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Abstract

This paper presents a new fault-tolerant scheduling al-
gorithm for multiprocessor hard-real-time systems. The so
calledpartitioningmethod is used to schedule a set of tasks
in a multiprocessor system. Fault-tolerance is achieved by
using a combined duplication technique where each task
scheduled on a processor has either an active or a passive
copy scheduled on a different processor. Simulation exper-
iments reveal a saving of processors with respect to those
needed by the usual approach of duplicating the schedule
of the non-fault-tolerant case.

1. Introduction

The demand for complex and sophisticated real-
time computing systems continues to increase and fault-
tolerance is one of the requirements that are playing a vital
role in the design of new real-time systems. In particular,
two schemes have been proposed to support fault-tolerance
in multiprocessor systems:

� passive replication, where one or more passive copies
of a task are allocated either to the same processor or
to the backup processors. When a task fails, a passive
copy of that task is started, that is a passive copy is
executed only in the presence of a failure.

�This work was supported by the Progetto Speciale 1995, Dip. di
Matematica, Universit`a di Trento and by the Italian MURST.

� active replication, where each task is always executed
on two or more processors (active copies): if any task
fails its active copies will continue to execute.

Many scheduling problems have been found to be NP-
complete: most likely, there are no optimal polynomial-
time algorithms for them [15]. In particular, scheduling pe-
riodic tasks with arbitrary deadlines is NP-complete, even
if only a single processor is available [8, 3]. Several heuris-
tic algorithms for scheduling periodic tasks on uniprocessor
and multiprocessor systems have been proposed. Liu and
Layland [10] proposed the Rate-Monotonic algorithm for
uniprocessor systems for the special case that deadlines are
equal to periods. The Deadline-Monotonic algorithm [9]
generalised the Rate-Monotonic algorithm allowing dead-
lines less than periods. Subsequent works [6, 1] extended
the original scheduling analysis technique by relaxing some
constraints on task features.

As for the multiprocessor systems, the Rate-Monotonic
algorithm was generalised by Dhall and Liu [5], who pro-
posed the two heuristics called Rate Monotonic-First-Fit
(RMFF) and Rate-Monotonic-Next-Fit (RMNF). Recently
they were improved upon by Oh and Son [12]. The dis-
tributed algorithms proposed in [13] address the issue of
dynamic scheduling.

As for fault-tolerant scheduling, some algorithms were
presented in [2, 4, 7, 11, 14].

This paper presents the Fault-Tolerant Deadline-
Monotonic (FTDM) algorithm which extends the RMFF al-
gorithm to a fault-tolerant multiprocessor system by using a
combined duplication technique where each task scheduled
on a processor has either a passive or active copy scheduled



on a different processor. Moreover, the algorithm is further
extended by relaxing some constraints on the task features.
In particular, tasks can have deadlines less than periods and
release jitters. In order to tolerate faults, the FTDM algo-
rithm also determines which kind of duplication (i.e. active
or passive) is more suitable for each task. Task copies are
assigned to processors following the First-Fit policy, a well-
known and efficient heuristic for the Bin-Packing problem.
The task copies assigned to a single processor are scheduled
according to the Deadline-Monotonic algorithm.

In Section 2, some notations and basic assumptions
are introduced. Section 3 deals with the task duplication
scheme used to tolerate failures. Section 4 considers the
assignment of task copies to processors so as to guarantee
fault-tolerance. Section 5 presents an extension of the (one
processor) schedulability test to deal with passive backup
copies. Section 6 summarises the whole algorithm, where
the Deadline-Monotonic policy is used to schedule tasks
on the single processors and the First-Fit heuristic is em-
ployed for assigning tasks to processors. Section 7 shows
some experimental results which reveal a remarkable saving
of processors with respect to those needed by duplicating
the schedule of the non-fault-tolerant case. Finally, Section
8 terminates the paper with final considerations and open
questions.

