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Abstract

In this paper we formulate the Perspective-n-Point
(a.k.a. exterior orientation) problem in terms of an instance
of the anisotropic orthogonal Procrustes problem, and de-
rive its solution. Experiments with synthetic and real data
demonstrate that our method reaches the best trade-off be-
tween speed and accuracy. The MATLAB code reported in
the paper testifies that it is also exceedingly simple to im-
plement.

1. Introduction
The problem of estimating the position and orientation

of a perspective camera given its intrinsic parameters and

a set of world-to-image correspondences is known as the

Perspective-n-Point camera pose problem (PnP) in com-

puter vision or exterior orientation problem in photogram-

metry. In both communities it has received much attention,

being one of the building blocks for many applications like

structure from motion, object/camera localization, robotics,

just to mention a few. An extensive literature exists on this

topic, which will be summarized in Sec. 2.

The trade-off that all the methods face is between speed

and accuracy. Direct methods are usually faster but less ac-

curate, as they do not minimize a significant cost function,

whereas iterative methods, that explicitly minimize a mean-

ingful geometric error are more accurate but slower. Our

method reaches the best trade-off between speed and accu-

racy and is easier to implement than its closest competing

algorithm [21].

On the theoretical side, the contribution of this paper lies

in casting the PnP problem as an instance of the Orthogo-
nal Procrustes (OP) problem, namely an anisotropic OP [4]

where each measurement may have a different scaling fac-

tor. This particular version of the problem has never been

considered before in the literature, hence we will derive its

general solution.

In this respect, the closest work to our is [10]: the author

recognizes that, if the depths of the 3D points are known,

the exterior orientation problem can be reduced to an ab-
solute orientation problem. Hence, he first finds the depth

with an handcrafted method and then recovers the absolute

orientation by solving an orthogonal Procrustes problem.

2. Background and Related Work
In literature several solutions for the PnP problem have

been presented. They can be classified along several di-

mensions, the most relevant being: iterative/closed form,

minimal (n = 3 or 4)/general (∀n ≥ 3), linear/non-linear

solution. Table 1 gives an overview of this classification,

whereas each method will be briefly described in the fol-

lowing.

Iterative approaches ([27], [18], [25],[22]) generally for-

mulate the pose estimation as a non-linear least-squares

problem minimizing a cost function related to a geometric

(e.g. reprojection residual) or algebraic error [20]. They

usually achieve better accuracy compared to the closed-

form methods at a price of a significant computational

load. They generally need a good initial guess in or-

der to converge properly to the correct solution. In [28]

the authors minimize an error based on collinearity in 3D

space, they successively improve an estimate of the rotation

matrix enforcing the orthogonal constraint and then com-

pute the translation vector. The method proposed in [7]

(POSIT) applies iteratively a linear closed-form solver for

a scaled orthographic projection camera. It alternates be-

tween computing the (orthographic) pose and computing

correction factors that are directly connected to the points

depth. The final perspective pose is obtained from a se-

quence of scaled orthographic approximations. More re-

cently, [31] presented an algorithm that transforms in linear

time the minimization problem into a semi definite positive

program (SDP) and than solves it using SeDuMi [34], an

iterative solver that yield a global optimal solution.

Conversely, closed-form algorithms directly compute the

camera pose formulating the problem into a system of equa-

tions. The first closed-form methods [17, 9, 11] dealt with

the so-called P3P problem, which aims at finding the ex-

terior orientation for the minimal case n = 3. The P3P
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Table 1. Classification of state-of-the-art methods

iterative closed

form

n = 3 n general linear nonlinear

Lowe [27] x x x

Hesch [21] x x x

Fiore [10] x x x

Schweighofer [31] x x x

Lepetit [26] x x x

Kneip [24] x x x

Ansar [1] x x x

Lu [28] x x x

Gao [13] x x x

DeMenthon [7] x x x

problem implies the computation of multiple solutions, up

to four as first explained in [9, 17]. An extensive review

of these works published before 1994 can be found in [19].

