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Abstract

This paper deals with the problem of estimating camera
motion in the context of structure-from-motion. We describe
a pipeline that consumes relative orientations and produces
absolute orientations (i.e. camera position and attitude in
an absolute reference frame). This pipeline exploits the con-
cept of “group synchronization” in most of its stages, all of
which entail direct solutions such as eigenvalue decomposi-
tions or linear least squares. A comprehensive introduction
to the group synchronization problem is provided, and the
proposed pipeline is evaluated on standard real datasets.

1. Introduction

Structure from motion (SfM) consists in recovering the
3D structure of the scene and camera motion or orienta-
tion1 from point correspondences. The most common ap-
proach consists in incrementally growing a partial recon-
struction by adding cameras and points iteratively (resec-
tion/intersection) [46]. A different paradigm in which first
the motion is recovered and then the structure is computed is
receiving a growing attention in Computer Vision commu-
nity. All these methods start from the relative orientation of
a subset of camera pairs (or triplets), computed from point
correspondences, then solve for the absolute orientation of
all the cameras (globally), reconstruct 3D points by inter-
section, and finally run bundle adjustment to refine the re-
construction. The step from relative to absolute orientation
is the core of these methods. The problem can be usefully
modelled by considering the epipolar graph, where nodes
correspond to cameras, labelled with their absolute orien-
tations, and edges correspond to relative orientations. Ow-
ing to the depth-speed ambiguity, the magnitude of relative
translations is undefined.

Most of these global techniques first solve for rotations
and then for translations [16, 30, 1, 33, 22, 35]. Alterna-

1The term “orientation” refers to angular attitude and position of a ref-
erence frame, as customary in Photogrammetry.

tively, rotations and translations can be recovered simulta-
neously, by working on the manifold of rigid motions SE(3)
[17]. This approach, although being more principled, is less
explored, probably because essential matrices do not fully
specify elements of SE(3), due to the scale indeterminacy.

In [17] the scale problem is bypassed by alternation: at
each iteration current estimates of absolute orientations are
used to fix the scales of the corresponding relative transla-
tions. In [1, 52, 10, 23, 30] the scale issue is sidestepped by
exploiting implicit or explicit point triangulation, whereas
in [16, 8, 22, 33, 35] translation recovery is expressed as a
bearing-only network localization where the relative trans-
lation directions are regarded as bearing measures that glob-
ally constraint the position of the cameras. In [2, 48] the
scales are explicitly recovered, which can be traced back
again to a bearing-only localization.

In this paper we present a complete pipeline which es-
timates camera motion starting from the relative orienta-
tion of a subset of camera pairs. Our method is grounded
on the concept of group synchronization, namely the prob-
lem of finding group elements from noisy measurements of
their ratios (or differences). The pipeline is composed of
three stages. We first compute absolute rotations by solv-
ing a synchronization problem over SO(3) following the
approach in [1]. In the second stage, we estimate the scales
by partitioning the epipolar graph into smaller subgraphs:
we compute the translations norm locally – using the tech-
nique in [2] – and then we globally derive all the scales
by solving a synchronization problem over R. In the third
stage, we recover absolute translations by solving a syn-
chronization problem over R3. All the considered synchro-
nization instances translate into direct solutions, namely
eigenvalue decompositions (rotations and scales) or linear
least squares (translations), which are coupled with itera-
tively reweighted least squares (IRLS) to gain robustness to
outliers. Experimental results show that our pipeline com-
pares favourably to the state of the art in terms of precision
and speed.

The contribution of this paper is threefold: i) in a
comprehensive introduction on group synchronization we



set forth a theoretical unified framework were several syn-
chronization problems are seen as instances of a more ab-
stract principle; ii) we propose a divide and conquer tech-
nique for computing the scales that exploits a synchroniza-
tion instance; iii) we demonstrate a complete pipeline for
the recovery of camera motion where each stage is based
on group synchronization and admits a direct solution.

2. Background on Synchronization
In a network of nodes, suppose that each node has an

unknown state and that (noisy) measures of differences (or
ratios) of states are available. The goal is to infer the un-
known states from the available measures. This is a general
statement of the synchronization problem. Typically, states
are represented by group elements, that is why the problem
is actually referred to as group synchronization.

2.1. Notation and Preliminary Results

Let ~G = (V,E) be a finite simple digraph with vertex set
V = {1, . . . , n} and edge setE ⊆ {1, . . . , n}×{1, . . . , n},
|E| = m. Throughout this paper we assume that ~G is con-
nected. In the SfM case ~G represents the epipolar graph,
which has a vertex for each camera and an edge for each
available relative orientation. A denotes the n × n adja-
cency matrix of ~G, i.e. Aij = 1 if (i, j) ∈ E and Aij = 0

otherwise, and B denotes the n×m incidence matrix of ~G,
i.e. Bie = 1 and Bje = −1 for e = (i, j) ∈ E. D denotes
the n× n degree matrix of ~G, i.e. the diagonal matrix such
that Dii is the degree of node i.