2. Background and notation

A periodic task �i is identified by the quadruple
(Ci; Ti; Di; Ji), where:

� Ci is the (worst case)computation timeof task�i;

� Ti is theinvocation periodof task�i;

� Di is thedeadlineof task�i;

� Ji is therelease jitterof task�i.

A periodic task gives raise to an infinite sequence of task
instances. Thek � th instance of task�i is invoked at time
(k � 1)Ti and, in order to meet its deadline, must complete
its execution – that requiresCi time units – no later than
time (k� 1)Ti +Di (this time requirement is referred to as
a hard deadline).

A task may not be ready to execute as soon as it is in-
voked. In fact it may experience a variable delay between
its invocation time- when the task is logically able to run -
and itsrelease time- when it is placed into the run queue.
The release jitterJi is the worst case delay between�i’s
invocation time and�i’s release time.

The completion timeof a task instance is the absolute
time when its execution is completed.

The response timeof a task instance is given by the dif-
ference between its completion time and its invocation time.

The worst case response timeof task �i, Wi, is defined
as the maximum possible response time among all its in-
stances. It is worth noting here that, ifWi � Di, then task
�i is always guaranteed to meet its deadline.

For a given task setf�1 : : : �ng; a scheduling algorithm
establishes an order in which all the periodic task instances
are to be executed and, for a multiprocessor system, the spe-
cific processor each task is allocated.

A given task set is said to beschedulableby the algo-
rithm if all deadlines of all the task instances are met when
that algorithm is applied.

From now on, the following assumptions on the task set
are made:

� Ci � Di � Ti andJi � Di � Ci;

� all tasks are periodic;

� pre-emption is allowed;

� tasks are independent.

The last assumption implies that no precedence relation
exists among tasks, and that no inter-process communica-
tion or synchronisation is permitted among tasks.

Moreover, the following failure characteristics of the
hardware are assumed:

� processors fail in afail-stopmanner, that is a proces-
sor is either operational or ceases functioning;

� hardware provides fault isolation in the sense that a
faulty processor cannot cause incorrect behaviour in
a non-faulty processor;

� the failure of a processor is detected by the remain-
ing ones within the closest completion time of a task
scheduled on the faulty processor.

3. Duplication scheme

In this section a combined active/passive duplication
scheme is presented which copes with one permanent pro-
cessor failure. In order to achieve fault-tolerance, two
copies of the same task, theprimary and thebackupcopy,
are used. Let�i = (Ci; Ti; Di; Ji) be a primary copy and
�b(i) = (Cb(i); Ti; Di; Jb(i)) be the backup copy of�i. A
backup copy may beactiveor passivedepending on the fact
that it is always executed or it is executed only in case of a
failure, respectively. After assigning tasks to processors (as
shown in Section 4), task scheduling is carried on accord-
ing to the following rules, provided that primary and backup
copies of the same task are not assigned to the same proces-
sor.



1. In the absence of failures, a processor must execute
all primary copies and all active backup copies as-
signed to it.

2. When processorPf fails, all the passive backup
copies of all primary tasks assigned toPf must be
scheduled to run on the remaining processors while
all the active backup copies of non-faulty tasks are no
more executed.

In the Case 2 above, assume that the primary task�i, which
has a passive backup copy�b(i), is assigned to processorPf .
If a failure of Pf is detected at time� 2 [(k � 1)Ti; kTi],
then the passive backup copy�b(i) of �i must be released
for the first time (i.e. it is placed in the assigned run queue).
This happens either

� at time�, if the execution of the primary copy�i was
not completed by�, namely if� � (k� 1)Ti+Wi in
the worst case; or

� at the next invocation timekTi, if the execution of�i
was already completed before�, namely if
� > (k � 1)Ti +Wi.

