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Abstract

This paper describes an automatic pipeline that is able
to take a set of unordered range images and align them into
a full 3D model. A global voting scheme is employed for
view matching, inspired by 2D techniques for image mo-
saicing. Then a multiple view registration approach is in-
troduced, which aims at optimizing the alignment error si-
multaneously for all the views. Experiments demonstrate
the effectiveness of the method.

1. Introduction
Three-dimensional (3D) registration of range images ac-

quired by scanners is still a critical issue for obtaining a

complete 3D model of objects or buildings [3]. In particular,

as defined in the taxonomy suggested by [14], when several

(> 2) scans are involved and initial pose estimates are un-

known, the problem is called multiview surface matching.

Three main interrelated sub-problems need to be solved: i)

determining which views overlap, ii) determining the rela-

tive pose between each pair of overlapping views, and iii)

determining the absolute pose of the views.

Many works have been proposed that tackle these issues

but few of them address the three sub-problems at the same

time. The first sub-problem aims at improving the automa-

tion of the process, and it is relevant especially when the

acquisition sequence is not available. The output of this

stage can be encoded in an adjacency matrix that contains

overlap information. Pairwise registration (sub-problem ii)

is customarily solved with the Iterative Closest Point (ICP)

algorithm [4], which represent the gold standard for this

problem. As observed in [14], there is a mutual dependency

between the overlap and relative poses: If the relative poses

are known the overlap can be easily computed, and vice-

versa. Hence, in general, these two phases are carried out in

a cooperative fashion. Finally, once the adjacency matrix is

known and relative poses are available, multiple view reg-

istration (sub-problem iii) is addressed, where the solution

of the absolute pose estimation is computed simultaneously

for all views.

In this paper we tackle all the three aforementioned

sub-problems by proposing a multiview surface matching

pipeline which deals with automation of the process and ac-

curacy of results. More specifically, our main contribution

is twofold:

• we propose a new feature-based scheme for 3D partial

view matching which makes the computation of adja-

cency matrix fully automatic, and

• we extend a pairwise registration algorithm [12] in or-

der to cope simultaneously with multiple views.

2. Previous work
Roughly speaking multiple-view registration techniques

cope with two main issues: (i) error accumulation and (ii)
the automation of the process. In the following we report

the state-of-art according to these two dimensions.

Reducing error accumulation. When the ordering of

the sequence of views V1, ..., Vn is available, the registra-

tion can be performed pairwise between consecutive views

(i.e., between views Vi and Vi+1) and therefore each view

can be moved to the global reference system by concate-

nating pairwise transformations. In general, even if all

the pairs are apparently well registered, misalignments ap-

pear when the full model is reconstructed due to the ac-

cumulation and propagation of the registration error. The

general idea of multiple-view registration techniques is to

solve simultaneously for the global registration by exploit-

ing the interdependence between all views at the same

time. This introduces additional constraints which reduce

the global error. A comparative study of similar multiple-

view registration methods was performed in [11]. In [26]

a method is described that first performs registration pair-

wise, and then uses the estimated pairwise transforma-

tions as constraints in a global multi-view stage. In [10]

a method that distributes registration errors evenly across

all views was presented. It works in the transformation

space, and the ordering of the views is required. More re-

cently, in [5] a non-linear optimization method is proposed

which minimizes the registration error over the manifold
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of rotations. Moreover, a subsampling procedure is intro-

duced to improve the speed of corresponding points esti-

mation. Finally, correspondence-estimation and multiview-

optimization steps are iterated until convergence is reached.

In [29] the authors extended [26], by representing the mo-

tions as dual quaternions, and by casting the multiview reg-

istration problem into a diffusion of rigid transformations

over the graph of adjacent views.

It should be noted that [5, 29] do not optimize correspon-

dences, which are considered fixed or allowed to vary in al-

ternation with the optimization of the rigid transformations

(but the convergence of such procedure is not discussed).

Automating registration. Especially when the full model

is composed of a large number of scans the view order might

not be available and therefore should be manually specified.

