
Real-time Incremental J-linkage for Robust Multiple Structures Estimation

Roberto Toldo and Andrea Fusiello
Department of Computer Science - University of Verona

Strada le grazie 15, Verona - Italy
{roberto.toldo| andrea.fusiello}@univr.it

Abstract

This paper describes an incremental, real-time imple-
mentation of J-linkage, a procedure that can detect multi-
ple instances of a model from data corrupted by noise and
outliers. The method is incremental, as it exploits the in-
formation extracted in the previous steps and processes the
data as they become available. It works in real-time, thanks
to several approximations that have been introduced to get
around the quadratic complexity of the original algorithm.
Tests have been carried out both with synthetic data and
real data.

1. Introduction

The problem of estimating the parameters of a mathe-
matical model from a set of observed data which contains
outliers is very frequent and well studied in Computer Vi-
sion. The RANSAC [7] algorithm is the most common so-
lution, both for its capability to handle an high fraction of
outliers and for its simplicity of implementation. In the re-
cent past, some efforts have been devoted – separately – to
enhance the efficiency for real-time application and to im-
prove the robustness against multiple models. However, no
endeavor have been made to cope with both issues simulta-
neously.

As for the multiple models issue, this work builds on
the J-linkage [17] approach, which proved to be very ef-
fective, but whose complexity is quadratic on the number
of points, thus making it unsuitable for real-time. The aim
of this work is to reduce the complexity of the J-linkage
method in order to be able to run it with real-time applica-
tions. Furthermore, the proposed algorithm is incremental,
for it processes the data as it arrives in time and exploits
the information collected in the previous steps. To the best
of our knowledge, this is the first algorithm specifically tai-
lored for robust multiple models estimation that can run in
a very time efficient way.

The paper is organized as follows. In Sec2 a brief sur-
vey of the state of the art will be carried out. In Sec.3 we

will shortly introduce the original J-linkage algorithm. In
Sec.4 we will describe the amendments made to the method
to decrease its time of execution and make it incremental.
In Sec.5 the results with both synthetic and real tests are
shown, while in Sec.6 conclusions are drawn.

2. Related work

The recent development of computer hardware have
made it possible to perform an increasing number of tasks
in real-time. Among the latter, robust model fitting is of-
ten a crucial operation. As a consequence, a number of
efforts have been made in order to increase the efficiency
of the standard RANSAC. Some improvements exploit the
idea that bad hypotheses can be discarded in an early stage,
without the need of verifying them against all data points.
In [2] a model is preliminarily tested using a subset ofd
randomly selected points. The remaining set of points is
evaluated only if the firstd points are inliers to the gener-
ated hypothesis. This pre-verification test allows a boost in
the efficiency even if more hypotheses need to be generated.

Further exploiting this idea, Capel [1] proposed a for-
mula to approximate the probability that the current gen-
erated hypothesis, evaluated only on a subset of points, is
better than the best generated model in the previous steps.
Most recently, [4, 11] described an optimal randomized ver-
ification strategy based on the theory of sequential decision
making.

Sometimes a similarity function between points is avail-
able, such as in the case of correspondences between two or
more images, or can be estimated. The Progressive Sample
Consensus (PROSAC) algorithm [3] is designed to use this
similarity score and generate the hypothesis with high sim-
ilarity first. Assuming that points with high similarity are
more likely to be inliers than points with low similarity, the
good hypotheses should be generated first.

The problem of obtaining the best guess in a fixed
amount of time has been faced for the first time by the pre-
emptive RANSAC procedure [13]. A fixed number of hy-
potheses are generated and compared against each other in
parallel. Using abreadth-firstapproach the hypothesis are

tested on a subset and only a fraction of them are evaluated
on the next subset.

A combination of techniques based on pre-verification
are used to evaluate a small subset of points giving an es-
timation of the inlier fraction. This preemption scheme is
the basis of the recent Adaptive Real-Time Random Sam-
ple Consensus (ARRSAC) algorithm [14].

Real-time applications usually also requires on-line pro-
cessing, meaning that data is not available as a batch but
it arrives progressively. Thus, a good algorithm not only
needs to be fast, but alsoincremental, i.e., it must process
the data as they become available, exploiting the results of
the previous steps. In [16] an incremental scheme is applied
to the Preemptive RANSAC in a vehicle relocation prob-
lem. The new features are used to generate new hypotheses
and updated accordingly with the preemption scheme.

