
Reconstruction of interior walls from point cloud data with min-hashed J-linkage

Luca Magri, Andrea Fusiello
DPIA - University of Udine

Via delle Scienze, 208, - 33100 Udine, IT
surname.name.l@gmail.com, name.surname@uniud.it

Abstract

The automatic reconstruction of the walls of an interior
environment is a fundamental task in any “scan2BIM” ap-
plication. In this work, we address this problem resort-
ing to an original and improved version of J-Linkage that
leverages on the min-Hash technique to boost the efficiency
without sacrificing the accuracy. A framework to automati-
cally and robustly extract floor plans from large-scale point
clouds is described and validated on real-word publicly
available data.

1. Introduction
Understanding the structure of indoor environments is an

important task that, in recent years, has attracted the inter-
est of researchers yielding to several applications that span
many fields such augmented and virtual reality, navigation,
design, maintenance, monitoring of buildings and energy
simulation analysis.

Specifically, the increasing availability of high quality
and massive 3D data, the diffusion of BIM and the sustained
need of accurate as-built architectural models has driven
the attention towards automatic methods capable of deal-
ing with large-scale point clouds and, at the same time, able
to retrieve detailed geometry, avoiding time-consuming and
costly human intervention as much as possible.

The demand of higher-level, automated and accessible
rendition of indoor models, can be regarded as an occur-
rence of the broader aim of bridging the semantic gap that
separates automatic perception from human comprehension
which ultimately inspires many efforts in Computer Vision.
A first preliminary step along this direction is taken by geo-
metric multi-structure recovery (also known as multi-model
fitting), which aims at aggregating input data, usually cor-
rupted by noise and outliers, into multiple instances of geo-
metric parametric models.

In the context of indoor modeling, this translates mainly
in the robust extraction of multiple geometric primitives
consisting of the primary facility surfaces – such as floors,

walls, and ceilings – from the point cloud. Usually pla-
nar structures are detected exploiting 3D plane fitting tech-
niques e.g. [20]. Alternatively, the description of the en-
vironment is conveniently addressed from a 2D perspective
and the architectural components are described as a mix-
ture of multiple line segments, as in a blueprint e.g. [18].
Eventually, under the assumption of vertical surfaces, a 3D
model can be easily extruded from the blueprint.

The typical challenges of multi-model fitting are lurk-
ing here. The structure estimation process must tolerate
pseudo-outliers and rogue measurements, due to the pres-
ence of furniture causing clutter and complex building lay-
outs which determine occlusions. Moreover, the fit of geo-
metric models and the assignment of points to the estimated
structures are intrinsically entangled tasks and give rise to
a sort of chicken-and-egg-dilemma. In addition, the num-
ber of sought structures is unknown in advance and must
be estimated together with the parametric models, entailing
implicitly or explicitly some model selection criterion.

Multiple structure recovery is a common essential step
involved in the majority of the works about indoor mod-
eling, including the most elaborate methods, which make
use of it as a preparatory phase to further semantic or
topological analysis. Some long-established algorithms are
customarily adopted: [18, 1, 25] rely on Hough trans-
form [9] to detect collinear configurations of 2D wall sam-
ples. Unfortunately this technique is not very robust to
clutter and outliers, especially as the number of structures
grows and the distribution of inliers per structure is uneven.
Along the same line, [14] resorts to mean-shift [7], whose
parametrization can be critical and which is not intrinsi-
cally robust. Many work, e.g. [19, 17, 16], make use of
sequential-Ransac to fit multiple planes in space. Despite
the robustness of Ransac in single model estimation, it has
been recognized that the local and incremental nature of this
sequential strategy is suboptimal when dealing with multi-
ple structures and easily prone to miss global scene-level
features. To conclude, we would like to mention [24], where
the problem of outdoor modeling is addressed by resorting
to Pearl [11], a more recent energy-based multi-model fit-
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ting method, which is used to detect 2D lines. Its effective-
ness, however, is connected to the guess of a correct trade-
off between the terms of the energy optimized, which in
some cases can be a thorny model selection problem.

