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Abstract

In this paper we formulate the point-line registration
problem, which generalizes absolute orientation to point-
line matching, in terms of an instance of the orthogonal
Procrustes problem, and derive its solution. The same for-
mulation solves the Non-Perspective-n-Point camera pose
problem, which in turn generalizes exterior orientation to
non-central cameras, i.e., generalized cameras where pro-
jection rays do not meet in a single point. Our Procrustean
solution is very simple and compact, and copes also with
scaling. Experiments with simulated data demonstrate that
our method compares favourably with the state-of-the-art in
terms of accuracy.

1. Introduction
The problem of estimating the orientation (position and

angular attitude) of a perspective camera given its intrin-
sic parameters and a set of world-to-image correspondences
is known as the Perspective-n-Point camera pose problem
(PnP) in computer vision or exterior orientation problem in
Photogrammetry. It can be seen as special case of a point-
line registration problem, where the lines form a bundle.
Indeed, perspective cameras are modelled as a bundle of
rays and an image plane. If we remove the requirement that
rays form a bundle, we are left with a set of rays rigidly
connected and the imaging model is known as a general-
ized camera. In a generalized camera, every ray has its own
origin, which is – in general – different from the others.
These cameras can model all non-central devices [13] and
also multi-camera systems, composed by many central cam-
eras rigidly connected (the overall set of rays do not inter-
sect a in single point, although they intersect group-wise).
In turn, these multi-camera systems can represent an actual
device composed of many cameras rigidly connected by a
mechanical rig, or a set of images (taken by any number of
cameras) whose relative orientation is known.

The Non-Perspective PnP (NPnP) problem generalizes
the PnP problem (defined for central cameras) to general-
ized cameras, and requires to find the position, angular at-

titude and – possibly – scale of a non-perspective camera
with respect to a set of known control points whose projec-
tions are also known.

The NPnP solution is particularly relevant in SLAM [15]
and Structure from Motion (SfM). Consider for example a
hierarchical SfM pipeline such as [16]: a cluster A of cam-
eras can be glued to cluster B by solving a NPnP as soon as
4 points reconstructed in A are visible in some images of B,
if B is modelled as a generalized camera. Please note that
the points in B need not to be reconstructed. In contrast,
the solution reported in [16] merges A and B with absolute
orientation (+ scale), requiring that the same 4 points are
reconstructed in A and B.

In general, the main advantage of multi-camera systems,
when compared to the single camera, is that the visibility of
the minimal number of control points required for the prob-
lem solution must be satisfied within the whole network and
not by the single camera. This, of course, becomes very
useful due to the restricted field of view of each camera.

While the problem has deep roots in the PnP, the litera-
ture relative to its non-perspective variant is fairly recent.
Early work focused on minimal solvers (NP3P or NP4P
problems, depending whether the scale is considered or not)
[11, 1, 17], while recent work [9, 15] in particular concen-
trated on general solvers. The formulations in [8, 9] and
[15] build independently on DLS [6]. However [8, 9] do
not deal with scale, whereas [15] does. The latter feature
is important in the context of structure from motion, where
the scale is not consistent among generalized cameras.

In this paper we propose a new formulation of the NPnP
problem based on Procrustes analysis, and two solutions
that generalize PnP Fiore’s algorithm [3] and PPnP [4] re-
spectively. Both cope with scale, use only elementary linear
algebra and have a very compact MATLAB implementation
(Appendix C). The first one (Sec. 4) is a direct, closed form
solution but it requires at least six point matches in general
position and it minimizes an algebraic error. The second
one (Sec. 3) is iterative but converges from an uninformed
initialization in all cases (in our experiments). It minimizes
a geometric error in object (3D) space, and works with the
minimum number (four) of points.