A cycle in a undirected graph is a subgraph in which ev-
ery vertex has even degree. A circuit is a connected cy-
cle where every vertex has degree two. The set of cycles
of a undirected graph can be described algebraically as a
vector space over Z2, where each cycle is represented by
its indicator vector and the sum of two cycles is a cycle
where the common edges vanish. In a digraph cycles are
represented by signed indicator vectors, where the sign in-
dicates whether the orientation of the cycle is concordant
with the edge orientation or not. A cycle basis is a mini-
mal set of circuits (of dimension m − n + 1) such that any
cycle can be expressed as linear combination of the circuits
in the basis [25]. The integral cycle basis matrix C is the
(m − n + 1) × m matrix obtained as the stack of signed
indicator vectors of the circuits that form the basis.

Let (Σ, ∗) be a group with unit element 1Σ . In this paper
we are particularly interested in Σ = SO(3) and Σ = R3,
which model angular attitude and position of the cameras,
respectively. A Σ-labelled graph is a digraph with a la-
belling of its edge set by elements of Σ, that is a t-uple
Γ = (V,E, z) where z : E → Σ is such that if (i, j) ∈ E
then (j, i) ∈ E and z(j, i) = z(i, j)−1. So, we may also
consider G, the undirected version of ~G. In the SfM case,

each edge in the epipolar graph is labelled with the relative
orientation between the corresponding camera pair.
[Null cycle] Let Γ = (V,E, z) be aΣ-labelled graph. We
say that a cycle {(i1, i2), (i2, i3), . . . , (i`, i1)} in Γ is a null
cycle if and only if the composition of the edge labels along
the cycle returns the identity, namely

z(i1, i2) ∗ z(i2, i3) ∗ . . . ∗ z(i`, i1) = 1Σ . (1)

[Consistent labelling] Let Γ = (V,E, z) be aΣ-labelled
graph. Let x : V → Σ be a vertex labelling. We say that x
is a consistent labelling if and only if

z(e) = x(i) ∗ x(j)−1 ∀e = (i, j) ∈ E. (2)

In other words, each edge label is the ratio of the corre-
sponding vertex labels. Such condition is referred to as
consistency constraint. It is understood that a consistent
labelling is defined up to a global (right) product with any
group element.

Proposition 1. [19] Let Γ = (V,E, z) be a Σ-labelled
graph. There exists a polynomial algorithm which either
finds a non-null cycle in Γ or a consistent labelling of Γ .

Corollary 1. The Σ-labelled graph Γ has a consistent la-
belling if and only if it does not contain a non-null cycle.

Non-null cycles arise because of outlying labels that pro-
hibit a ground truth consistent labelling to be found. In the
SfM case such outliers derive from repetitive structures in
the images, which cause mismatches leading to false epipo-
lar geometries. Several solutions have been proposed in the
literature to detect them, e.g. [14, 18, 34, 53, 5]. However,
these strategies are computationally demanding and do not
scale well with the number of nodes/edges.

2.2. Group Synchronization

Let us assume that the groupΣ is equipped with a metric
function d : Σ × Σ → R+ and let ρ : R+ → R+ be a
symmetric positive-definite non-decreasing function with a
unique minimum in 0 and ρ(0) = 0. Some instances are the
quadratic loss function ρ(y) = y2 or robust loss functions
used in M-estimators [21].
[Consistency error] Let Γ = (V,E, z) be a Σ-labelled
graph. Let x̃ : V → Σ be a vertex labelling. We define the
consistency error of x̃ as the quantity

ε(x̃) =
∑

(i,j)∈E

ρ
(
d
(
z̃(i, j), z(i, j)

))
(3)

where z̃ is the edge labelling induced by x̃, namely
z̃(i, j) := x̃(i) ∗ x̃(j)−1.

A vertex labelling is consistent if and only if it has zero
consistency error. In practical applications a labelling with
zero error hardly exists, since the edge labels are corrupted
by noise, thus the goal is to address the following problem.



[Group synchronization] Given a Σ-labelled graph Γ =
(V,E, z), the group synchronization problem consists in
finding a vertex labelling with minimum consistency error.