In this paper we propose to tailor J-Linkage, a multi-
model fitting technique that has proven successful in over-
coming some of the mentioned limitations of Ransac and
Hough transform [22], to the indoor modeling scenario.
With respect to the standard algorithm, we propose here
a variation based on min-Hash that improves its efficiency
thereby allowing to deal with large (> 108) point clouds.

2. J-Linkage and min-Hash
In this section, we describe how min-Hash can be em-

ployed to improve the efficiency of J-Linkage without af-
fecting its accuracy. For the convenience of the reader
we briefly recall the original J-Linkage algorithm in Sec-
tion 2.1, while Section 2.2 describes our approach.

2.1. J-Linkage algorithm

At high-level, J-Linkage implements a two steps first-
represent-then-clusterize scheme: at first, data are repre-
sented by the preferences they grant to a pool of model
hypotheses, then a greedy agglomerative clustering is per-
formed to obtain a partition of the data.

Let X be the set of data point, err : X ×H → R an er-
ror function to measure residuals between data and models,
and ε an inlier threshold provided as input. The method
starts by generating a set of random provisional models
H = {h1, . . . , hm} by drawing m subsets of data points
with the minimum cardinality necessary to instantiate a
model. Then a n × m binary matrix P is built by defin-
ing its (i, j)-th entry as

P (i, j) =

{
1 if err(xi, hj) ≤ ε
0 otherwise.

(1)

Each row Pi can be easily identified with the preference set
PS(xi) of a given point xi, i.e. the subset of structures in
H that support that point. The main intuition is that points
belonging to the same model will have similar preference
sets, and therefore can be clustered in the conceptual space
{0, 1}m to reveal the structures hidden in the data.

The preference set of a subset Y ⊆ X is composed by
the models that fit all the points in Y :

PS(Y ) =
⋂
x∈Y

PS(x). (2)

The clustering algorithm proceeds in a bottom-up man-
ner. At first every data is put in its own cluster. The dis-
tance between clusters is computed as the Jaccard distance
[12] between the respective preference sets. The Jaccard

distance between two sets U, V is defined as 1 − J(U, V ),
where

J(U, V ) =
|U ∩ V |
|U ∪ V |

, (3)

denotes the Jaccard similarity.
Starting from singletons, each sweep of the algorithm

merges the two clusters with the smallest Jaccard distance,
until all the preference sets of clusters are disjoint. The pa-
rameters of the returned structures are estimated by least
squares fitting on each cluster of points. It is worth noting
that, if outliers are not present in the data, the number of
clusters is automatically detected by this algorithm. More-
over this preference approach is robust to outliers, that can
be recognized as observations whose preferences deviate
significantly from the rest of the data, and tend to emerge
as micro-clusters, that can be pruned out a posteriori.

2.2. Jaccard distances with min-Hash

In this section, we describe how to estimate efficiently
the Jaccard distances. The cardinal idea, borrowed from
the context of duplicate retrieval in large database [4, 6],
is to take advantage of min-Hash, a local sensitive hashing
procedure, to approximate the Jaccard similarity between
two preference sets.

The min-Hash of a (preference) set U ⊆ H is a natural
number such that the probability that a second set V ⊆ H
has the same min-Hash value is equal to the Jaccard coef-
ficient J(U, V ). Specifically, the min-Hash of U is defined
as

µ(U, fk) = argmin
h∈U

fk(h) (4)

where fk : H → N is a bijective random function with
the property that Prob (fk(hi) < fk(hj)) = 0.5. In other
words, µ(U, fk) is the minimum element of U under the
ordering naturally induced by fk1. It is easy to verify that

Prob (µ(U, fk) = µ(V, fk)) = J(U, V ). (5)

As a matter of fact, let h′ = µ(U ∪ V ). Since, fk is a
random hash function, every element of U ∪V has the same
probability of being the minimum element, thus h′ can be
thought as being randomly extracted from U ∪ V . If h′ ∈
U ∩ V then µ(U, fk) = µ(V, fk), otherwise µ(U, fk) 6=
µ(V, fk) and equation (5) holds.

In principle, fk can be realized by a random permutation
σ defined on {1, . . . ,m} setting fk(hi) = hσ(i), but, in
practice, it can be implemented as a linear transformation
on a convenient finite field [5].