Many methods were proposed to improve the automation

of multiple-view registration. In [14] a global optimization

process searches a graph constructed from the pairwise view

matches for a connected sub-graph containing only correct

matches. This phase is implemented by computing a Min-

imum Spanning Tree (MST) to eliminate incorrect but lo-

cally consistent matches. In [20] it is proposed to address

the automatic alignment as a location-recognition-problem

by integrating range data with 2D intensity images. In [24]

each range image is represented by multiple tensors and a

global voting scheme is proposed by allowing tensors of

each view to be simultaneously matched with the tensors

of the remaining views. In [2] a fast and robust technique is

introduced for pairwise registration based on the alignment

between coplanar random 4-points sets. Other approaches

use both global and local pre-alignment techniques to se-

lect the overlapping views by computing a coarse align-

ment between all the pairs. In [22] the pre-alignment is

performed by extracting global features (namely, extended

Gaussian images) from each view. Conversely, in [19] the

pre-alignment is computed by comparing local signatures

of feature points. Then, the best view sequence is estimated

by solving a standard Travelling Salesman Problem (TSP).

Similarly, in [6] a local feature point approach is proposed

which emphasizes the speed of the procedure rather than ac-

curacy. Note that in [6] the ordering of the sequence must

be known in advance. An exhaustive comparison between

local feature-based methods for partial shape matching is

reported in [25].

Our approach addresses both the aforementioned issues.

It automatically estimates the adjacency matrix of the views

by employing a local feature-based technique, and solves

the simultaneous registration among all the views by mini-

mizing a global alignment error. Point correspondences can

vary during the optimization procedure.

3. Method
Our pipeline is composed of three main steps: i) keypoint

detection and description, ii) overlap estimation by keypoint

matching, and iii) global registration.

In step i) keypoints are extracted using [9] (see also [7]

for a review). In general, these keypoints are associated to

distinctive parts of the shape such as anatomical parts (i.e.,

eyes, nose, fingers) or articulated junctions (i.e., for articu-

lated objects). In step ii) keypoint descriptors are compared

in order to estimate the overlap among views. The idea

is that two views are overlapping if they share a sufficient

number of similar keypoints. Being inspired by methods

for 2D mosaicing [8], we propose a global voting scheme.

Instead of computing the keypoint matching between view

pairs separately, we enable a keypoint to be compared with

keypoints of all the views at the same time. This drastically

reduces the computational complexity of the adjacency ma-

trix estimation. In step iii) we propose a multiview opti-

mization method by extending the one described in [12] to

work on multiple views. In this way the absolute orien-

tation of the views is estimated by minimizing the global

alignment error.

3.1. Keypoint extraction and description

We adopt a feature-based approach which is composed

of two main phases: i) keypoint extraction, and ii) keypoint

description.

3.1.1 Keypoint extraction

Keypoint extraction aims at detecting few and distinctive

feature points from the shape. We employ the method pro-

posed in [9], that consists of three main steps: (i) mul-

tiscale representation, (ii) 3D saliency measure definition,

and (iii) keypoint detection (for a complete explanation of

the method see [9]).

The multiscale representation is obtained by applying N
Gaussian filters on the mesh, obtaining N multidimensional

filtering maps {Fi}, i = 1, . . . , N . The neighborhood re-
gion of a vertex v, over which the filtering is applied, is built

by expanding an n-rings search starting from v, and collect-

ing all those vertices displaced within a distance equal to

2.5σ, where σ is the standard deviation of the Gaussian ker-

nel. The Difference-of-Gaussians (DoG) operator is defined

as:

Fi(v) = g(v, σi)− g(v, 2σi) (1)

where σi is the value of the standard deviation associated to

scale i. Six scales of filtering have been fixed, correspond-

ing to standard deviation values σi ∈ {1ε, 2ε, 3ε, 4ε, 5ε, 6ε},
where ε amounts to 0.1% of the length of the main diagonal

located in the bounding box of the model.

It is worth noting that Fi(v) is a 3D vector which denotes

how much the vertex v has been moved from its original
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position after the filtering, and this can be taken as a saliency

measure. In order to reduce the displacement vector Fi(v)
to a scalar quantity it is projected to the normal n(v) of the

vertex v. In this fashion the scale map Mi is obtained as:

Mi(v) = ||n(v) · (g(v, σi)− g(v, 2σi))||. (2)

Each map is then normalized by following the approach of

[16]: normalize the values of the map to a fixed range; find

the global maximum t; find all the other local maxima and

compute their average t̂; multiply the map by (t− t̂)2 . The

effect of this normalization is to increase the prominence of

the highest peaks. A saliency map is obtained by summing

the contributions of each scale map.

Finally, salient points are obtained as maxima of the

saliency map: a point is detected if it is a local maximum

and its value is higher than 30% of the global maximum.

An example of such keypoints is shown in Fig. 1.

Figure 1: Two views from the Bunny datasets with the ex-

tracted keypoints in red.