If multiple instances of the same structure are present in
the scene, the robust estimator must tolerate both gross out-
liers andpseudo-outliers. The latter are defined in [15] as
“outliers to the structure of interest but inliers to a different
structure”. Algorithms designed for the single structure task
(like RANSAC) fail in this case.

A naive approach to multiple models fitting would be to
sequentially apply RANSAC and remove the inliers from
the data set as each model instance is detected. This has
been proven to be non optimal. The multiRANSAC al-
gorithm [19] define a RANSAC procedure that detects a
known number of models in a parallel fashion. The method
is effective, but fails when multiple intersecting models are
present and requires the number of models to be known be-
forehand.

Some methods exploit the fact that random sampling
yields clusters of models around the real ones in the param-
eter space. A popular method of this class is the Random-
ized Hough Transform (RHT) [18]. A histogram is built
over the parameter space and filled with the votes of ran-
dom sampled models. Peaks in the histogram correspond
to emerging models. Despite its intuitiveness, the method
has limited accuracy and low computational efficiency. Ad-
ditionally, defining a proper discretization of the parameter
space is not trivial. Some of the drawbacks of RHT can be
overcome if mean-shift [5] is applied to find density peaks
in parameters space.

In [17] random sampling is used to produce aconcep-
tual representationof points that are subsequently clustered
with a tailored procedure, called J-linkage. This method has
been proved to be very effective. However, in its original
formulation, the complexity is quadratic on the number of
points, thus making it unusable for real-time applications.

3. J-linkage algorithm

In this section the original J-linkage algorithm will be de-
scribed and analyzed in terms of computational complexity.

For further details please refer to [17].
The first step, as in RANSAC, consists in random sam-

pling, i.e. randomly chooseM minimal sample set to esti-
mate the model hypothesis. As pointed out in [12, 8, 19], if
the assumption that inliers tend to be closer to one another
than outliers is verified, the sampling strategy may be mod-
ified. J-linkage selects all but the first points of each sample
following an exponential probability. Namely, if a pointxi

has already been selected, thenxj has the following proba-
bility of being drawn:

P (xj |xi) =

{

1

Z
exp−

||xj−xi||
2

σ2 if xj 6= xi,

0 if xj = xi.
(1)

whereZ is a normalization constant andσ is chosen heuris-
tically. This requiresO(n2) time, wheren is the number
of points, since the pairwise Euclidean distance between all
the points must be computed.

When the pool of hypothesis has been generated, the
preference set(PS) of each point can be computed, i.e.,
the set of hypothesis a point has given consensus to, or
– in other words – the set of hypothesis itprefers. Each
point will be represented by its PS. The key observation
is that points belonging to the same structure have similar
PSs, hence they are close in theconceptual space{0, 1}M .
Therefore, J-linkage uses an agglomerative clustering pro-
cedure to find models. At the beginning every point belongs
to a separate cluster. At each step the two clusters with the
minimum pairwise distance are merged. The preference set
of a merged cluster is equal to the intersection of the original
clusters. The distance between two clusters is defined as the
Jaccard distancebetween their preference sets: Given two
setsA andB, the Jaccard distance is

dJ(A, B) =
|A ∪ B| − |A ∩ B|

|A ∪ B|
. (2)

The Jaccard distance ranges from0 (identical sets) to 1 (dis-
joint sets). Thecut-off value is set to1, which means that
the algorithm will only link together elements whose pref-
erence sets overlap. Outliers emerge as small clusters. The
general agglomerative clustering requiresO(n2) time for
construction andO(n2) time to compute the clusterization
with an underlying heap data structure.

4. Real-time J-linkage

The original J-linkage algorithm works in batch, i.e., it
processes all the data at once, and its computational com-
plexity does not suite real-time constraints. This section
will describe how we modified it in order to make it work
on-line in real-time. This means that the data becomes
available in pieces at each time step, and that it must be
processed to yield partial results before the next time step.

2

This newReal-time J-linkageis incremental(it processes
the data as it becomes available and reuses the information
extracted in the previous time step) and improves thetime
efficiencyof J-linkage.