A number κ of independent hash functions {fk}κk=1 is
considered, and for each preference set the corresponding
κ min-Hash values are computed and collected into a vec-
tor termed min-Hash signature. The Jaccard similarity be-
tween two sets is estimated as the number α of common

1An order on H is defined by hi < hj ⇐⇒ fk(hi) < fk(hj)



(a) Star5 (b) Star11 (c) Line4

Figure 1: Datasets used for synthetic experiments

min-Hash values between their signatures, over the number
κ of function adopted, because α/κ turns to be an unbiased
estimator of J(U, V ). In conclusion, the Jaccard distance
between two preference sets can be approximated as easily
as computing the Hamming distance of the respective min-
Hash signatures. This is an appealing feature as it opens
the possibility of exploiting specialized implementations to
accelerate the computation of the Hamming distance.

The clustering procedure can be summarized as in Algo-
rithm 1.

Algorithm 1 min-hashed J-linkage clustering

1. Put each datum in its own cluster;
2. Define the preference sets of clusters using (2);
3. Compute min-hash signature for the preference sets;
4. Among all current clusters, pick the two clusters with

the small hamming distance between their min-Hash
signatures;

5. Replace these two clusters with the union of the origi-
nal ones;

6. Update min-Hash signatures and hamming distances;
7. Repeat from step (4) while the smallest hamming dis-

tance is lower than 1.

As one could expect, the theoretical upper bound of the
min-Hash estimation is a function of the number κ of func-
tions employed: a higher value of κ increases the accuracy
of the estimation, but at the cost of larger signature vectors
and longer computation times. In particular, the Chernoff
bound implies that the number κ of min-Hash values needed
to achieve an estimated error upper bounded by θ ∈ (0, 1]
with confidence 1−δ, δ ∈ (0, 1], must satisfy the constraint
[21]

κ ≥ 2 + θ

θ2
log

(
2

δ

)
. (6)

2.3. Validation

We assess the benefits of exploiting min-Hash to approx-
imate Jaccard distances on both synthetic and real data. The

experiments are run on an 2,6 GHz Intel Core i7 machine
with 16 GB RAM. Matlab code is publicly available at at
www.diegm.uniud.it/fusiello/demo/scan2bim/.

Synthetic experiments This set of simulations is de-
signed to investigate in practice the benefits brought by min-
Hash to J-Linkage with respect to the number κ of hash
functions. We consider the problem of fitting multiple lines
to the three datasets reported in Figure 1: Star5 and Star11,
taken from [22], are respectively composed by 5 and 11
line-structures of 50 inliers points each. These two datasets
are both contaminated by 50% of outliers. The third dataset
Line4 has been introduced to evaluate the outcomes on a
larger-size problem, it is composed by 4000 points equally
divided among 4 lines and 1000 gross outliers.

The figures of merit we take into account are the compu-
tational time and the misclassification errors (ME), which
counts the percentage of misclassified points with respect
to the ground-truth label. Please note that, even if the ME is
restricted to deal with single-label assignments, some inter-
secting structures are present in the first two datasets: 8.20%
of points in Star5 and 17.09% in Star11 could have legiti-
mately been assigned to a different ground-truth label. Due
to this fact, the ME could show fluctuations that are not sig-
nificant and this should be kept in mind when results are
evaluated.

We compare, on the basis of the same preference matrix
P , the original version of J-Linkage to our min-Hash vari-
ant implemented with different numbers of hash functions,
namely κ ∈ {1, 10, 50, 100, 200, 400, 600, 1200} –1200 be-
ing the total number of sampled model hypotheses in P .
Outliers are pruned out, using the simple strategy based on
cluster cardinality presented in [13].

Results are summarized in Table 1 and displayed in Fig-
ure 2. As regards the first two datasets, 200 functions
are enough for min-Hash to match the performances of J-
Linkage in terms of ME, within the margins of the afore-
mentioned ME fluctuations. The time is almost the same
for Star5, but on Star11 the min-Hash version is 3 times
faster. In Line4 the structures are well separated and do
not intersect, therefore the ME does not fluctuate and, when
κ ≥ 10, the min-Hash version matches exactly the accu-
racy of J-Linkage, with the added merit that, for κ = 10 the
solution is more than 4× faster.