In other words, one wants to recover the unknown group
elements (vertex labels) given a redundant set of noisy mea-
surements of their ratios (edge labels), as shown in Fig. 1. In
the SfM case such unknowns are the absolute orientations
of the cameras.

x1=?	 x2=?	

x3=?	

x4=?	x5=?	

z12≈	x1x2-1	

z45≈	x4x5-1	

z 1
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Figure 1: The group synchronization problem.

Several instances of synchronization have been studied
in the literature:

• Σ = Z2 sign synchronization [11];

• Σ = R time synchronization [24, 15] (from which the
term synchronization originates);

• Σ = Rd state / translation synchronization [39, 48];

• Σ = SO(d) rotation synchronization (a.k.a. rotation
averaging) [41, 30, 44, 20, 9, 50, 3];

• Σ = SE(d) rigid-motion synchronization (a.k.a. mo-
tion averaging) [17, 47, 49, 38, 6, 4];

• Σ = SL(d) homography synchronization [40];

• Σ = Sd permutation synchronization [37].

In the next sections we will derive solutions for syn-
chronization problems where the underlying group is R and
show that these solutions can be easily generalized to Rd
and matrix groups such as SO(3). With the aim of building
a fast motion estimation pipeline, we aim for direct solu-
tions that involve a matrix formulation of the problem.

2.3. Synchronization over (Rd,+)(Rd,+)(Rd,+)

Let us start by considering the synchronization of real
numbers with the addition, namely (Σ, ∗) = (R,+) (a.k.a
time synchronization). A vertex labelling x : V → R is
consistent with a given edge labelling z : E → R if and
only if2

xi − xj = zij ∀ (i, j) ∈ E. (4)

2For simplicity of notation, hereafter we will use subscripts instead of
parenthesis to denote indices of a node/edge labelling.

If we denote the incidence vector of the edge (i, j) with

bij = [ 0, . . . , 1
↑
i

, . . . ,−1
↑
j

, . . . , 0 ] (5)

then Eq. (4) can be written as bij [ x1, . . . , xn ]
T
= zij , or

equivalently, in matrix form

BTx = z (6)

where B is the incidence matrix of the directed graph ~G,
x ∈ Rn is the vector containing all the vertex labels and
z ∈ Rm is the vector containing all the edge labels (ordered
as in B).

We assume that the graph is connected, hence
rank (B) = n−1. Since the solution of the group synchro-
nization problem is defined up to a global group element,
we are allowed w.l.o.g. to arbitrarily set xk = 0 = 1Σ for
a chosen k ∈ V . Removing xk from the unknowns and the
corresponding row inB leaves a full-rank n−1×mmatrix.

With a suitable choice of d(·, ·) and ρ in Eq. (3) the con-
sistency error of the synchronization problem writes

ε(x) =
∑

(i,j)∈E

|xi − xj − zij |2 = ‖BTx− z‖2 (7)

where ‖·‖ denotes the Euclidean norm, thus the least
squares solution of Eq. (6) solves the synchronization prob-
lem. Russel et al. [39] proved the following result.

Proposition 2. If x̃ is the least-squares solution of Eq. (6),
then the induced edge labelling z̃ = BTx̃ solves the follow-
ing constrained minimization problem

min
z̃
‖z− z̃‖2 s.t. Cz̃ = 0 (8)

where C is the integral cycle basis matrix.

The interpretation is that the edge labels obtained with
Eq. (6) are the closest to the input edge labels among those
that yield null-cycles. Indeed, Cz̃ = 0 is the stack of the
null-cycle constraints (Eq. (1)) for all the cycles in a basis.

Let us now consider the synchronization of real vectors
with the addition, namely (Σ, ∗) = (Rd,+) (a.k.a. trans-
lation synchronization). A vertex labelling x : V → Rd is
consistent with a given edge labelling z : E → Rd if and
only if

xi − xj = zij ∀ (i, j) ∈ E. (9)

It is easy to see (reasoning as in the scalar case) that the
equation above can be expressed in matrix form as

XB = Z (10)

where X is the d × n matrix obtained by juxtaposing all
the vertex labels, Z is the d × m matrix obtained by jux-
taposing all the edge labels, and B is the n ×m incidence



matrix of the directed graph ~G. By the same token as be-
fore, removing one vertex label from the unknowns and the
corresponding row inB leaves a full-rank n−1×mmatrix.

By vectorizing each side of Eq. (10) and using the Kro-
necker product ⊗ [29] we get

(BT ⊗ Id) vecX = vecZ (11)

where Id denotes the d× d identity matrix. This is a gener-
alization of Eq. (6), where the incidence matrix B gets “in-
flated” by the Kronecker product with Id in order to cope
with the vector representation of the group elements. Thus
the vertex labelling x is computed as the least-squares solu-
tion of Eq. (11), as in the case of time synchronization.