3.1.2 Keypoint description

Keypoint description aims at attaching a descriptor to each

keypoint that must be: i) distinctive of the point, ii) invariant

to rigid transformations, and iii) resilient to nuisances such

as clutter, noise, partial views, sampling rate. We use spin-

images [17], a well-known surface representation that have

been successfully employed in shape matching and object

recognition.

For the sake of self-containedness we will briefly sum-

marize the approach.

A 3D point p with its normal n defines a local coordinate

system (α, β), where α is the radial distance to the surface

normal line and β is the axial distance above the tangent

plane.
Given an oriented point (p, n) a spin-map SO is defined

as the function that projects 3-D points x to the local coor-
dinate system defined by (p, n)

Sp(x)→ (α, β) = (

q
‖x−p‖2 − (n · (x−p))2, n · (x−p)) (3)

A spin-image for point p is generated by applying the spin-

map to all the points x of the surface and then accumulating

the results in a discretized (α, β) space. In order to make the

descriptor more local and less sensitive to clutter a support

distance and a support angle are introduced that limits the

contribution to the spin image to those points x that meets

some criteria based on distance from p and angle between

p and the surface normal of x.

If surfaces are uniformly sampled, the spin-images of

two corresponding points on different instances of the same

object will be the “similar” in some sense. In the origi-

nal paper the authors proposed to use the cosine distance to

measure similarity; in this work we are forced to use instead

the Euclidean distance, in order to be able to employ a k-d

tree for matching.

In the light of the above description, there are three pa-

rameters that control the generation of spin-images: bin

size, support distance, and support angle. Following [17]

the bin size is set to 1.5 times the mesh resolution, and the

support angle to 75deg. The support distance have been set

to 1/10 of the size of the model, in order to compel the spin-

image to act as a local descriptor.

3.2. Pairwise view matching

The objective is to find matching keypoints in pairs of

views with some overlap. As the range views are unordered,

the first step is to identify in a computationally efficient way

pairs of views that potentially share a good number of key-

points, instead of trying to match keypoints between every

view pair, as they they are O(n2) (where n is the number

of views). We follow the approach of [8] for 2D image mo-

saicing. In this broad phase we consider only a constant

number of descriptors in each view (we used 100, where a

typical view contains thousands of keypoints). Then, each

keypoint descriptor is matched to its � nearest neighbors in

feature space (we use � = 6). This can be done efficiently

by using a k-d tree to find approximate nearest neighbors

(we used the ANN library1). A 2D histogram is then built

that record in each bin the number of matches between the

corresponding views: we call it the keypoint co-occurrence
matrix H (see Fig. 2).

Then, in the narrow phase every view will be matched

only to the m views (we use m = 8) that have the great-

est values in its row of the keypoint co-occurrence matrix

H . Hence, the number of views to match is O(n), being m
constant. Precise view-to-view matching follows a nearest

neighbor approach as in [21], with rejection of those key-

points for which the ratio of the nearest neighbor distance

to the second nearest neighbor distance is greater than a

threshold (set to 1.5 in our experiments). These matches are

then used to compute the rigid transform that aligns the view

pairs using MSAC [28]. Some view matches can be rejected

at this stage, if MSAC fails to compute a valid alignment or

if the number ni of remaining inlier matches between two

1Ann library is available at http://www.cs.umd.edu/ mount/ANN
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views is less than a threshold:

ni > 5.9 + 0.22nf (4)

where nf is the number of original matches. The derivation

of the formula can be found in [8].

Finally, the rigid transform between the two views is re-

fined with LM-ICP [12] (see Sec. 3.3.2) on the whole set of

points, whereas before we were considering keypoints only.

After registration, outlier points are singled out using a

robust statistics called X84 [10, 13]. Let ei be the residuals

after ICP, the final set of inliers are those points such that

|ei −medj ej | < 3.5σ∗, (5)

where σ∗ = 1.4826 medi |ei −medj ej | is a robust estima-

tor of the scale of the noise.

For partially overlapping views the inliers correspond to

the area of overlap, hence we can assign a weight W (i, j)
in the range [0, 1] to the pair (view i ,view j), corresponding

to the fraction of the overlapping points over the total num-

ber of points. The n × n matrix W is called the weighted

adjacency matrix (see Fig. 2).

Bunny Gargoyle Capital Madonna

H

W

A

Figure 2: From top to bottom: keypoint co-occurrence ma-

trix H , weighted adjacency matrix W , and adjacency ma-

trix A for the four datasets described in Sec. 4.