These examples show that, as the number of processed
points grows, the advantages of min-Hash become more
tangible, making it very suitable for dealing with large-scale
data.

Vanishing point detection In this experiment we test the
effects of using min-Hash on a real dataset. We take into
account the York Urban Line Segment Database [8], a col-
lection of 102 images of urban environments, comprising
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Figure 2: Using min-Hash to approximate the Jaccard distances: the blue points depict the ME and time achieved by min-
hash as the number κ of hash functions varies. The green diamond represents the classical J-linkage with Jaccard distance.

Jaccard min-Hash
ME [%] time [s] ME [%] time [s] κ

Star5 16.80 13.33 16.2 11.65 200
Star11 24.64 81.96 26.45 27.73 200
Line4 0.92 2281 0.92 547 10

Table 1: Results on line fitting experiments

Figure 3: Sample images of the York Urban DB

annotated line-segments with ground-truth labels – sample
images can be seen in Figure 3. The aim is to retrieve two
or three points on the projective plane (possibly lying on the
line at infinity) which identify mutually orthogonal vanish-
ing directions. If a segment is thought to “belong” to a van-
ishing point when its supporting line, embedded in the pro-
jective plane, is incident to it, this problem plainly becomes
an instance of multiple structures recovery. Our choice falls
on this dataset because later on, we will rely on vanishing
point detection to exploit the Manhattan Word assumption
for indoor modeling. Table 2 summarizes the results: the
same ME scores realized by J-Linkage can be attained lever-
aging on min-Hash with considerable time savings.

To sum up, the experiments conducted demonstrate that
the approximation of Jaccard distances introduced by min-
Hash does not affect the strength of J-Linkage, in particular
its robustness, as outliers continue to emerge as small clus-

Jaccard min-Hash

ME [%] mean 2.83 2.83
median 1.58 1.58

time [s] mean 0.90 0.15

Table 2: Results on York Urban DB

ters that can be easily recognized and discarded. In practice,
we observe that the theoretical bound of Equation (6) is not
strict, and relatively few hash functions succeed in coping
with real datasets. Moreover the advantages in terms of ef-
ficiency are substantial, especially for large-size datasets.

3. Indoor modeling
We propose a simple procedure to automatically gener-

ate a manageable 2D architectural model from a 3D point
cloud. The main idea is to operate on a 2D plane, where
points have been projected, and to extract the overall struc-
ture of the environment by fitting line segments to the main
building features leaning on J-Linkage equipped with min-
Hash.

In particular, two major steps can be distinguished. First,
after estimating ceiling and floor, the remaining points are
projected onto a discretized plane. Second, our min-hashed
J-Linkage comes into play to efficiently extract lines and
to identify their dominant orientations.These steps are de-
scribed in detail in the next sections.

3.1. Preprocessing

The first task is to reduce the 3D point cloud to a set
of sampled planar points – referred to as “wall samples”
– enriched with information about their local orientations.
For this preliminary step, common to several methods, we
follow an approach similar to [23].

Assuming that the coordinate system is defined to have



(a) input point cloud

(b) 2D projected point cloud with normals

Figure 4: The preprocessing step reduces the input 3D point
cloud (top) to a 2D set of points (with normals) (bottom).

the vertical component representing elevation, the inspec-
tion of 3D measurements along the z-axis would reveal
floor and ceiling as dominant modes on the heights distri-
bution. For this reason, an histogram of heights is com-
puted and the potential floor/ceiling bins are identified as
the bottom-most and top-most local maxima. 3D planes
are fitted via IRLS on the points belonging to these bins,
the corresponding inliers are labeled as floor and ceiling re-
spectively and are then discarded from further analysis.

The rest of the 3D points are projected perpendicularly
onto the x-y plane which is uniformly discretized in a grid
of ground-cells. The width of the cells should be smaller
than the expected resolution of the architectural features we
desire to describe in the final model. If enough points 2 fall
inside a ground-cell their median position is taken as a wall
sample representative for that cell. At last, for each wall
sample a normal vector is locally estimated using Principal
Component Analysis together with a confidence measure
of the co-planarity of the corresponding points. Only nor-
mals with a confidence higher than a certain threshold are
retained.