It is straightforward to see that Proposition 2 extends to
the case of synchronization over Rd, since we can view each
component in Eq. (9) as a synchronization over (R,+).

Robust synchronization. Resistance to outliers (i.e.
wrong edge labels) can be obtained by replacing ρ(y) = y2

in Eq.(7) with another function ρ(y) with sub-quadratic
growth, and solving the resulting minimization problem,
e.g., with Iteratively Reweighted Least Squares (IRLS) [21].
This technique iteratively solves weighted least squares
problems where the weights are computed at each iteration
as a function of the residuals of the current solution.

Several weight functions have been proposed in the liter-
ature, that correspond to different ρ functions; among them
the Cauchy weight function is one of the most popular

wij =
1

1 + (rij/c)
2

(12)

where rij = d
(
z̃ij , zij

)
and the tuning constant c is chosen

so as to yield a reasonably high efficiency in the normal
case, and still offer protection against outliers. In particular,
c = 2.385σ produces 95-percent efficiency when the errors
are normal with standard deviation σ. The latter is robustly
estimated from the median absolute deviation (MAD) of the
residuals as σ = MAD/0.6745.

2.4. Synchronization over (R \ {0}, ·)(R \ {0}, ·)(R \ {0}, ·)

We now consider the synchronization of real numbers
with the multiplication, namely (Σ, ∗) = (R \ {0}, ·). A
vertex labelling x : V → R is consistent with a given edge
labelling z : E → R if and only if

zij = xi · x−1j ∀ (i, j) ∈ E. (13)

Let x ∈ Rn be the vector containing the vertex labels
and let Z ∈ Rn×n be the matrix containing the edge labels

x =


x1
x2
. . .
xn

 , Z =


1 z12 . . . z1n
z21 1 . . . z2n
. . . . . .
zn1 zn2 . . . 1

 . (14)

For a complete graph, the consistency constraint rewrites

Z = xx−T (15)

where xx−T contains the edge labels induced by x and x−T

denotes the row-vector containing the inverse of each vertex
label, namely x−T = [x−11 x−12 . . . x−1n ]. Note that Eq. (15)
implies that rank(Z) = 1.

If the graph is not complete then Z is not fully specified.
In this case missing edges are represented as zero entries,
i.e. ZA := Z ◦ A represents the matrix of the available
measures, where ◦ is the Hadamard (or entry-wise) product
and A is the adjacency matrix of the graph G. Being a ma-
trix of 0/1, the effect of its entry-wise product with Z is to
zero the unspecified entries and leave the others unchanged.
Hence the consistency constraint writes

ZA = (xx−T) ◦A. (16)

With a suitable choice of d(·, ·) and ρ in Eq. (3) the con-
sistency error of the synchronization problem writes

ε(x)=
∑

(i,j)∈E

|zij−xi · x−1j |
2
=‖ZA−(xx−T) ◦A‖2F (17)

where ‖·‖F denotes the Frobenius norm. The minimization
of ε is a non-linear least squares problem. However, a direct
solution to a related version of the problem exists, which
can be derived by considering the exact (noiseless) case.

If ε = 0 then the consistency constraint – after some
rewriting – can be expressed as

ZA = diag(x)Adiag(x)−1 (18)

which implies that

ZAx = diag(x)A1n×1 = diag(A1n×1)x = Dx (19)

where 1n×1 is a vector of ones and D = diag(A1n×1) is
the degree matrix of the graph (A1n×1 is the sum of the
rows of A). Eq. (19) means that the vertex labelling x is the
eigenvector of D−1ZA associated to the eigenvalue 1.

Proposition 3. The matrix D−1ZA has real eigenvalues.
The largest eigenvalue is 1 and it has multiplicity 1.

Proof. Since diagonal matrices commute, it follows from
Eq. (18) that

D−1ZA = diag(x)(D−1A) diag(x)−1 (20)

hence D−1ZA and D−1A are similar, i.e. they have the
same eigenvalues. The matrix D−1A is the transition ma-
trix of the graphG, which – as a consequence of the Perron-
Frobenius theorem [31] – has real eigenvalues and 1 is the
largest eigenvalue (with multiplicity 1), if the graph is con-
nected.



When noise is present, i.e. ε 6= 0, the eigenvector of
D−1ZA corresponding to the largest eigenvalue is an esti-
mate of the vertex labelling x. In [43] this eigenvalue solu-
tion is linked to an algebraic cost function, by generalizing
the extremal properties of the standard Rayleigh Quotient
known for Hermitian matrices to the case of non-Hermitian
matrices with real eigenvalues.