2. Non-Perspective PnP formulation
Given a number n of 3D point-line correspondences

mj ↔ `j the Non-Perspective PnP (NPnP) problem re-
quires to find a rotation matrix R, a translation vector t and
(possibly) a scale α such that:

ζjp̂j + oj = αRMj + t forj = 1 . . . n, (1)

where a line in space is described by means of its origin oj ,
its versor p̂j (or direction), and parameterized by ζj :

`j : ζjp̂j + oj ζj ∈ R. (2)

All these lines are rigidly connected but the global pose pa-
rameters R, t, α with respect to the external reference sys-
tem (in which Mj are expressed) are missing, together with
the values of ζj for j = 1 . . . n.

More in general, Problem (1) is that of registering the
set of 3D points Mj with the set of lines given by (oj , p̂j),
hence it can be also seen as a generalization of a 3D point-
point registration, a.k.a. absolute orientation.

If the lines intersect in one point (forming a bundle),
the problem reduces to the well-known Perspective-n-Point
camera pose problem (PnP) (or exterior orientation), where
the centre of bundle is the perspective centre of the cam-
era and image points are identified with the rays. Therefore
Problem (1) can also be seen as a generalization of PnP to
non-central cameras, where the projective rays do not form
a bundle.

In turn, a generalized camera can represent a cluster of
rigidly connected central cameras, where the relative poses
are fixed and known but the exterior pose parametersR, c, α
of the cluster with respect to the external reference system
are missing.

After some rewriting Eq. (1) yields:
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where c = −RTt. In matrix form:

ZPR+OR+ 1cT = αS, (3)

where P is the matrix by rows of line versors, O is the ma-
trix by rows of line origins, S is the matrix by rows of point
coordinates defined in the external system, Z is the diagonal
parameters matrix, c is the vector representing the position
of the lines, R is the orthogonal rotation matrix, and 1 is a
column vector of n ones.

In the point-line registration formulation the entries of Z
can have any sign, whereas cheirality imposes that Z ≥ 0
in the NPnP formulation.

3. Procrustean solution
The Procrustean solution minimizes the following geo-

metric error:

‖ZPR+OR+ 1cT − αS‖2F . (4)

This objective function is the sum of the squared norm of
the difference vectors (∆ in Fig. 1) between reference 3D
points (S) and the points belonging to the lines determined
by Z (i.e., ZP +O) based on their estimated attitude, posi-
tion and scale (R, c, α).
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Figure 1. The estimated parameter ζi defines a 3D point (empty
circle) along the line (oipi). The segment (perpendicular to the
line) joining this point and the corresponding reference 3D point
Mi is ∆. The position, attitude and scale of the set of rays are
estimated in such a way to minimize the length of the ∆s for all
the points, in a least squares sense.

The minimization is accomplished with an alternating
scheme (also called “block relaxation” [2]) as in the PPnP
[4] case, where each variable is alternatively estimated
while keeping the others fixed.

As a matter of fact, the Procrustean solution can be seen
as iterating between two stages, namely:

• assuming Z is known, this fixes a point on each line
and the problem becomes a point-point registration;

• given R, c and α, solve for Z by finding the position
along the (fixed) line that minimizes the distance to the
3D points S.

Solving for R, c and α. When Z is known, Eq. (3) re-
duces to the standard EOPA model (see Appendix A) where
one set of points is B = S and the other one is A =
(ZP + O). Hence R, c, α are computed according to the
following formulas, that are instances of those reported in
Appendix A:

R = Udiag
(
1,1,det(UV T)

)
V T (5)



with
UDV T = (ZP +O)T

(
I − 1 1T/n

)
S; (6)

α =
tr((ZP +O)T

(
I − 1 1T/n

)
(ZP +O))

tr(RT(ZP +O)T (I − 1 1T/n)S)
(7)

c = (αS − (ZP +O)R)T1/n. (8)

Solving for Z. When R, c and α are known, it is simply
a matter of solving Eq. (3) for Z. Eq. (3) can be written as

ZP = (αS −OR− 1cT)RT (9)

or equivalently
PTZ = Y (10)

with Y = R(αS−OR−1cT)T. Since Z is diagonal, it can
be obtained as the solution of (see Appendix B):

(I � PT) diag−1(Z) = vec(Y ) (11)

where � denotes the Khatri-Rao product, and diag−1 re-
turns a vector containing the diagonal elements of its argu-
ment.