In any case, all the successive releases of�b(i) occur every
periodTi. In the worst case, a passive copy�b(i) is released
at time(k� 1)Ti +Wi and must complete its execution by
time (k � 1)Ti + Di. Therefore, if(Di � Wi) � Cb(i),
then�b(i) is scheduled as a passive copy, otherwise,�b(i) is
scheduled as an active copy.

Backup tasks are characterised as follows:

Active backup. An active copy is always executed in the
absence of faults. Thus it behaves as its primary copy,
i.e. �b(i) = (Cb(i); Ti; Di; Ji);

Passive backup.A passive copy is assigned to a processor
but is not executed until the primary copy fails. A
clean way to model the behaviour of task�b(i) is to
view it as having an invocation periodTi and a re-
lease jitterJb(i) = Wi, whereWi is the worst-case
response time of�i. This jitter takes intoaccount the
first delayed release, due to a failure, namely:
�b(i) = (Cb(i); Ti; Di;Wi).

Note that the primary and backup copies of the same task
may have different execution times.

4. Assignment of tasks to processors

In order to determine whether a task�i fitson a processor
(i.e. whether it can be assigned to that processor or not),
the schedulability of�i must be checked together with all
the tasks already assigned to that processor, both in the no-
failure case and in the failure case. Let us define:

� primary(Pj) is the set of all the primary copies as-
signed to processorPj;

� backup(Pj) is the set of all the backup copies as-
signed to processorPj;

� backupjactive(Pj) is the set of all the active backup
copies assigned to processorPj;

� backupjpassive(Pj) is the set of all the passive
backup copies assigned to processorPj;

� recover(Pj ; Pf ) is the set of all the backup copies
assigned toPj such that their primary copies are all
assigned toPf , in symbols:
recover(Pj ; Pf ) = f�h 2 backup(Pj)jP (�h) = Pfg;

whereP (�h) denotes the processor where the pri-
mary copy of�h is assigned.

In order to assign a task to a processor, some of the fol-
lowing conditions must be satisfied. The conditions to be
considered for each task depend on thestatus(i.e. primary,
active backup or passive backup) of the task. Each con-
dition requires to test the schedulability of a task set on a
single processor, which can be accomplished by means of
the Completion Time Testillustrated in Section 5. In the
following,Pf denotes a failed processor.

Primary. To assign a primary task�i toPj, the task set

f�ig [ primary(Pj ) [ backupjactive(Pj)

must be schedulable (this is to take into account the
normal situation i.e. the no-failure case), and the task
set

f�ig [ primary(Pj) [ recover(Pj ; Pf ) 8Pf 6= Pj

must be schedulable as well (which takes into account
the possible failure of another processor).

Active backup. To assign an active backup task�b(i) toPj,
assuming that the primary copy�i is assigned to pro-
cessorP (�i) 6= Pj, the task set

f�b(i)g [ primary(Pj) [ backupjactive(Pj)

must be schedulable (no-failure case), and the set

f�b(i)g [ primary(Pj) [ recover(Pj ; Pf)

with Pf = P (�i) must be schedulable too (failure
case). Note that, ifPf 6= P (�i), then�b(i) does not
need to be executed anymore.

Passive backup.To assign a passive backup task�b(i) to
Pj, assuming that the primary copy�i is assigned to
P (�i) 6= Pj, only the task set

f�b(i)g [ primary(Pj) [ recover(Pj ; Pf)



with Pf = P (�i) must be schedulable (failure case).
Note again that, ifPf 6= P (�i), then�b(i) does not
need to be executed anymore.

5. Schedulability test

This section presents a test needed to check whether a
given task set is schedulable or not on a single processor by
a certain algorithm. In particular,priority-driven schedul-
ing algorithms will be considered. Such algorithms assign
priorities to tasksaccording to some policy, and at each in-
stant of time, the processor executes the highest priority task
ready to run, suspending – if necessary – a lower priority
task.