Robust Synchronization. It is easy to see that the above
analysis can be extended to handle weighted measurements,
which translates in letting the entries of A to assume non-
negative values, where 0 still indicates a missing measure-
ment and the other values reflect the reliability of the edge
labels. This allows a straightforward extension to gain re-
silience to outliers via an IRLS-like scheme, i.e. an esti-
mate for the vertex labelling with given weights – stored in
the symmetric adjacency matrix A – is obtained from the
top eigenvector of D−1ZA, then the weights are updated
through, e.g., the Cauchy weight function (12), and these
steps are iterated until convergence.

2.5. Synchronization over Matrix Groups

Suppose that Σ is a group which admits a matrix repre-
sentation through d × d matrices (i.e. Σ can be embedded
in Rd×d), where the group operation ∗ reduces to matrix
multiplication and 1Σ = Id. Some instances are SO(d),
SE(d−1) and SL(d). A vertex labelling x : V → Rd×d is
consistent with a given edge labelling z : E → Rd×d if and
only if zij = xi · x−1j .

All the vertex/edge labels can be collected in two ma-
trices X ∈ Rdn×d and Z ∈ Rdn×dn respectively, which
are “matrices of matrices”, namely they are defined as in
Eq. (14) with the provision that each element is now a
d × d matrix. In particular, the diagonal of Z is filled
with identity matrices Id. For a complete graph, the con-
sistency constraint rewrites Z = XX−[ (which implies
that rank(X) = d), where X−[ ∈ Rd×dn is the block-
matrix containing the inverse of each d × d block of X ,
i.e. X−[ = [x−11 x−12 . . . x−1n ].

If the graph is not complete then the available measures
are represented by ZA := Z ◦ (A⊗ 1d×d), where the adja-
cency matrix gets “inflated” by the Kronecker product with
1d×d to match the block structure of the measures. Accord-
ingly, the consistency constraint becomes

ZA = (XX−[) ◦ (A⊗ 1d×d) (21)

which generalizes Eq. (16).
It can be seen that Eq. (18) and Eq. (19) become

ZA = blkdiag(X)(A⊗ Id) blkdiag(X)−1 (22)

ZAX = (D ⊗ Id)X (23)

where blkdiag(X) produces a dn× dn block-diagonal ma-
trix with d× d blocks x1, . . . , xn along the diagonal. Thus
the columns of X are d eigenvectors of (D ⊗ Id)−1ZA as-
sociated to the eigenvalue 1.

Proposition 4. The matrix (D⊗Id)−1ZA has real eigenval-
ues, where ZA is defined in Eq. (21). The largest eigenvalue
is 1 and it has multiplicity d.

Proof. Similarly to the proof of Proposition 3, we get that
(D ⊗ Id)

−1ZA is similar to the matrix (D ⊗ Id)
−1(A ⊗

Id) = (D−1A)⊗Id. Since the eigenvalues of the Kronecker
product of two matrices are the product of the eigenvalues
of the matrices, we conclude that the largest eigenvalue of
(D−1A)⊗ Id is 1 and it has multiplicity d.

In the presence of noise the eigenvectors of (D ⊗
Id)
−1ZA corresponding to the d largest eigenvalues are an

estimate of the vertex labelling x. Closure is not always
guaranteed: depending on the structure of the group the so-
lution might need to be projected onto Σ.

This solution was introduced in [44] for Σ = SO(2),
extended in [1, 45] to Σ = SO(3), and further generalized
in [4, 6] to Σ = SE(3). The same formulation appeared in
[40] and [37] for Σ = SL(d) and Σ = Sd respectively.

To the best of our knowledge, no general results are
known linking the eigenvalue solution to the synchroniza-
tion cost function, which writes

ε(X) = ‖ZA − (XX−[) ◦ (A⊗ 1d×d)‖2F (24)

with a suitable choice of d(·, ·) and ρ in Eq. (3).
However, results in the case of Σ = SO(3) are reported

in [1]. In this case, the rank-3 matrix Z containing all
the edge labels is symmetric and positive semidefinite. As
a consequence, the consistency error for rotation synchro-
nization is

ε(X) =
∑

(i,j)∈E

‖xij − xixT

j‖
2
F . (25)

It is shown in [1] that the eigenvalue solution minimizes
Eq. (25) under the constraintX ∈ V3(R3n), where V3(R3n)
denotes the Stiefel manifold, i.e. the columns of X are en-
forced to be orthonormal rather than imposing that each
3 × 3 block in X belongs to SO(3). Therefore, after
computing the eigenvectors, such blocks are projected onto
SO(3) through Singular Value Decomposition [26].