Any non-negativity constraint on Z must be enforced a-
posteriori by clipping to zero negative values.

Please note that in the original formulation of PPnP given
in[4], the solution for Z writes

diag−1(Z) = (I ◦ PPT)−1 diag−1(PY ) (12)

which (see Appendix B) corresponds to the least squares so-
lution of PTZ = Y . However, since the Eq. (10) is exactly
determined, the two formulations coincides.

The algorithm, henceforth dubbed gPPnP, is summarized
in Algorithm 1.

Algorithm 1 gPPnP

Input: 3D points S and lines (O,P ) (origin, direction)
Output: parameters R, c and α of the similarity transfor-

mation that aligns points and lines

1. Start with Z = diag(1) (or any sensible guess);

2. Compute R = Udiag
(
1,1,det(UV T)

)
V T

with UDV T = (ZP +O)T
(
I − 1 1T/p

)
S;

3. Compute α with (7);

4. Compute c = (αS − (ZP +O)R)
T
1/n;

5. Compute Z = diag((I � PT)−1 vec(Y ))
where Y = R(αS −OR− 1cT)T;

6. Iterate over steps 2, 3, 4 until convergence.

Although being iterative, gPPnP always converged, in
our experiment, to a global minimum of the cost function,
starting with Z = diag(1).

4. Algebraic, direct solution
This direct solution can be regarded as a generalization

of the PnP Fiore’s algorithm derived in [3], from which it
borrows the main idea. The Z values are computed directly
via SVD, and the rest of the algorithm follows a standard
EOPA solution.

Let us rewrite Eq. (3) as (w.l.o.g. let us assume α = 1
for the moment) :

ZP +O = (S − 1cT)RT =

= SRT − 1cTRT = [S,1][RT,−cTRT] (13)

The matrix [S,1] has – in general – rank 4, hence it is rank
deficient as soon as n > 4. Let us consider its SVD decom-
position:

[S,1]T = UDV T (14)

and in particular let Vr contain the last n− r columns of V
corresponding to zero singular values. Hence [S,1]TVr = 0
and V T

r [S,1] = 0 and also

V T
r (ZP +O) = 0 (15)

from which Z can be recovered by solving the linear system
of equations:

(PT � V T
r ) diag−1(Z) = − vec(V T

r O) (16)

where� denotes the Khatri-Rao product [7], diag−1 returns
a vector containing the diagonal elements of its argument.

The coefficient matrix has dimension 3(n − r) × n and
there are n unknowns. If points are in general position r =
4, hence at least 6 points are needed. If n ≥ 6 the least
squares solution in closed form is (see Appendix B):

diag−1(Z) = (PPT ◦ VrV T
r )−1 diag−1(VrV

T
r OP

T).
(17)

Once Z is known the parameters of the similarity trans-
formation R, c and α are computed with EOPA (see Ap-
pendix A) as in Sec. 3. The algorithm, henceforth dubbed
gFiore, is summarized in Algorithm 2.

5. Experiments
We run experiments on simulated data, obtained as fol-

lows. Line origins were generated randomly in the unit
cube centred on zero; 3D points were randomly placed on
a sphere of unit radius; line directions were computed as
unit vectors from camera origins to 3D points. A random
similarity transformation was applied to 3D points, where
rotations is obtained from three random Euler angles, trans-
lation is a random vector with norm in [0.5, 10] and scale is
a random number between 0.1 and 10. Noise was added by
perturbing line versors with a Gaussian random vector with



Algorithm 2 gFiore

Input: 3D points S and lines (O,P ) (origin, direction)
Output: parameters R, c and α of the similarity transfor-

mation that aligns points and lines

1. Obtain Vr from the SVD of [S,1];

2. Compute Z with
diag−1(Z)=(PPT◦VrV T

r )−1 diag−1(VrV
T
r OP

T);