Joseph and Pandya [6] first derived an exact analysis to
find the worst-case response time for a given periodic task
on a single processor, assuming fixed priority, independent
tasks and deadlines no greater than periods (Di � Ti 8i).
Hereafter, the analysis found in [16] is used. According to
the authors, the worst case response timeWi of a task�i
satisfies the following equation:

Wi = W �

i + Jj;

W �

i = Ci +

X
j2hp(i)

Cj

�
W �

i + Jj

Tj

�
; (1)

wherehp(i) is the set of all tasks with higher priority than
�i. The smallest value ofW �

i satisfying Equation (1) can be
obtained by iteration:

W �

i (k + 1) = Ci +

X
j2hp(i)

Cj

�
W �

i (k) + Jj

Tj

�
(2)

starting fromW �

i (0) = 0: The iteration stops as soon as
W �

i (k+ 1) = W �

i (k). It is easy to see that each instance of
�i will meet its deadline iffWi � Di. This is referred to as
theCompletion Time Test. Observe that the schedulability
of lower priority tasks does not guarantee the schedulability
of higher priority tasks. Therefore, in order to check the
schedulability of a set of tasks,each task, starting from that
with highest priority,must get through the Completion Time
Test.

6. The algorithm

In order to schedule a set of periodic tasks in a multipro-
cessor system, the partitioning method [5] is used. Tasks
are partitioned into groups so thateach group of tasks can
be feasibly scheduled on a single processor. This method
involves two algorithms: an assignment algorithm of tasks
to processors, and a scheduling algorithm of tasks assigned
on each single processor.

Tasks are assigned to processors following the First-Fit
policy. Tasks are picked one at a time and assigned to the
first processor in which they fit. When a task cannot fit in
any processor, a new processor is added. The conditions
that a task has to verify in order to fit in a processor are
those stated in Section 4. It is worth noting that tasks cannot
be picked in any order. Indeed, the release jitter of a pas-
sive backup copy is equal to the worst case response time
of its primary copy. This response time is computed after
the primary task copy is assigned to a processor and is fixed
only if no higher priority task is assigned to that processor.
Therefore, tasks must be picked by decreasing priority or-
der and each passive copy of a task must follow the primary
copy of the same task.

Tasks are scheduled on each processor according to the
known Deadline-Monotonic[9] fixed priority assignment
policy. Priorities are assigned inversely to task deadlines;
hence,�i receives a higher priority than�j if Di < Dj .
Leung and Whitehead [9] proved that this is an optimal
scheduling algorithm among the fixed-priority ones. This
means that every task set that is schedulable by some
fixed-priority policy is also schedulable by the Deadline-
Monotonic algorithm. Schedulability oneach processor is
checked by means of the Completion Time Test.

7. Simulation results

To evaluate the behaviour of the proposed Fault-Tolerant
Deadline-Monotonic (FTDM) algorithm, simulation exper-
iments for large task sets with100 � k � 500 tasks are
performed. The task periodsTi are selected to be uniformly
distributed in the interval2 � Ti � 500. The execution
timesCi of the tasks are also taken from a uniform distribu-
tion in the interval1 � Ci � �Ti, where� is a parameter
representing the maximum task utilisation (sinceCi=Ti is
the utilisation factor of task�i, � � maxiCi=Ti). In each
of the following experiments the maximum utilisation fac-
tor� is chosen equal to 0.2, 0.4, 0.8.

The performance metric in all experiments is the percent-
age of additional processors required by the FTDM algo-
rithm. In particular the overhead for the provision of fault
tolerance is given by the following ratio:

overhead =
N �M

M
(3)

whereN is the number of processors required by the FTDM
algorithm to schedule a task set consisting of primary and
backup copies, andM is the number of processors required
to schedule a task set with identical primary copies and no
backup copies. The result of each experiment is the average
value of the above ratio over 30 independent trials.

Firstly, the behaviour of the proposed algorithm is eval-
uated when the deadlines are equal to the periods, the jitters
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Figure 1. FTDM overhead with respect to RMFF
for the primary copies. Di = Ti.