4.1. Random sampling

A non-uniform sampling strategy for the points of the
sample other than the first, as explained in Section3, is im-
portant in most of the problems. However, a continuous
probability function defined over the distances between all
the points is too expensive to compute for a real-time appli-
cation. We propose to simplify Eq.1 so that the probability
of choosing a pointxj depends on whether or not it is in the
k-neighborhood of the already selected pointxi, namely:

P (xj |xi) =

{

Ph if xj ∈ k−Neighborhood(xi)

Pl if xj /∈ k−Neighborhood(xi)
(3)

with Ph >> Pl. Thek-neighborhood can be computed effi-
ciently by storing the data points in a KD-tree data structure.
Inserting or removing a node in the tree requiresO(log(n))

time, while querying requiresO(log(n
2

3 + k)) time in the
case of three-dimensional data.

4.2. On-line processing

The Real-time J-linkage performs an agglomerative clus-
tering every time period. The time between two consecu-
tive time steps is spent in three activities, as illustratedin
Fig. 1: the agglomerative clustering, the insertion/removal
of new/old data points and the update of the hypotheses
pool. In the following of this section we will describe these
three stages.

Figure 1. The on-line processing time is spent in three stages: clus-
tering step, point insertion and update of hypotheses.

4.2.1 Clustering

The agglomerative clustering consists in iteratively choos-
ing the closest two elements to be merged until the smallest
Jaccard distance is 1, as already explained in Sec.3. The
bottleneck is determining – at each iteration – the two clos-
est elements. At a first glance, storing the pairwise distances
in a heap seems the best choice, since the structure can be
built in O(n) time and the minimum key can be extracted
in constant time. In our application, however, the keys are

updated at every step, or eliminated (when the Jaccard dis-
tance is equal to 1) and each of these operations would cost
O(log n) time. In contrast, a double linked ordered list re-
quiresO(n log(n)) time to be constructed, but removing an
element from the list can be performed in constant time. Ev-
ery time a distance update occurs the list should be sorted
again, but a lazy update approach can be implemented. The
minimum updated distance is kept and compared against the
first element of the list: only when the latter is greater the
sorting takes place, and this occurs a very few times dur-
ing the clusterization, because distances are usually incre-
mented during the updates. For these reasons, we employed
a double linked list.

Furthermore, an approximation is introduced that stems
from the same observation underlying the local random
sampling: inliers tend to be closer to one another than out-
liers. Exploiting this fact, one can conjecture that the dis-
tance of two points in the conceptual space tends to be lower
if the points are closer in the Euclidean space. Thus, the al-
gorithm does not calculate the pairwise distance between
all the points in conceptual space, but only for points in the
Euclideank-neighborhood. The latter is readily available
from the KD-tree that was built previously. When two clus-
ters are merged together, the neighborhoods of the points
are merged accordingly: Thek-neighborhood of a cluster is
defined as the union of thek-neighborhoods of its members.
(Fig. 2).

Figure 2. When the red and green points (left) are merged in a
cluster, thek-neighborhood of the resulting cluster (right) is the
union of thek-neighborhoods of the two points.

4.2.2 Point insertion

In an incremental framework not only points are processed
(i.e., clustered) as soon as they become available, but they
are also discarded when a certain event occurs (e.g. a buffer
size is reached, a fixed time is elapsed, or the point is not
visible any more).

In principle, when a point is inserted the Real-time J-
linkage needs to compute its preference set and add it to
the agglomerative clustering as a singleton. In order to sat-
isfy the real-time constraint, incoming points are stored in a
FIFO buffer and fetched for insertion in batches of constant
size.

3

When a point is removed, instead, the algorithm updates
the preference set of the cluster it belonged to (which is the
intersection of the preference sets of the points that belong
to the cluster).

4.2.3 Update of the hypotheses

Whereas in the batch version of the J-linkage all the hy-
potheses are generated at once, in this on-line version a
fixed number of hypotheses is generated at each time step
and added to the pool, replacing the oldest ones. When a
new hypothesis is added, the preference set of all the points
must be updated accordingly, and the preference sets of the
clusters must be updated as well.

As a consequence, a cluster may broken apart during this
operation, due to the fact that the intersection of the prefer-
ence sets may be empty. In this case the points that belonged
to the clusters are re-inserted as singletons.

Then the agglomerative clustering step is run again on
the updated set of clusters.

Algorithm 1 REAL-TIME J-LINKAGE

Input: points stored in a queueQ.
Output: detected geometric primitivesR.

1. Fetchn points from Q and add them to the active
points setX and to the clusteringC as singletons.

2. Generatek hypotesis by randomly sampling the points
in X and add them to the hypotesis poolH , thereby
substituting thek oldest hypotesis.