This procedure follows the custom pattern to relax the
constraints and subsequently project onto SO(3). In-
deed, solving the synchronization problem over SO(3)
(a.k.a. multiple rotation averaging) is difficult since the fea-
sible set is non-convex, and the cost function may have mul-
tiple local minima in different regions of attraction [20].
Other examples of relaxations include semidefinite pro-
gramming [44, 1] and rank relaxation [3] which, however,
produce iterative solutions.



3. Problem formulation
Consider n pinhole cameras that capture the same (sta-

tionary) 3D scene. Each camera orientation is described
by a rigid motion (or direct isometry), i.e. an element of
the Special Euclidean Group SE(3), which admits a linear
space representation, namely the orientation of camera i is
described by the matrix

Mi =

[
Ri ti
0T 1

]
∈ SE(3) (26)

where Ri ∈ SO(3) and ti ∈ R3 represent the rotation and
translation component respectively. Similarly, the relative
transformation between cameras i and j is represented as

Mij =

[
Rij tij
0T 1

]
∈ SE(3) (27)

with Rij ∈ SO(3) and tij ∈ R3.
Let G = (V,E) denote the epipolar graph (also known

as the viewing graph [28]), which has a vertex for each cam-
era and edges in correspondence of the available pairwise
transformations. A SE(3)-labelled graph, Γ , is obtained
from G by labelling the edges with the relative orientations.

The goal of the motion recovery stage of structure from
motion is to find a consistent labelling for Γ , where the con-
sistency constraint for the edge (i, j) is Mij =MiM

−1
j .

This problem can be tackled directly as a synchroniza-
tion over SE(3), as done in [17, 47, 49, 6, 4, 38], or
by breaking it into rotation and translation, as done in
[16, 30, 1, 33, 22, 35] and in this paper, and solving the two
sub-problems separately, according to the respective consis-
tency definitions

Rij = RiR
T

j (28)

tij = −RiRT

jtj + ti. (29)

Note that Eq. (28) defines a rotation synchronization prob-
lem, thus the angular attitudes of the cameras can be recov-
ered as explained in Sec. 2.5 with Σ = SO(3). Equation
(29) can be written equivalently as

−RT

i tij = RT

jtj −RT

i ti = xi − xj (30)

where xi := −RT
i ti is the centre (position) of the i-th cam-

era. Thus – assuming that rotations have been computed
beforehand – recovering camera centres is a translation syn-
chronization problem (as defined in Sec. 2.3), where the
edge labels are the baselines uij := −RT

i tij .
In practice, however, due to the depth-speed ambiguity,

there is a scale indeterminacy in the relative translations, i.e.
what can be measured are the directions of relative trans-
lations t̂ij = tij/‖tij‖. In other words, the scale factors
αij = ‖tij‖ = ‖uij‖ are unknown. So, in order to ex-
ploit the group synchronization framework, one needs to
recover these unknown scales (a.k.a. epipolar scales), at
some point. This issue is addressed in the next section.

4. Epipolar scales recovery
Let ûij be the unit vector that corresponds to the direc-

tion of the baseline, also called bearing: it is the direc-
tion of relative translation expressed in the global reference
frame (whereas t̂ij is local.) Let us rewrite the constraint in
Eq. (30) with explicit scale

xi − xj = αijûij . (31)

Reasoning as in Sec. 2.3 one obtains

(BT ⊗ I3) vecX = (Im � U)α (32)

where U ∈ R3×m contains the bearings in columns,
α ∈ Rm contains all the scale factors and � denotes
the Khatri-Rao product [27], such that (Im � U) =
blkdiag ({ûij}(i,j)∈E).

If the scales α where known, this would reduce to
Eq. (11) with (Im � U)α = vecZ. We now see how such
scales can be recovered linearly, following the derivation
given in [2]. The same formulation was derived indepen-
dently in [48] starting from Eq. (32) and using the identity
CBT = 0.

Let {(i1, i2), (i2, i3), . . . , (i`, i1)} be a circuit of G of
length `, the null-cycle property in terms of bearings can be
written as

`−1∑
k=1

αk,k+1ûk,k+1 = α1`û1` (33)

which is a homogeneous linear equation in the unknown
scales. This equation can also be expressed with the Khatri-
Rao product as

(cT � U) α = 0. (34)

where c is the m× 1 signed indicator vector of the circuit.
In a generic epipolar graph, we can stack the equations

coming from a cycle basis, thus recovering the translations
norm is equivalent to the resolution of a single homoge-
neous linear system

(C � U) α = 0 (35)

where C is the integral cycle basis matrix.