Figure 2. FTDM overhead with respect to RMFF
with Completion Time Test. Di = Ti.

are equal to zero, and the backup execution times are equal
to the primary execution times. The outcome of the simu-
lation experiments are shown in Figures 1 and 2. In Figure
1, the valueM in the formula (3) is given by the widely-
used RMFF algorithm [5]. The overhead introduced by al-
gorithm FTDM grows with�. For small values of� the
algorithm gains benefits from the passive duplication, and a
small number of additional processors is required in order
to guarantee fault-tolerance. As� increases (andCi ap-
proachesTi) more and more backup copies become active
and the fault-tolerant schedule requires more additional pro-
cessors. Summarising, Figure 1 suggests that the FTDM al-
gorithm can provide fault-tolerant schedules which require
from 40% to 99% less processors than those used by the
active duplication of RMFF scheduling.

In order to have a pessimistic evaluation of the overhead
it is useful to compare the FTDM schedule with the sched-
ule for primary copies produced by the RMFF algorithm
where the Completion Time Test is used on each processor
instead of theln 2 bound used in [5]. The result of the exper-
iment is shown in Figure 2. A comparison of Figure 1 and
2 shows that, as expected, much less processors are used in
this case to schedule the primary tasks. However, the re-
sults of both experiments follow a similar pattern, namely,
the overhead of the FTDM algorithm is low for smaller val-
ues of�, while as� increases the performance of the FTDM
algorithm decreases.

The fault-tolerant algorithm proposed works also when
deadlines are shorter than periods. In order to character-
ize the average-case performance of the FTDM algorithm
in this case, the overhead defined in the formula (3) is eval-
uated computing M by applying theDeadline Monotonic
First Fit (an obvious extension of RMFF) algorithm with the
Completion Time Test. This is because in this way we con-
sider a more pessimistic situation and hence the outcome of

the experiments can be considered as a worst-case perfor-
mance of FTDM algorithm.

The task periodsTi and the execution timesCi of the
tasks are uniformly distributed in the same interval defined
above. The jitters are equal to 0, the backup execution times
are equal to the primary execution times, and the deadlines
Di are taken equal toDi = minf�Ci; Tig, where� is a
parameter determining the length of the deadline.

Figure 3 and 4 report the outcome of the simulation ex-
periments for� = 3 and� = 6 respectively. It seems that
the performance of the FTDM algorithm decreases when
deadlines are much shorter than the periods. In particular,
the experiments show that such degradation is more evident
when� andDi are small. For example, when� = 0:2 and
� = 3, see Figure 3, about 50% additional processors are
required by the FTDM schedule against 30% in the case of
� = 0:2 and deadlines equal to periods.

However, the performance improves rapidly by increas-
ing Di. Indeed, starting by� = 6, see Figure 4, the per-
formance obtained is comparable to that of Figure 1, where
deadlines are equal to periods.

8. Concluding remarks

The present paper considered the problem of pre-
emptively scheduling a set of independent periodic tasks on
multiprocessor systems, assuming deadlines less than peri-
ods, positive release jitters and the presence of a processor
failure.

As shown in Section 7, the cost of the fault-tolerance,
in terms of the additional number of processors required,
is low - the FTDM algorithm requires from 40% to 99%
less processors than those used by the active duplication of
RMFF schedules.

The fault-tolerant scheme presented tolerates a perma-
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Figure 3. FTDM overhead. � = 3. Figure 4. FTDM overhead. � = 6.

nent processor failure but it can be extended also to tolerate
transient failures. In this case, if an acceptance test is used
to detect transient failure, a passive backup copy and its pri-
mary copy could share the same processor.

Future work will be aimed at relaxing some constraints
upon the task set. For instance, a relevant issue is the fault-
tolerant scheduling of real-time tasks subject to precedence
constraints and resource requirements.
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