For the sake of illustration, we demonstrate the main
steps of this process on a small working example extracted
from [2]. The input point cloud is shown in Figure 4a,
whereas Figure 4b displays the outcome of the preprocess-
ing stage.

2in our implementation more than 3, but a different threshold cardinal-
ity can be used depending on the application

(a) line recovery outcome

(b) results of vanishing point detection

Figure 5: Min-hashed J-Linkage is employed to extract
multiple lines (top) and to determine their dominant orien-
tations (bottom). Lines that do not conform to the principal
orientations are marked in red.

3.2. Line extraction

The next step consists in organizing the wall samples into
linear structures, as depicted in Figure 5a. Min-hashed J-
Linkage can be employed to this end in a straightforward
way, except for an additional expedient which enables us to
exploit the normal vectors of wall samples.

Indeed, by taking into account the orientations of points,
in addition to their positions, it is possible to distinguish
more accurately points that lie on the same wall and thus
to increase the robustness of the method against furniture
and clutter. For this reason, we put a tentative line into the
preference set of a planar point, if their residuals are below
the inlier threshold and if, at the same time, the line is per-
pendicular to the normal of that point within a predefined
tolerance.

Several heuristics can be adopted to further improve the
detected set of lines. As a preliminary pruning, we deemed
as outliers those lines that are supported by few wall sam-
ples, and the ones that do not conform to the so called Man-
hattan Word assumption, which states that man-made envi-
ronments exhibit a high degree of organization along mutu-
ally orthogonal and parallel directions.

With this perspective as a guide, the set of lines are
grouped by fitting vanishing points as explained in Section
2.3. Then, the lines of the two clusters with the larger car-
dinalities are retained, whereas all the others, which do not
comply with the two dominant orientations, are pruned out.



For example in Figure 5b the two lines corresponding to
the doors of the rightmost room, are recognized as outliers
because they are not well aligned with the orthogonal frame
defined by the main walls.

3.3. Topological refinement

The collection of detected lines defines a partition of the
plane in multiple regions. Some of them are separated by
walls, while others are intuitively perceived as the same
room.

Our aim is to make use of the topological relations be-
tween these spaces in order to enhance the architectural
models by rejecting spurious wall segments. To this end,
we derive a simple but effective room segmentation method
that could also serve as an intermediate result intended to
facilitate subsequent semantic analysis and to simplify the
process of converting point cloud data into building infor-
mation models.

From the estimated line arrangement, the induced subdi-
vision of the plane is computed and encapsulated in a 2D
cell-complex stored in a doubly connected edge list (dcel),
a convenient structure commonly used in computational ge-
ometry that consists of vertices, edges, and faces (see Fig-
ure 6a ). Lines are split into segments to represent section
of connected walls: at first, clustered wall samples are pro-
jected to their supporting lines and linearly ordered, then
a segment is detected every time the distance between two
consecutive points exceeds a threshold, fixed to 3ε in our
implementation.

Building on the approach of [15], space segmentation
can be formulated as a clustering problem on the faces of
the cell-complex. The rationale is to group together sub-
sets of planar faces that are adjacent and, at the same time,
“see” a consistent extent of common walls. For this rea-
son, we propose a dissimilarity measure that combines the
topology of the line arrangements with a notion of visibil-
ity. Similarly, [10] introduces a visibility vector for pixels of
an occupancy image of the environment, to segment rooms
with k-mediods.

Here, we define the visibility set of a face as the set of
wall segments that are visible from the cell centroid. Visi-
bility sets can be computed, for example, using techniques
based on line sweep such as [3]. However, for our purpose,
it is sufficient to employ a simpler method that makes use
of the Manhattan Word property enforced through the van-
ishing point detection stage.

Assuming a Cartesian coordinate frame aligned with the
two dominant directions, at first each segment is projected
onto the axis which corresponds to its orientation. Then
every centroid is projected onto each axis and, if it lies on
a projected segment, that segment is marked as visible. In
practice, this procedure boils down to effortless comparison
between point coordinates.

(a) cell-complex defined by the line arrangement

(b) segmented spaces

Figure 6: The estimated lines divide the space into cells
(top) which are then aggregated into rooms by clustering
(bottom). The segmentation is color-coded.