More recently, [13] presented an algebraic approach com-

bined with a set of analytical criteria to determine the num-

ber of real positive solutions. They also provided a more

intuitive geometric approach that involves linear inequali-

ties. In [24] the authors proposed a novel parameterization

of the P3P problem which computes in one stage the orien-

tation and the position of the camera in the world reference

frame. Several solutions [11, 30, 10, 1, 26] have been pro-

posed for the general case n ≥ 3. In [26] the main idea is

to represent the n points in the object space as a weighted

sum of only four control points and consequently to solve

the problem in terms of the camera reference coordinates of

these four virtual points. This transformation can be done

in O(n). Hesh et al. [21] recently presented a closed-form

method that minimize a nonlinear least-squares cost func-

tion whose size is not dependent on the number of points.

Orthogonal Procrustes analysis is a valuable tool to per-

form the direct least squares solution of similarity transfor-

mation problems in any dimensional space. At first, it was

used for the multidimensional rotation and scaling of dif-

ferent matrix configuration pairs [32, 33]. Successively, the

solution was generalized for the simultaneous least squares

matching of more than two corresponding matrices [16, 35].

Procrustes analysis was originally applied in factor anal-

ysis. Only more recently, this technique became popular

and applied for the direct transformation problem solution

in many other scientific fields, like for instance shape anal-

ysis [15, 8], shape registration [29], medicine [14].

Some applications of the OP analysis in photogramme-

try, for matching different 3D object models from images

or matching 3D laser point clouds, are due to [5] and [2]

respectively. In these cases the authors applied the so called

generalized version of the OP problem to simultaneously

match more than two coordinate matrices of corresponding

points expressed in different reference systems.

Very recently, an interesting extension of the OP analysis

with anisotropic scaling has been proposed by [4], also in its

generalized form [3]. The algorithm deals with anisotropic

scaling along space dimensions and is based on an itera-

tive block relaxation technique [6] that starts with an unin-

formed initialization.

3. Method
Given a number of 2D-3D point correspondences mi ↔

Mi and the intrinsic camera parameters K, the PnP problem

requires to find a rotation matrix R and a translation vector

t (which specify attitude and position of the camera) such

that:

ζim̃i = K[R|t]M̃i for all i. (1)

where ζi denotes the depth1 of Mi, and the˜denotes homo-

geneous coordinates (with a trailing “1”).

After some rewriting, (1) becomes:

⎡
⎢⎣

ζ1 0 . . . 0
...

...
. . .

...

0 0 . . . ζn

⎤
⎥⎦

︸ ︷︷ ︸
Z

⎡
⎢⎣
p̃T

1
...

p̃T
n

⎤
⎥⎦

︸ ︷︷ ︸
P

R +

⎡
⎢⎣
cT

...

cT

⎤
⎥⎦

︸ ︷︷ ︸
1cT

=

⎡
⎢⎣
MT

1
...

MT
n

⎤
⎥⎦

︸ ︷︷ ︸
S

. (2)

where p̃i = K−1m̃i, c = −RTt, and 1 is the unit vector.

In matrix form:

S = ZPR + 1cT (3)

where

P is the matrix by rows of (homogeneous) image co-

ordinates defined in the camera frame,

S is the matrix by rows of point coordinates defined in

the external system,

Z is the diagonal (positive) depth matrix,

1The depth of a point is its distance from the focal plane of the camera.
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c is the coordinate vector of the projection centre,

R is the orthogonal rotation matrix.

One can recognize an instance of the classical OP model

[33], generalized by the fact that the usual (isotropic) scale

factor is substituted by an anisotropic scaling characterized

by a diagonal matrix Z of different scale factors. Indeed

this can be defined as an anisotropic OP problem with data
scaling.

Figure 1. The position and attitude of the camera plus the depth of

the points are estimated in such a way to minimize the length of the

Δs for all the points, in a least squares sense. The estimated depth

defines a 3D point along the optical ray of the image point p. The

segment (perpendicular to the optical ray) joining this point and

the corresponding reference 3D point M is Δ.