3. Update the preference set of each cluster inC.

4. Perform agglomerative clustering onC (Sec.4.2.1).

5. Fit a geometric primitive to each cluster ofC and out-
put them.

6. Remove fromX andC points that are no longer visi-
ble.

7. Goto step 1.

5. Experiments

We tested both the time efficiency and the accuracy of
the proposed Real-time J-linkage on the task of 3D planes
extraction (data are 3D points and models are planes).

We run three categories of experiments: simulation with
synthetic data, simulation with real data coming from a
batch structure-and-motion pipeline and experiments with
PTAM1, a real-time software for tracking and mapping in
small environments [9, 10].

1Freely available at http://www.robots.ox.ac.uk/ gk/PTAM/

The algorithm have been coded C++ code and carefully
optimized. The bitwise operations are carried out using the
BitMagic library2, that implements several performance op-
timization for Intel platforms.

5.1. Synthetic data

Two examples have been synthetically generated. In the
first one, two planes are present, each one composed of 100
points corrupted by a small amount of Gaussian noise. Ad-
ditionally, 50 pure outliers were introduced. Real-time J-
linkage was fed with 10 points and generated 1000 hypoth-
esis per time step. The original J-linkage was repeatedly run
on the partial data.

Two sample results are shown in Fig.3, while a compar-
ison with the original J-linkage algorithm in terms of accu-
racy and time is reported in Tab.1. Theaccuracyis defined
by considering this as the problem of classifying inliers vs
outliers, so it is (# true positives + # true negatives) / # of
points.

In the second example, four planes have been gener-
ated, each one composed of 100 points corrupted by a small
amount of Gaussian noise and 50 pure outliers withal. Real-
time J-linkage was fed with 10 points and generated 2000
hypothesis per time step. The size of the hypothesis pool
was 10000 for both examples.

Two sample results are shown in Fig.4, while a compar-
ison with the original J-linkage algorithm in terms of accu-
racy and time is reported in Tab.2. The reader might notice
how the loss in accuracy with respect to J-linkage is bal-
anced out by a pronounced speed-up in execution time.

(a) Frame 15. (b) Frame 25.

Figure 3. Planes extracted at different times in the 2-planes exam-
ple.

Table 1. Comparison of J-linkage (JL) vs Real-time J-linkage
(RTJL) in the 4-planes example.

Time [s] Average fps Speed up Accuracy
JL 70.1 0.35 1 1.0
RTJL 3.1 8 22.61 0.72

2Freely downloadable from http://bmagic.sourceforge.net

4

(a) Frame 20. (b) Frame 45.

Figure 4. Planes extracted at different times in the 4-planes exam-
ple.

Table 2. Comparison of J-linkage (JL) vs Real-time J-linkage
(RTJL) in the 4-planes example.

Time [s] Average fps Speed up Accuracy
JL 459.85 0.097 1 1.0
RTJL 8.82 5.1 52.13 0.7125

5.2. Real data from SaM

We tested Real-time J-linkage with data coming from
SAMANTHA , a batch Structure-and-Motion (SaM) pipeline
[6, ?]. In order to simulate a real-time setting, points were
stored in a queue from which Real-time J-linkage fetched
subsets of ten at each time step.

Two data-set have been tested:CastelvecchioandVal-
bonne. The first one is composed of 871 points, and it took
23.36 seconds to run all the 88 steps. Two results are shown
in Fig. 5. The second example is composed of 673 points
and it took 14.69 seconds to run all the 63 steps. Two sam-
ple results are shown in Fig.6.

(a) Frame 15. (b) Frame 88.

Figure 5. Extracted planes at different times fromCastelvecchio
data-set. Different colors encode different planes.

5.3. Real data from PTAM

In order to test the proposed algorithm in a real envi-
ronment, we plugged it to the output of the PTAM (Par-
allel Tracking and Mapping for Small Augmented Real-
ity Workspaces) software. Although PTAM is mainly used
for augmented reality tasks, it can provide a rough three-
dimensional reconstruction of points in real-time.

Some output examples are shown in Fig.7. Points be-

(a) Frame 40. (b) Frame 63.

Figure 6. Extracted planes at different times fromValbonnedata-
set. Different colors encode different planes.

longing to the same plane share the same color. Provided
that the data is reliable enough, our method is capable of de-
tecting planes in real-time with good accuracy. Points were
inserted as soon as they were detected. Real-time J-linkage
generated 1000 hypothesis per time step (in this case the
clock is given by the frame rate of the input video), with a
pool of hypothesis of size 10000. Planes with less than 20
points were discarded.