Proposition 5. [2] The unknown epipolar scales can be
uniquely (up to a global scale) recovered if and only if
rank(C � U) = m − 1. In this case the solution is given
by the 1-dimensional null-space of (C � U).

In the special case where the epipolar graph is made of
a single circuit, then Proposition 5 states that it is possible
to recover the translations norm if and only ` = 3 or ` = 4
(provided that the cameras are in a general configuration).

[Parallel-rigidity] A graph for which the dimension of
the null space of (C � U) is one is said to be parallel rigid.



Rotation synch
(w/ IRLS)

Spectral clustering 
& dilation

FCB & 
solve for scale

Scale  
synch

FCB & 
solve for scale

Transl. synch
(w/ IRLS)

........

patch 1

patch N
weights

Relative 
orientations

Absolute 
orientations

Scale recovery

Mi,j Mi

Mj

Figure 2: Overview of the GSP. The group synchronization stages are highlighted in bold.

The notion of parallel rigidity emerges in the context
of bearing-only network localization [36], but in [48] this
problem has been linked to the epipolar scales recovery,
hence our definition above is equivalent to the classical one
[51].

Regarding the construction of the matrix C, a cycle basis
for the graphG is needed. Among several types of basis, the
easiest to compute is the fundamental cycle basis (FCB). It
can be seen (e.g. [25]) that if G is connected and T is a
spanning tree of G, then adding any edge from G \ T to T
generates a circuit. The set of such circuits forms a cycle
basis, which is referred to as the FCB.

5. Proposed Method

In this paper we demonstrate a complete pipeline
(sketched in Fig. 2) that consumes relative orientations
of a set of cameras, represented as an epipolar graph,
and produces absolute orientations of those cameras. The
pipeline – henceforth dubbed GSP, for Group Synchroniza-
tion Pipeline – exploits group synchronization in most of its
stages, which translates into direct solutions such as eigen-
value decompositions (rotations and scales) or linear least
squares (translations).

The first stage of GSP is rotation synchronization which
is solved through the eigenvalue approach detailed in
Sec. 2.5, coupled with IRLS to gain resilience to outliers.
Whereas in the IRLS iteration we used a “soft-redescender”
– namely the Cauchy function, the final weights are com-
puted with a “hard-redescender” such as the bisquare func-
tion (a.k.a. biweight) [32] that assigns zero weight to edges
with residual higher than a threshold; in such a way outliers
are definitively removed. A fixed threshold on the angu-
lar error (5◦ in our experiments) is also used as a safeguard
against high outliers contamination. The final weights are
attached to the edges of G, and subsequently used through-
out the pipeline wherever it makes sense.

In the second stage the epipolar scales are computed.

Since a FCB is subject to error propagation in the pres-
ence of long cycles, as observed in [2], we take a divide-et-
impera approach: partition the graph, solve for the epipolar
scales locally, and then globally synchronize all the scales.
The idea of partitioning the computation into smaller sub-
problems is also present, e.g., in [12] and [7].

The weighted epipolar graph is partitioned with spectral
clustering, in particular using normalized cuts [42] that tend
to produce clusters of approximately the same size. In each
cluster the largest parallel-rigid subgraph is extracted as ex-
plained in [36]. In order to obtain overlapping subgraphs,
which are called patches, each cluster adopts some nodes
of the other clusters, including orphan nodes left out by
the parallel-rigid subgraph extraction. More precisely, the
adoptable nodes must be connected to the cluster with at
least two edges, in order to keep the rigidity of the patch
(by the principle of triangulation). They are chosen among
the ones with the highest degree and up to a fixed maximum
number.

In each patch the scales are computed as described in
Sec. 4, using a maximum-weight spanning tree to obtain the
FCB. Note that each patch has an unknown global scale and
– thanks to the overlap among patches – such scales can be
synchronized by running the method described in Sec. 2.4
on the patch graph GP whose vertices are the patches and
two patches are adjacent if and only if they share at least one
edge of the epipolar graph G. Every such edge in common
introduces a measure of the ratio of the scales of the two
adjacent patches: a single ratio is attached to the edge of
GP by least squares fitting.

Translation synchronization (as detailed in Sec. 2.3) is
run in the end of GSP to compute the position of the cam-
eras in the absolute reference system. The linear system of
equations is solved via IRLS, initialized with the weights
computed by rotation synchronization.

The subsequent stages (after GSP) are fairly standard and
consist in triangulation to initialize the structure and bundle
adjustment to refine all the parameters.



GSP 1DSfM CLS LUD Cui et al.