3.1. Analytical Solution of the Anisotropic Orthog-
onal Procrustes

Anisotropic OP comes in – at least – three flavors:

pre/post scaling on the variables (or space dimensions) [4],

and data scaling, where each data point or measurement can

be scaled independently of the others. The latter version –

which fits our formulation of the PnP problem – has never

been considered in the literature, hence we derive its general

solution here along the same line as in [33].

To obtain the least squares solution for model (3), let us

make explicit the residual matrix Δ:

S = ZPR + 1cT + Δ. (4)

The geometric interpretation of Δ is a matrix whose rows

are difference vectors between reference 3D points (S) and

the the back-projected 2D points (P ) based on their esti-

mated depths (Z) and the estimated camera attitude and

position (R, c). The solution of the anisotropic OP prob-

lem finds Z,R and c in such a way to minimize the sum of

squares of the residual Δ, i.e., the sum of the squared norm

of the difference vectors mentioned above (see Fig. 1). This

can be written as

min‖Δ‖2F subject to RTR = I (5)

The problem is equivalent to the minimization of the the

Lagrangian function

F = tr
(
ΔTΔ

)
+ tr

(
L
(
RTR− I

))
(6)

where L is the matrix of Lagrangian multipliers. This can

be solved by setting to zero the partial derivatives of F with

respect to the unknowns R, c and the diagonal matrix Z.

The derivation of the formulae is reported in Appendix A.

Whereas in the classical solution of the extended OP

problem [33] one can recover first R, that does not depend

on the other unknowns, then the isotropic scale (that de-

pends only on T ) and finally c, in the anisotropic case the

unknowns are entangled in such a way that one must resort

to the so called “block relaxation” scheme [6], (of which

EM is the most famous instance), where each variable is al-

ternatively estimated while keeping the others fixed. The

algorithm can be summarized as follows:2

Algorithm 1 PROCRUSTEAN PNP (PPNP)

Input: a set of 2D-3D correspondences (P, S)
Output: position c and attitude R of the camera

1. Start with Z = 0 (or any guess on the depth);

2. Compute R = Udiag
(
1,1,det(UV T)

)
V T

with UDV T = PTZ
(
I − 1 1T/n

)
S;

3. Compute c = (S − ZPR)T 1/n;

4. Compute Z = diag (PR(ST−c1T)) diag (PPT)−1
;

5. Iterate over steps 2, 3, 4 until convergence.

In step 2 we use R = Udiag
(
1,1,det(UV T)

)
V T instead

of R = UV T in order to guarantee that R is not only orthog-

onal but has positive determinant [23]. Moreover, the non-

negativity constraint on Z must be enforced a-posteriori in

step 4 by clipping to zero negative values, if any.

One might recognize in this alternation between comput-

ing pose and computing depth a resemblance of the POSIT

algorithm [7].

4. Experimental validation
We compared our Procrustean PnP algorithm (PPnP)

with state of the art, recent algorithms whose implemen-

tation is available on the WWW, namely:

2The diag operator is overloaded: when applied to a vector it returns

a matrix with a given diagonal; when applied to a matrix it suppresses

off-diagonal elements.
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DLS: the direct least-squares method of Hesch and

Roumeliotis [21];

EPnP: the non-iterative linear solution of Lepetit et al.
[26];

gOp: the Semi Definite Program approach of

Schweighofer and Pinz [31];

Fiore: the SVD-based method by Fiore [10]3.

The MATLAB code of PPnP is reported in Appendix B.

In all the experiments the initial depths were set to zero,

as specified in the algorithm, and the method always con-

verged to the correct solution. The algorithm terminates

when the difference between the values of the residual ma-

trix of two consecutive iterations is smaller than a threshold

(set to 10−5 in our experiments).

We run both synthetic and real experiments. In the syn-

thetic case we randomly distribute n = {6, . . . , 50} 3D

points at a distance between 0.5 and 1.5 meters from the

camera. The focal length of the camera were set to 600

pixel and the image resolution is 800 × 600. The im-

age coordinates obtained from the projection of the 3D

points have been perturbed with different values of noise

σ = {1, . . . , 10} [pixel]. For each value of n the test has

been run 100 times and the average error norm has been

computed.