3. Compute R = Udiag
(
1,1,det(UV T)

)
V T

with UDV T = (ZP +O)T
(
I − 1 1T/p

)
S;

4. Compute α with (7);

5. Compute c = (αS − (ZP +O)R)
T
1/n.

Figure 2. An instance of simulated scene, where magenta circles
are the origins O and blue crosses are the 3D points S. Dotted
lines join centres and points.

increasing standard deviation σ from 0 to 0.1 units. Every
point of the graph is the average of 100 trials.

We evaluated the rotation error in degrees (similar re-
sults were obtained for the translation error) as a function
of noise level and number of points.

We compared the two algorithms proposed in this paper,
namely gFiore (Sec. 4) and gPPnP (Sec. 3) with gDLS1, the
only recent non-minimal solver for NPnP that deals with
scale.

Results are reported in Fig. 3. The three algorithms have
substantially equivalent performances, and the rotation er-
ror grows almost linearly with the noise standard deviation,
and decreases with the number of points. However, when

1The C++ code is available on the web as part of the Theia library [14].

the noise level increases the differences becomes more no-
ticeable and gPPnP achieves the lowest error, followed by
gFiore.

Comparing running times is not feasible as gFiore and
gPPnP are implemented in MATLAB, while gDLS in C++.

6. Conclusions
The contribution of the paper is both theoretical and

practical: on the theoretical side it provides a Procrustean
formulation of the NPnP problem; on the practical side it
describes two algorithms that solve it, one direct and one
iterative, both very easy to implement (MATLAB code pro-
vided in Appendix C) and with state-of-the-art accuracy, as
experiments have shown.

A. Extended Orthogonal Procrustes Analysis
The terms Procrustes Analysis (e.g. [5]) is referred to a

set of least squares mathematical models used to compute
transformations among corresponding points belonging to a
generic k-dimensional space, in order to achieve their max-
imum agreement. In particular, the Extended Orthogonal
Procrustes Analysis (EOPA) model allows to recover the
least squares similarity transformation between two point
sets.

Let us consider two matrices A and B containing two
sets of numerical data, e.g., the coordinates of p-points of
Rk by rows. EOPA allows to directly estimate the unknown
rotation matrix R, a translation vector t and a global scale
factor λ for which the residual:∥∥B − λAR− 1cT

∥∥2
F

(18)

is minimum, under the orthogonality condition: RTR =
RRT = I .

The minimization proceeds by defining a Lagrangean
function and setting the derivatives to zero (details can be
found in [12]). In the following we report the main results.

The rotation is given by

R = Udiag
(
1,1,det(UV T)

)
V T (19)

where U and V are determined from the SVD decomposi-
tion:

AT

(
I − 11T

p

)
B = UDV T (20)

The det(UV T) normalization guarantees that R is not only
orthogonal but has positive determinant [18].

Then the scale factor can be determined with:

λ =
tr
(
RTAT

(
I − 11T

p

)
B
)

tr
(
AT
(
I − 11T

p

)
A
) (21)



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

noise std dev [units]

R
ot

at
io

n 
er

ro
r 

[d
eg

]

gPPNP
gDLS
gFiore

10 16 26 40 64 100 158 252 398 630 1000
0

0.5

1

1.5

2

2.5

n. of points

R
ot

at
io

n 
er

ro
r 

[d
eg

]

gPPNP
gDLS
gFiore

Figure 3. The rotation error in degrees is plotted as a function of the the noise level σ (on the left) with 64 points and the number of points
(on the right) with σ = 0.04.

And finally the translation writes:

c = (B − λAR)
T
1/p (22)

To reconcile this notation with the one that is more cus-
tomary in Computer Vision, it is sufficient to note that:

• points are represented by rows, hence linear operators
(e.g., rotations) are represented by post-multiplication
with a matrix;

• A1/p where A is n × p corresponds to taking the av-
erage of the rows;

• A
(
I − 11T

p

)
has the effect of subtracting to A its

rows average. The matrix
(
I − 11T

p

)
is symmetric and

idempotent.