A video of the system in action is available for download
3.

Figure 7. Different frames of the real-time simulation withPTAM
software. Different colors encode different planes.

3http://profs.sci.univr.it/ ˜ fusiello/demo/jlk/

5

http://profs.sci.univr.it/~fusiello/demo/jlk/

6. Conclusions

In this paper we have described an algorithm capable of
detecting multiple instances of a model from data corrupted
by noise and outliers in real-time. Starting from the origi-
nal J-linkage algorithm, several adaptations have been made
to make it incremental and faster. The trade-off between
time efficiency and accuracy can be controlled parametri-
cally by changing the number of points or hypothesis pro-
cessed at each step, the total length of the hypothesis pool
or the numberk of neighbors to take into account. The pro-
posed Real-time J-linkage can be applied to a wide range of
applications.

References

[1] D. Capel. An effective bail-out test for RANSAC consen-
sus scoring. InProc. British Machine Vision Conf., Oxford,
volume 10, 2005.1

[2] O. Chum and J. Matas. Randomized RANSAC withTd,d

test. InProc. British Machine Vision Conference, pages 448–
457, 2002.1

[3] O. Chum and J. Matas. Matching with PROSAC-progressive
sample consensus. InIEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2005. CVPR
2005, volume 1, 2005.1

[4] O. Chum and J. Matas. Optimal randomized RANSAC.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 30(8):1472–1482, 2008.1

[5] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(5):603–619, 2002.2

[6] M. Farenzena, A. Fusiello, and R. Gherardi. Structure-and-
motion pipeline on a hierarchical cluster tree. InProceedings
of the IEEE International Workshop on 3-D Digital Imaging
and Modeling, ICCV Workshops, pages 1489–1496, Kyoto,
Japan, October 3-4 2009.5

[7] M. Fischler and R. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analy-
sis and automated cartography.Morgan Kaufmann Readings
Series, pages 726–740, 1987.1

[8] Y. Kanazawa and H. Kawakami. Detection of planar regions
with uncalibrated stereo using distribution of feature points.
In British Machine Vision Conference, pages 247–256, 2004.
2

[9] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. InProc. Sixth IEEE and ACM Inter-
national Symposium on Mixed and Augmented Reality (IS-
MAR’07), Nara, Japan, November 2007.4

[10] G. Klein and D. Murray. Improving the agility of keyframe-
based SLAM. InProc. 10th European Conference on Com-
puter Vision (ECCV’08), pages 802–815, Marseille, October
2008.4

[11] J. Matas and O. Chum. Randomized RANSAC with sequen-
tial probability ratio test. InTenth IEEE International Con-
ference on Computer Vision, 2005. ICCV 2005, volume 2,
2005.1

[12] D. Myatt, P. Torr, S. Nasuto, J. Bishop, and R. Craddock.
NAPSAC: High noise, high dimensional robust estimation.
BMVC02, pages 458–467, 2002.2

[13] D. Nister. Preemptive RANSAC for live structure and motion
estimation. Machine Vision and Applications, 16(5):321–
329, 2005.1

[14] R. Raguram, J. Frahm, and M. Pollefeys. A Comparative
Analysis of RANSAC Techniques Leading to Adaptive Real-
Time Random Sample Consensus. InProceedings of the 10th
European Conference on Computer Vision: Part II, pages
500–513. Springer, 2008.2

[15] C. V. Stewart. Bias in robust estimation caused by dis-
continuities and multiple structures.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(8):818–833,
1997.2

[16] K. Tanaka and E. Kondo. Incremental RANSAC for online
relocation in large dynamic environments. InRobotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE In-
ternational Conference on, pages 68–75, 2006.2

[17] R. Toldo and A. Fusiello. Robust Multiple Structures Es-
timation with J-Linkage. InProceedings of the 10th Euro-
pean Conference on Computer Vision: Part I, pages 537–
547. Springer, 2008.1, 2

[18] L. Xu, E. Oja, and P. Kultanen. A new curve detection
method: randomized Hough transform (RHT).Pattern
Recognition Letters, 11(5):331–338, 1990.2

[19] M. Zuliani, C. S. Kenney, and B. S. Manjunath. The multi-
RANSAC algorithm and its application to detect planar ho-
mographies. InProceedings of the IEEE International Con-
ference on Image Processing, Genova, IT, September 11-14
2005.2

6