Results are reported in Figs. 2, 3, and 4. As a figure

of merit the rotation and translation errors are shown. The

former is the angle of the residual rotation, computed as

‖log(RTR̂)‖F , where R is the ground truth, R̂ is the actual

rotation and ‖·‖F is the Frobenius norm.

Please note that, although Fiore has the closest formu-

lation to ours, its accuracy is consistently worse. This is

because in the depth recovery step an algebraic residual is

implicitly minimized, hence the final solution is not statisti-

cally optimal.

The rundown of the experiments is that, among the three

more accurate methods (PPnP, gOP and DLS), our method

is the fastest, although to a small degree. It should be no-

ticed, however, that comparing MATLAB implementations

for performances gives only rough figures (as pointed out

by [21]). Apart from that, there are other positive features

that need to be considered, namely:

• casting PnP in the procrustean framework is interesting

per-se;

• the PPnP algorithm is particularly easy to implement

(see Appendix B) for it only needs matrix algebra and

SVD (cf. [21, 31]);

3The code for this method is not available on the WWW, so we used

our implementation of the formulation found in [12].

• being iterative, the speed vs accuracy trade-off can be

controlled with the termination threshold;

• albeit iterative, PPnP always converged with an unin-

formed initialization (Z = 0) in all our experiments.

In real experiments we considered real data coming

from structure-and-motion reconstructions, shown in Fig. 5,

where cameras and points have been bundle adjusted. In the

lack of a proper ground truth we took this as the reference.

Basing on given 2D-3D correspondences we oriented each

camera with respect to the structure and computed the er-

rors. We choose randomly n = {20, . . . , 50} 2D-3D pairs

from the set of correspondences of each camera. For these

experiments the minimum value of n has been set to 20 in-

stead of 6 in order to deal with the presence of noise. For

each n value we run the test 100 times and the orientation

and translation average error norms have been computed. In

this case we could not test gOP algorithm because the code

for the planar case is not longer available on the WWW.

The first dataset is shown in Fig. 5, results are reported in

Fig. 6. The second reported experiment has been run us-

ing the standard dataset “Herz-Jesu-P8” available on the

WWW4. The related results are shown in Fig. 7. The re-

sults of the real experiments confirm the algorithms’ per-

formance in the synthetic case, PPnP achieves always the

best accuracy, instead DLS has a slightly worse error, with

an unexplainable glitch for camera n. 4 of the “RectStone”

dataset.

5. Conclusions
The contribution of the paper is both theoretical and

practical: on the theoretical side it provides a procrustean

formulation of the PnP problem; on the practical side it de-

scribes an algorithm which is very easy to implement (MAT-

LAB code provided in Appendix B) and achieves the opti-

mal trade-off between speed and accuracy, as experiments

have shown.

A. Derivation of the solution of the Anisotropic
Procrustes Model

Let us start from (6), and substitute (4) for Δ:

F = tr
(
STS

)
+ tr

(
RTPTZTZPR

)
+ n tr

(
cTc

)−
− 2 tr

(
ST1cT

)− 2 tr
(
STZPR

)
+

+ 2 tr
(
RTPTZT1cT

)
+ tr

(
L
(
RTR− I

))
(7)

The projection centre c can be obtained by equating to

zero the partial derivative:

∂F

∂c
= 2nc− 2ST1 + 2RTPTZT1 = 0 (8)

4http://cvlab.epfl.ch/∼strecha/multiview/
denseMVS.html
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Figure 2. Rotation and translation errors vs noise using 30 correspondences. The average rotation error and the average translation error

are plotted against the standard deviation of the noise added to image coordinates. PPnP, gOP, and DLS are practically superimposed with

the lowest error.

Figure 3. Rotation and translation error vs number of points. The average rotation and translation error are plotted against the number of

points that have been used.

Hence:

c = (S − ZPR)T 1/n (9)

Once the derivatives of F with respect to R and c are set

to zero, it results:

∂F

∂R
=PTZTZPR− PTZTS + PTZT1cT+

+ R(L + LT)/2 = 0
(10)

where Q = (L + LT)/2.