B. Khatri-Rao product
The Khatri-Rao product [7], denoted by �, is in some

sense a partitioned Kronecker product, where by default the
column-wise partitioning is considered.

Let us consider two matrices A of order p × r and B of
order q×r and denote the columns ofA by a1 · · ·ar and the
those of B by b1 · · ·br. The Khatri-Rao product is defined
to be the partitioned matrix of order pq × r:

A�B = [a1 ⊗ b1, · · ·ar ⊗ br] (23)

where ⊗ denotes the Kronecker product.
A useful property involves diagonal matrices and the vec

operator, that transform a matrix into a vector by stacking
its columns. If X is diagonal, then

vec(AXB) = (BT �A) diag−1(X) (24)

where diag−1 returns a vector containing the diagonal el-
ements of its argument. Please contrast this with a similar
property involving a general X and the Kronecker product.

With B = I one obtains

vec(AX) = (I �A) diag−1(X). (25)

It it is easy to see that

(I �A) = blockdiag(a1 . . .an) (26)

where a1 . . .an are the columns of A and blockdiag is the
operator that construct a block diagonal matrix with its ar-
guments as blocks.

The solution of AXBT=Q, with X diagonal is equiva-
lent to solving:

(B �A) diag−1(X) = vecQ (27)

In the over-determined case the least squares solution is
given by

diag−1(X)=
(
(B�A)T(B�A)

)−1
(B�A)T vecQ (28)

which is equivalent to this more compact formulation [10]
with the Hadamard product, denoted by ◦:

diag−1(X) =
(
BTB ◦ATA

)−1
diag−1(ATQB). (29)



C. Matlab code
function [R t, a] = gPPnP(P,O,S,tol,pz)
% input
% P : matrix (nx3) of line versors
% O : matrix (nx3) of line origins
% S : matrix (nx3) 3D coordinates
% tol: exit tolerance
% pZ : positive Z flag
% output
% R: rotation matrix
% t: tanslation vector
% a: scale factor (only if required)

unit_scale = (nargout <3);
n = size(P,1); Z = diag(ones(1,n));
e = ones(n,1); II = eye(n)-((e*e’)./n);
err = +Inf; E_old = 1000*ones(n,3);
D = kr(eye(n),P’);

while err>tol
[U,˜,V] = svd((Z*P+O)’*II*S);
R=U*[1 0 0; 0 1 0; 0 0 det(U*V’)]*V’;
A = Z*P+O; AR=A*R;
if unit_scale

a=1;
else

a = trace((A)’*II*(A))/trace(AR’*II*S);
end
c = mean((a*S-AR),1)’;
Y = a*S - O*R - e*c’;
b = vec(R*Y’); v = D\b;
if pz, v(v<0) = 0; end
Z = diag(v);
E = Y-Z*P*R;
err = norm(E-E_old,’fro’); E_old = E;

end
t = -R*c;
end

function [R t, a] = gFiore(P,O,S)
% same usage as gPPnP

unit_scale = (nargout <3);
n = size(P,1); Z = diag(ones(1,n));
e = ones(n,1); II = eye(n)-((e*e’)./n);

M = [S,e]’; [˜,˜,V] = svd(M);
V2 = V(:,rank(M)+1:end);
D = ((P*P’).* (V2*V2’)); b=-diag(V2*V2’*O*P’);
v = D\b; Z = diag(v);
[U,˜,V] = svd((Z*P+O)’*II*S);
R=U*[1 0 0; 0 1 0; 0 0 det(U*V’)]*V’;
A = Z*P+O; AR=A*R;
if unit_scale

a=1;
else

a = trace((A)’*II*(A))/trace(AR’*II*S);
end
c = mean((a*S-AR),1)’;
t = -R*c;
end
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