
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Fig. 7. Residuals magnitude against frame number forStairs. The
arrows indicate the threshold set automatically by X84 (0.081363) .

Fig. 8. Residuals magnitude against frame number forArtichoke. The
arrows indicate the threshold set automatically by X84 (0.034511).