Let us multiply (10) on the left by RT:

RTPTZTZPR−RTPTZTS + RTPTZT1cT+

+ RTR(L + LT)/2 = 0
(11)

Since matrices RTPTZTZPR and (L + LT)/2 are sym-

metric, then

sym [RTPTZTS −RTPTZT1cT]. (12)

Substituting (9) in (12), it results 5

sym [RTPTZTS−RTPTZT
(
11T/n

)
(S−ZPR) ] (13)

which is equivalent to

sym[RTPTZTS −RTPTZT
(
11T/n

)
S+

+ RTPTZT
(
11T/n

)
ZPR ] (14)

5The predicate sym[ ] is true when the argument is a symmetric ma-

trix.
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Figure 4. Execution time vs number of points. The average execution time is plotted against the number of points involved. gOP is by far

the slowest algorithm. On the right a zoom-in shows that PPnP is slower than EPnP and Fiore, but slightly faster than DLS.

Figure 5. The “RectStone” dataset. The figure depicts point and

cameras obtained by a structure-and-motion pipeline.

and finally:

sym[RTPTZT
(
I − 11T/n

)
S+

+ RTPTZT
(
11T/n

)
ZPR ]. (15)

Since RTPTZT
(
11T/n

)
ZPR is symmetric, also the first

term must be symmetric, i.e.,

sym [RTPTZT
(
I − 1 1T/n

)
S] (16)

is also symmetric.

Let us define the matrix T equal to

T = PTZT
(
I − 1 1T/n

)
S (17)

Matrix RTT is symmetric, therefore the following condi-

tion must be satisfied

RTT = TTR (18)

that is equivalent to

TTT = RTTTRT (19)

Let T = UDV T be the SVD of T , with matrices V,U or-

thonormal. Substituting into (19) yields:

UD2UT = RV D2V TRT (20)

From (20) U = RV and finally R = UV T.
The least squares solution for the diagonal matrix Z can

be obtained by setting to zero the partial derivatives of (7)

with respect to Z.

∂F

∂Z
=

∂

∂Z
tr (RTPTZTZPR)− 2

∂

∂Z
tr (STZPR)+

+ 2
∂

∂Z
tr (RTPTZT1cT)

∂F

∂Z
=

∂

∂Z
tr (ZPRRTPZT)− 2

∂

∂Z
tr (PRSTZ)+

+ 2
∂

∂Z
tr (PRc1TZ)

∂F

∂Z
=Z(2PRRTPT)− 2PRST + 2PRc1T

∂F

∂Z
=2ZPPT − 2PRST + 2PRc1T

(21)

By setting the derivatives to zero one obtains:

ZPPT = PR(ST − c1T) (22)

hence

Z = diag (PR(ST − c1T)) diag (PPT)
−1

(23)

where diag(·) returns a diagonal matrix that has the same

diagonal elements of its argument.
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Figure 6. Mean rotation and translation error for each of the 17 cameras of the “RectStone” dataset.

Figure 7. Mean rotation and translation error for each of the 8 cameras of the “Herz-Jesu-P8” dataset.

B. MATLAB code

function [R T] = ppnp(P,S,tol)
% input
% P : matrix (nx3) image coordinates in camera
% reference [u v 1]
% S : matrix (nx3) coordinates in world
% reference [X Y Z]
% tol: exit threshold
% output
% R : matrix (3x3) rotation (world-to-camera)
% T : vector (3x1) translation (world-to-camera)

n = size(P,1); Z = zeros(n); e = ones(n,1);
A = eye(n)-((e*e’)./n); II = e./n;
err = +Inf; E_old = 1000*ones(n,3);

while err>tol
[U,˜,V] = svd(P’*Z*A*S);
VT = V’;
R=U*[1 0 0; 0 1 0; 0 0 det(U*VT)]*VT;

PR = P*R;
c = (S-Z*PR)’*II;
Y = S-e*c’;
Zmindiag = diag(PR*Y’)./(sum(P.*P,2));
Zmindiag(Zmindiag<0)=0; Z = diag(Zmindiag);
E = Y-Z*PR;
err = norm(E-E_old,’fro’); E_old = E;

end
T = -R*c;
end
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