The dissimilarity is defined as follows. If two faces are
not adjacent or if they are separated by a segment which
occupies more than the 50% of the length of their common
edge, their dissimilarity is set to 1. Alternatively, the dis-
similarity is computed as the min-hashed Jaccard distance
of their visibility sets. Dissimilarities are hence aggregated
through single-linkage clustering which group cells into la-
beled regions.

As Figure 6b demonstrates, this technique produces rea-
sonable segmentations and it is able to single out not only
rooms in the strict sense, i.e. spaces completely enclosed
by walls, but also to locate less structured regions, such as
vestibules, aisles, halls and corridors.

At the end, the acquired topological information is ex-
ploited to refine the 2D models: segments that separate cells
belonging to distinct clustered regions are retained as domi-
nant walls. Walls situated in the interior of a room are lifted
to 3D as planar patches and, according to the cardinality of
their supporting inliers, are either kept or discarded. As a
reference, a sample of extruded model is visualized in Fig-
ure 7.

The room configuration can also be fruitfully combined
with additional 3D analysis, for example opening detection
can take advantage of the environment topology to locate
doors as those apertures, within a predefined length, that
separate regions with different labels.



Figure 7: Sample result with extruded walls

# points area [m2] # rooms

Area1 44 026 810 965 45
Area4∗ 37 523 035 870 46
Area6 34 903 596 935 53

Table 3: Point clouds figures.

3.4. Qualitative results

We explore the outcomes of the proposed method on
large-scale indoor environments taken from the Stanford
Large-Scale 3D Indoor Spaces Dataset [2]. The input point
clouds, captured by a Matterport 3D camera, consist in fa-
cilities used for educational and office work and include
several furnished rooms and hallways. We consider the 3
point clouds whose outlines satisfy the Manhattan assump-
tion, namely Area1, Area4 and Area6. Three rooms of
the last dataset develop on two floors, we analyze only the
main ground-floor, dubbed Area6∗. However, please notice
that the floor-plan generation can be easily extended to deal
with multiple stores, as explained in [23]. Statistics on the
scanned inputs are collected in 3.

Qualitative results are collected in Figure 8 where the
input point clouds, whose ceilings have been removed to
disclose the internal organization of the facilities, are juxta-
posed to the dominant walls, extruded from the segmented
cell-complexes.

We can appreciate that the projected points have been
aggregated in meaningful segments and the overall config-
uration of the reconstructed structures follows closely the
layout of the buildings.

Having said that, the 2D analysis alone is far from per-
fect, and some defects can be spotted. For example, short
wall segments, originated form clutter, remain in the final
model. Also, in Figure 8b, the method misses to recon-
struct the exterior wall corresponding to the leftmost room
of Area1, which consists in a bathroom divided in several
closets. The reason can be ascribed to the presence of sev-
eral minute structures, such as doors, that snatch inliers

from the main wall in the 2D domain, undermining the topo-
logical scrutiny.

A more elaborated 3D analysis should easily remove
these artifacts.

4. Conclusion and future work

We have proposed and examined a faster min-Hash-
based version of J-Linkage that achieves a considerable
speed-up in terms of computational times without neglect-
ing accuracy. The benefits of this improvement, that paves
the way towards the adoption of J-Linkage in large-scale
problems, involve a broad range of geometric multi-model
fitting tasks, including indoor modeling.

In this scenario, we conceived a simple and effective 2D
modeling framework resorting to the main strengths of J-
Linkage: first, the proposed method is robust to clutter and
outliers. Second, the number of sought architectural struc-
tures is automatically estimated, and the main input param-
eter, the inlier threshold, turns to be an educated guess be-
cause it is naturally related to the desired model resolution.
Third, the min-Hash approach allows to cope efficiently
with large-scale point clouds.

This method could serve as a reliable stepping stone to
further improve the architectural model. A more elaborate
analysis of the environment that stems from wall detection
and incorporate additional 3D information is in plan for fu-
ture work. Yet, we hope that our approach could already
ease the burden of user post-processing.

The generalization of the line-arrangement clustering to
3D planes and spaces will be subject of further investiga-
tion.
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