3.3. Global registration

There are two stages of global registration: first a global

alignment is produced by combining the pairwise rigid

transformations found in the previous section; then this

alignment is refined with a multiview registration that con-

siders all the views simultaneously.

3.3.1 Graph-based alignment

A weighted graph is constructed, whose vertices are the

views and whose (weighted) adjacency matrix is W . Given

a reference view chosen arbitrarily, which sets the global

reference frame, for each view i, the transformation that

aligns it with the reference view r is computed by chain-

ing transformations along the shortest weighted path from i
to r. This is equivalent to computing the (weighted) MST

with the root in r.

The idea (as in [27, 23]) is that this yield a global align-

ment of the views with the least accumulation error among

the solutions based on chaining pairwise registrations.

3.3.2 Multiview LM-ICP

Some global alignment methods like [14] consider the

graph-based alignment to be the optimum, however the so-

lution found with the MST can be further improved by

defining a global registration schema which estimates all

the absolute orientations at the same time. As an example,

Figure 3 shows a detail where the benefit brought in by a

global registration can be appreciated.

In this section we shall review the so called Levenberg-

Marquardt Iterative Closest Point (henceforth LM-ICP) in-

troduced by [12] for pairwise registration, and then we shall

extend it to deal with multiple views.

Let {di}Nd
i=1 be the data view and {mi}Nm

i=1 be the model
view: pairwise registration aims at estimating the transfor-

mation T which moves the data into alignment with the

model. The optimal alignment is given by minimizing the

following error function:

E(a) =
Nd∑
i=1

ei(a)2 (6)

where

ei(a) = min
j
‖mj − T (a;di)‖ (7)

is the closest point distance, and a is the vector of p pa-

rameters that defines a particular T . In our case T (a; ·) is

a rigid transformation where the rotation is represented by

unit quaternions, hence p = 7.

Equation (6) is the error function that gets minimized in

ICP [4], which can be regarded as a specialized minimiza-

tion procedure. Fitzgibbon [12] instead proposed to mini-

mize it with a general-purpose technique such as LM, and

has shown that performances in terms of speed and conver-

gence are (surprisingly) better.

The goal of each iteration of LM is to choose an update

to the current estimate of a, that reduces the registration

error. To this end the the Jacobian matrix [Ji,j ] = [∂ei/∂aj ]
is needed. These derivatives can be determined efficiently

via the pre-computation of the distance transform D of the

model:

D(x) = min
j
‖mj − x‖, (8)
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Figure 3: Two views of Bunny (in red and blue) have been aligned with the graph-based alignment approach only (left) and

with our Multiview LM-ICP (right). The detail of the face shows a misalignment that gets fixed after Multiview LM-ICP.

where x ∈ X being X is a discrete volume grid enclosing

the model.

By combining equation (7) with equation (8) one obtains

ei(a) = D(T (a;di)), and derivatives are readily computed

by the chain-rule:

Ji,· = ∂ei/∂a = ∇xD(T (a;di))∇�a T (a,di). (9)

Please note that ∇aT is analytical, whereas ∇xD can be

computed with finite differencing in advance and will re-

main constant throughout the minimization.

In order to make the method robust one may attenuate the

influence of outliers by replacing the square loss function in

Eq. 6 with a robust loss function [15]. This can be easily

incorporated into the distance transform, by defining the ε-
distance transform:

Dε(x) = ε(min
j
‖mj − x‖), (10)

where ε is the square root of the loss function. In our case

we used the Huber loss function with a tuning parameter

k = 1.345σ that guarantees 95% efficiency:

ε2(x) =

{
x2/2, if |x| ≤ k

k|x| − x2/2 if |x| > k

Now we are ready to introduce our Multiview LM-ICP,

by extending the LM-ICP framework to the simultaneous

alignment of more than two views. Let V 1, ..., V n be the

set of views that are to be brought into alignment.

Let us consider the adjacency matrix A such that

A(h, k) = 1 if view V h can be registered to view V k, 0
otherwise. A is obtained by thresholding the weighted ad-

jacency matrix W with θ = 0.35 (see Fig. 2).

Let a1, ...,an be the vectors of parameters that encode

the rigid transform that is applied to each view in the com-
mon reference frame. The alignment error between view

V h and V k writes:

E(ah,ak) =
Nh∑
i=1

A(h, k)
(
Dk

ε (T (aha−1
k ,dh

i ))
)2

, (11)

where Dk
ε is the ε-distance transform of V k, dh

i ∈ V h, and

T (aha−1
k , ·) = T (ak, ·)−1T (ah, ·).