Dataset miss % n rot. tra. time n tra. time n tra. time n tra. time n tra. time

Vienna Cathedral 74 684 1.0 2.8 69 836 6.6 302 836 8.8 578 836 5.4 787 578 3.5 242
Alamo 47 499 1.0 0.6 40 577 1.1 158 577 1.3 239 577 0.4 385 500 0.6 259
Notre Dame 32 530 0.6 1.5 27 553 10 154 553 0.8 512 553 0.3 707 539 0.3 366
Tower of London 80 408 2.5 1.6 10 572 11 78 572 16 55 572 4.7 88 393 4.4 100
Montreal Notre Dame 52 423 0.5 0.4 14 450 2.5 114 450 1.1 180 450 0.5 271 426 0.8 125
Yorkminster 72 386 1.6 1.4 10 437 3.4 122 437 6.2 62 437 2.7 103 341 3.7 45
Madrid Metropolis 65 268 2.7 7.5 7 341 9.9 43 341 6.4 46 341 1.6 67 – – –
NYC Library 68 295 1.5 1.1 8 332 2.5 76 332 5.0 52 332 2.0 102 288 1.4 42
Piazza del Popolo 58 297 0.8 1.0 14 328 3.1 58 328 3.5 62 328 1.5 88 294 2.6 51

Table 1: Median errors (rotation in degrees, translation in metres) on the datasets from [52] before bundle adjustment. Times
(in seconds) are net of bundle adjustment. The percentage of missing pairs refers to the largest parallel-rigid component of
the input graph. The lowest translation errors are highlighted in boldface.

6. Experiments
We implemented GSP in MATLAB3 and tested it on ir-

regular large-scale datasets taken from [52], for which re-
covering camera orientation is challenging. Following the
experiments in [52], we used the output of BUNDLER [46]
as reference solution, and we computed the optimal rigid
transformation between this solution and our estimate with
least median of squares (LMedS), using correspondences
between camera centres.

We compared GSP with 1DSfM [52], which first
removes outlier directions by solving simpler low-
dimensional sub-problems, and then computes absolute
translations through the Levenberg-Marquardt algorithm.
We also included in the comparison the constrained-least-
squares (CLS) technique [49], where rotations and trans-
lations are initialized separately and then they are jointly
refined through Riemannian gradient descent, the least-
unsquared-deviations (LUD) solver [35], where absolute
translations are derived from a convex program robust to
outlier directions, and the method by Cui et al. [13], which
extends the technique [22] by introducing feature tracks.
Our method and 1DSfM use as input the relative orien-
tations provided in [52] as they are, whereas the remain-
ing pipelines internally refine the pairwise directions, hence
they require points in input as well.

Results are shown in Table 1, which reports the me-
dian translation errors (rotation errors are not analysed in all
these papers) before applying bundle adjustment, the num-
ber of reconstructed cameras, and the running times. The
figures of the competing methods are taken from the respec-
tive papers [52, 35, 13] (including running times). Table 1
indicates that GSP qualifies among the most accurate solu-
tions. In particular, it outperforms 1DSfM and CLS, and
it places itself in the same range of LUD and Cui et al. (it

3Code available at http://www.diegm.uniud.it/fusiello/demo/gmf/

compares favourably in 6 out of 9 cases).

The number of cameras reconstructed by GSP is in
general smaller than the other methods. Indeed, some
nodes/edges are discarded either because IRLS detects them
as outliers or during the clustering phase, which involves
rigid components extraction. As a matter of fact, these
dataset are taken “in the wild”, so one cannot expect to re-
construct all the cameras. The high accuracy achieved by
our method without any refinement of the input epipolar ge-
ometries confirms that it correctly removes cameras with
outlier measures or low connectivity to the rest of the graph.

Although the running times are not not directly compara-
ble to each other owing to the different hardware, it is worth
noting that the running times of GSP are the lowest among
the competitors and they have been measured on a less pow-
erful hardware (a MacBook Air with i5 dual-core 1.5 GHz
processor and 4GB RAM).

7. Conclusion

In this paper we described a pipeline for computing cam-
era motion from relative orientations that is deeply rooted
into the notion of group synchronization. It exploits three
different types of group synchronization which admit di-
rect solutions such as eigenvalue decompositions (rotations
and epipolar scales) or linear least squares (translations).
A comprehensive introduction to the subject is one of the
contributions of this paper. In addition, we proposed a
divide and conquer technique for computing the epipolar
scales: the epipolar graph is partitioned into smaller sub-
graphs where local scales are computed, and then they are
globally synchronized. The experimental evaluation of the
pipeline on standard real datasets reveals that it is very fast
while achieving competing figures in terms of accuracy.
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