The overall alignment error is defined by summing up the

contribution of every pair in the set of overlapping views:

S = {(h, k) : A(h, k) = 1}:

E(a1, ...,an) =
∑

(h,k)∈S

Nh∑
i=1

(
Dk

ε (T (aha−1
k ,dh

i ))
)2

=
∑

(h,k)∈S

Nh∑
i=1

= (ek,h,i(a1, ...,an))2
(12)

The derivatives are computed as follows:

∂eh,k,i/∂(a1,...,an) =

∇xDk
ε (T (aha−1

k ,dh
i ))∇�(a1,...,an)T (aha−1

k ,dh
i )). (13)

In particular, the Jacobian J is a sparse matrix (see Fig. 4)

composed by q × n blocks Js,r, where q = 	S. The block

Js,r is associated with the sth view pair in S: let (h, k) be

such view pair. In formulae, the components of Js,h are

defined as:

Js,h
i,j =∇xDk

ε (T (aha−1
k ,dh

i ))∇�[ah]j
T (aha−1

k ,dh
i ). (14)

The components of the block Js,k are computed likewise.

Please note that in the block row s, only blocks Js,h and

Js,k are non-zero.

4. Results
In this section we report results for both synthetic views

and real scans acquired by a 3D scanner. The Stanford

Bunny model2, for which a complete model from laser

scanning is given was used as a ground truth, and 24 partial

views were synthetically created. Other real data sets (cour-

tesy of IST-CNR) are composed of unordered range views

2available from the Stanford 3D scanning repository

(http://graphics.stanford.edu/data/3Dscanrep/)
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Figure 4: Jacobian matrix. The matrix is composed of q×n
blocks that are associated to view pairs. Given a view pair

(h, k) whose index is s, the only non-zero components of

the Jacobian are those associated to the unknowns ah and

ak. Indeed, only blocks Js,h and Js,k are non-zero.

of fairly heterogeneous objects: Gargoyle (27 views),

Capital (100 views) and Madonna (170 views). Models

are shown in Fig.5.

Besides Bunny, all the other datasets come from real-

world acquisition, hence noise is intrinsically present and

the sampling is not uniform across views (as the scanner

moves backward and forward). In the Madonna dataset

each scan covers a very small portion of the whole object,

with a small overlap between views, thereby making the

alignment very challenging.

We evaluate our method in two aspects: the capability of

automatically pre-aligning the views, and the accuracy of

the final registration after Multiview LM-ICP.

The evaluation of the first aspect is qualitative, and Fig.5

shows that the models have been correctly recovered in

cases that ranges from 24 to 196 views. For display pur-

poses only, we show the surface reconstructed with the Pois-

son method [18].

As for the accuracy, we compared our Multiview LM-

ICP with [26], as implemented in Scanalyze[1].

Table 1: Rotation and translation errors for Bunny

Method rotation [deg] translation [mm]

Scanalyze 0.086 1.23

Multiview LM-ICP 0.072 0.77

Table 1 reports rotation and translation errors for Bunny
for both methods (starting from the graph-based alignment).

The figures show that Multiview LM-ICP clearly improves

on [26].

This evaluation was possible because for Bunny the

ground truth was available. In all the other cases we can

only report the registration error (i.e., average closest points

distance), as in Tab. 2. Unfortunately Scanalyze crashed for

all the datasets larger than 30 views, hence we have data

only for Bunny and Gargoyle.

Table 2: Average registration error [mm].

Dataset Scanalyze Multiview LM-ICP

Bunny 0.095 0.093

Gargoyle 0.465 0.459

Please note that, even if the improvement in term of the

average registration error appear to be small, this can trans-

late into an appreciable rotation or translation error, as the

case of Bunny testifies.

5. Conclusions

The contribution of this paper is twofold. First we pro-

posed a completely automatic method for 3D registration

of multiple range views. Although there are methods in

the literature that address the same problem, very few work

describe fully automatic system which require no manual

intervention in any phase and no parameter tuning. More-

over, we are able to deal with much more views than what

was proposed in previous work. The second contribution

is Multiview LM-ICP, the extension of LM-ICP to multiple

views in order to minimize a global registration error. Al-

though this had been already envisaged in [12], it has never

been done before. Results have shown a clear advantage in

comparison with a standard method.
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